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Robust interferometry against imperfections based on weak value amplification
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Optical interferometry has been widely used in various high-precision applications. Usually, the minimum
precision of an interferometry is limited by various technical noises in practice. To suppress such kinds of noises,
we propose a scheme which combines the weak measurement with the standard interferometry. The proposed
scheme dramatically outperforms the standard interferometry in the signal-to-noise ratio and the robustness against
noises caused by the optical elements’ reflections and the offset fluctuation between two paths. A proof-of-principle
experiment is demonstrated to validate the amplification theory.
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I. INTRODUCTION

The optical interferometry has been widely used in sci-
ence and industry fields such as physics [1], astronomy [2],
engineering [3], applied science [4], biology [5], and medicine
[6]. In all of these applications, an important issue is to detect
the length difference or the phase difference between different
paths. Making use of the obtained differences, one may achieve
a high-precision length measurement [1]. Theoretically, the
minimum measurable length difference is limited by the shot-
noise limit [7], which is inversely proportional to the square
root of the input intensity and the number of measurement
events, while in practice the technical noises may cause
uncertainty that is usually much higher than the theoretical
limit. Hence, suppression of the practical technical noises has
become an important issue in applications of interferometry.

Aiming at high-precision detection, a technique called weak
value amplification (WVA) [8–15] can suppress the techni-
cal noises to increase the signal-to-noise ratio (SNR). This
has been demonstrated in theories [16–18] and experiments
[12,13]. Physically, such suppression can be achieved by
amplifying the signal at the cost of decreasing the probability
of detection. Due to the amplification, small changes beyond
the detector resolution can even be detected [9,10].

In this paper, we propose a scheme named weak-value-
amplified interferometry (WVAI) which merges the WVA and
the standard interferometry (SI) together. By applying the
WVA technique, this scheme amplifies the phase difference
before detection in an interferometer. The amplification pro-
vides the robustness against technical noises. Based on an
optical Mach-Zehnder interferometer, the performance of the
proposed scheme is investigated. Then the influences of two
kinds of technical noises, which are respectively caused by
the reflections of the optical elements and the fluctuations of
the phase offset, are studied. The results show that the WVAI
scheme outperforms the SI in the SNR and in the technical
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noise suppression. In addition, a proof-of-principle experiment
is demonstrated to verify the phase amplification effect of the
WVAI scheme.

This paper is organized as follows. In Sec. II we present
an interferometry scheme referred to as WVAI. Then the
influences of two typical technical noises, which are respec-
tively caused by the reflections of the optical elements and the
fluctuations of the offset between two paths, are investigated
in Sec. III. In Sec. IV a proof-of-principle experiment is
demonstrated and analyzed. Section V summarizes the paper.

II. SCHEME DESCRIPTION

Before presenting the proposed scheme, let us consider an
optical Mach-Zehnder interferometer to exemplify the stan-
dard interferometry. Displayed in Fig. 1(a), a monochromatic
laser beam is split into two paths by the beam splitter BS1
with a 50:50 splitting ratio. In the lower path, e−iθ stands for
the phase difference between the two paths. In the upper path, a
controllable phase φ is introduced as an offset phase delay. The
two beams in the two paths interfere after recombining by BS2.
Then one can collect the output intensity of the interference by
a detector, which is

IφI (θ ) = Iin

∣∣∣∣e
−iφ + e−iθ

2

∣∣∣∣
2

= Iin

2
[1 + cos(φ − θ )], (1)

where Iin is the input light intensity. The subscripts I and φ

represent the SI scheme and the phase offset, respectively.
With a little modification, one can combine the interfer-

ometer with the WVA technique. As indicated in Fig. 1(b),
two linear polarizers are inserted before BS1 and after BS2,
respectively. These polarizers are used to select the system
in the preselected state |ψi〉 = 1/

√
2(|H 〉 + |V 〉) and in the

postselected state |ψf 〉 = cos α|H 〉 + sin α|V 〉), respectively.
Note that H and V stand for the horizontal and vertical
polarized directions, respectively. The phase difference e−iθ

is replaced with a unitary operation Û (θ ) = e−iθÂ, where
A ≡ |H 〉〈H | − |V 〉〈V |. Then one obtains a WVAI scheme
based on an optical Mach-Zehnder interferometer. Other types
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FIG. 1. Schematic diagram of (a) SI and (b) WVAI based on an
optical Mach-Zehnder interferometer.

of interferometers, such as Michelson, Sagnac, and atom
interferometers, will be straightforward.

The output state of the modified interferometer is
expressed as

|�out〉 = 〈ψf |e
−iφ + Û (θ )

2
|ψi〉|φ(p)〉, (2)

where |φ(p)〉 is the input laser state and p stands for the
momentum. When α = −π/4 + ε and |θ/ε| � 1, the output
state could be written in its first-order approximation

|�out〉 ≈ 〈ψf |ψi〉e
−iφ + e−iAwθ

2
|φ(p)〉, (3)

where

Aw = 〈ψf |Â|ψi〉
〈ψf |ψi〉 = cos α − sin α

cos α + sin α
= cot ε. (4)

The detector collects the light selected by |ψf 〉. The detected
intensity is given by

IφA(θ ) ≈ Iin|〈ψf |ψi〉|2

∣∣∣∣e
−iφ + e−iAwθ

2

∣∣∣∣
2

= Iin sin2 ε

2
[1 + cos(φ − Awθ )], (5)

where the subscript A indicates the proposed scheme. Because
of the postselection, the orthogonal polarized parts are ne-
glected. The successful selected probability is sin2 ε. For the
purpose of amplifying the phase difference, ε should be far less
than 1. Note that |θ/ε| � 1 still needs to be satisfied. Under
both approximate conditions, Eq. (5) becomes

IφA(θ ) ≈ Iin

2A2
w

[1 + cos(φ − Awθ )]. (6)

Figure 2 shows the output intensity of different offsets
without phase delay input (θ = 0) in SI. Based on the WVAI
scheme, one may get a similar curve with an attenuation of
1/A2

w in the amplitude. Typically, the offset φ is set at two
phase values, i.e., π/2 and π , for the highest sensitivity and
the weak signal detection, respectively.

0 /2 3 /2 2
0

in

in

I

I

0.5I

 I

FIG. 2. Output intensity IφI of different offsets φ without phase
delay input (θ = 0) in standard interferometry.

In applications, it is more common to detect the output
intensity difference between no phase delay input and θ (θ > 0)
input, which is

	Iφ(θ ) = Iφ(θ ) − Iφ(0).

This difference can be obtained by differential detection [19]
or phase and amplitude modulation [20]. Without the technical
noises, the detection uncertainty is inversely proportional to the
square root of 	Iφ . We will compare the intensity difference
of WVAI with that of SI in the following.

When φ = π , the interferometer has total destructive inter-
ference. Since it is easier to detect a brightening of nothing than
to detect a dimming of a bright light, this offset is usually set
for weak signal detection like gravitational wave detection.
Omitting the technical noise, 	Iφ is equal to the detected
intensity in both the WVAI and the SI scheme, which can be
written in the first-order approximation as, respectively,

	IπA = IπA
≈ Iinθ

2/4, 	IπI = IπI
≈ Iinθ

2/4, (7)

where the subscript π means the phase offset is set at π .
Explicitly, the output intensity difference is proportional to
the quadratic term of θ . The two schemes hold the same
uncertainty. Although θ has been amplified, the WVAI scheme
detects the same intensity as the SI. This degradation is
responsible for discarding light in the postselection.

When φ = π/2, this offset leads to a maximum sensitivity
of the interferometer. In Fig. 2, it can be seen that the curve
has a maximum gradient with φ = π/2. In this situation,

	I(π/2)A ≈ 0.5Iin sin(Awθ )

A2
w

≈ 0.5Iinθ

Aw

,

	I(π/2)I ≈ 0.5Iin sin θ ≈ 0.5Iinθ. (8)

Obviously, 	I(π/2)A is smaller than 	I(π/2)I by a factor of
1/Aw because of the low probability of postselection. It seems
like the WVAI scheme has no advantage over the SI schemes
in this situation. However, when technical noises are taken
into consideration, the WVAI appears to become more robust
compared with the SI.

In order to explain the noise resistance, we introduce the
intensity contrast ratio (ICR), which is expressed as

Cφ = Iφ(θ )/Iφ(0).
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FIG. 3. Intensity contrast ratio with the offsetφ = π/2 of SI (solid
line), Aw = 2 (dash-dotted line), Aw = 5 (dotted line), and Aw =
10 (dashed line).

The ICR represents the ratio of the intensity variation (detected
signal) induced by the phase delay to the postselected light
intensity [21]. The ICRs of the SI and the WVAI can be written,
respectively, as

CφI = 1 + cos(φ − θ )

1 + cos φ
, CφA = 1 + cos(φ − Awθ )

1 + cos φ
. (9)

We are interested in the case of φ = π/2. In this case, C(π/2)A,
which increases along with the increase of Aw, is larger than
C(π/2)I when Aw > 1, as depicted in Fig. 3.

A larger intensity contrast ratio implies that a greater
proportion of the detected intensity is occupied by the signal.
If the noise is relative to the detected intensity, e.g., the
relative intensity noise (RIN) [22], which is the main factor
causing detection uncertainties in some applications [23], the
greater proportion will result in a higher SNR. The relationship
between the RIN and the detected intensity is σ

(n)
RIN = βI (θ ),

where β is the coefficient. When measuring the intensity
difference, the SNR can be expressed as

	I

σ
(n)
RIN

= 	I

I (θ )

I (θ )

σ
(n)
RIN

=
(

1 − 1

C

)
1

β
. (10)

Apparently, the larger C indicates stronger robustness against
the RIN. When 0 � φ � π and 0 < Awθ � 1, it is easy
to verify that CφA < CφI . Thus the WVAI scheme has a
higher SNR under the same RIN than that of the SI. In
practice, the relationship between the technical noises and the
detected intensity may be more complicated. However, the
higher intensity contrast ratio can still provide a better noise
resistance. A detailed analysis will be shown in the next section.

Finally, if the power-recycle technique [24] is taken into
consideration, all the light will go through the postselection
without attenuation. One may gain a magnificence A2

w times
that of the output intensity, which is

IφA(θ ) ≈ Iin

2
[1 + cos(φ − Awθ )]. (11)

The amplified phase will boost the performance with any φ.
With balanced differential detectors, a π/2 offset will lead to
an enhancement of sensitivity Aw times that of SI.

III. IMPERFECTION ANALYSIS

In this section, we discuss two typical kinds of technical
noises as examples to demonstrate the robustness of the
proposed scheme against the noises. These noises are caused by
the reflections of imperfect optical elements and the fluctuation
of the offset φ, respectively.

A. Reflection of imperfect optical elements

In practice, the ratio of all the optical elements’ transmission
cannot be 1. The reflected light will interfere with the output
light field. For example, in the proposed scheme depicted in
Fig. 1, the imperfections of BS1, BS2, and all the mirrors
could cause this problem. The reflected light field before
postselection can be written as Einηne

iδn , where the subscript
n denotes the number of the optical elements and Ein, ηn, and
δn are the input light field, the square root of the reflectivity,
and the relative phase of corresponding elements, respectively.
Generally, one has the expression

ηeiδ =
N∑

n=1

ηne
iδn ,

where N is the total number of optical elements, η =√∑N
n=1 η2

n, and tan δ =
∑N

n=1 sin δn∑N
n=1 cos δn

. Commonly, η � 1 and δ

can be any value from −π to π . Then the output intensity
described by Eq. (6) becomes

I1A(θ ) ≈ Iin|〈ψf |ψi〉|2

∣∣∣∣e
−iφ + e−iAwθ + ∑N

n=1 ηne
iδn

2

∣∣∣∣
2

≈ Iin

2A2
w

{
1 + η2

2
+ cos(φ − Awθ )

+ η[cos(φ + δ) + cos(Awθ + δ)]

}
. (12)

When φ = π , according to the Taylor expansion to the second
order in Eq. (12), one acquires

	I1A(θ ) ≈ (
S1A + σ

(n)
1A

)
Iin,

where

S1A = θ2

4
, σ

(n)
1A = η2

4A2
w

− η

(
θ2

2
cos δ + θ sin δ

Aw

)
. (13)

Here S1A and σ
(n)
1A are the proportions of the input intensity, that

is, the signal induced by phase delay θ and the noise caused
by the reflected light, respectively. In contrast, in SI, one has

	I1I (θ ) ≈ (
S1I + σ

(n)
1I

)
Iin,

where

S1I = θ2

4
, σ

(n)
1I = η2

4
− η

(
θ2

2
cos δ + θ sin δ

)
. (14)

To reveal the noise influences in both schemes, we compare
the absolute value of σ (n) in Eqs. (13) and (14) with η = 0.01.
The results are shown in Fig. 4. When Aw � 10 the noise of the
WVAI is at least one order of magnitude lower than that of
the SI, leading to a higher SNR. The SNR with η = 0.01
and δ = 0 can been seen in Fig. 5. In addition, compared
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FIG. 4. Calculated results of |σ (n)
1 | in Eqs. (13) and (14) with η =

0.01 and an offset φ = π .

among Figs. 4(b)–4(d) and 5, as long as the amplification factor
increases, the noise decreases, leading to an increasing SNR.

When φ = π/2, the intensity difference in the WVAI
scheme is given by

	I2A(θ ) ≈ (
S2A + σ

(n)
2A

)
Iin,

where

S2A = θ

2Aw

, σ
(n)
2A = η

(
1 − η

A2
w

− θ2

4
cos δ − θ sin δ

2Aw

)
.

(15)

In contrast, in the SI scheme, the intensity difference is given
by

	I2I (θ ) ≈ Iin
(
S2I + σ

(n)
2I

)
,

where

S2I = θ
2 , σ

(n)
2I = η

(
1 − η − θ2

4 cos δ − θ sin δ
2

)
. (16)
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FIG. 5. The SNRs of SI (solid line), Aw = 10 (dashed line), Aw =
50 (dash-dotted line), and Aw = 100 (dotted line), calculated with
η = 0.01, δ = 0, and an offset φ = π .

FIG. 6. Calculated results of |σ (n)
2 | in Eqs. (15) and (16) with η =

0.01 and an offset φ = π/2.

Similarly, the results of |σ (n)| with η = 0.01 are depicted in
Fig. 6. The noise in the WVAI scheme is at least two orders of
magnitude less than that of the SI. From Fig. 7, although the
collected intensity in the WVAI is 1/Aw of that of the SI with
the same θ , the SNR of the WVAI is still higher than that of
the SI.

B. Fluctuations of offset φ

Vibrations, air movements, deformations of optical mounts,
and other environmental factors may change the path difference
between two arms of the interferometer. These effects cause
fluctuations of φ, which results in unexpected noises. Usually
we use a closed-loop compensation to avoid the fluctuations.
However, the fluctuations cannot be eliminated completely.
Consider that there is a small fluctuation 	φ � 1. Here 	φ

must be less than θ ; otherwise the signal will be submerged in
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FIG. 7. The SNRs of SI (solid line), Aw = 10 (dashed line), Aw =
50 (dash-dotted line), and Aw = 100 (dotted line), calculated with
η = 0.01, δ = 0, and an offset φ = π/2.
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FIG. 8. Noise caused by the fluctuation of 	φ = 10−4 at the offset
π calculated by Eq. (19).

the noise. The output intensity difference is

	I3A(θ ) = Iin
(
S3A + σ

(n)
3A

)
,

where

S3A = − Iin

A2
w

sin

(
φ − Awθ

2

)
sin

(
Awθ

2

)
,

σ
(n)
3A = 1

A2
w

sin

(
φ − Awθ + 	φ

2

)
sin

	φ

2
. (17)

For the SI, one obtains

	I3I (θ ) = Iin
(
S3I + σ

(n)
3I

)
,

where

S3I = −Iinsin

(
φ − θ

2

)
sin

(
θ

2

)
,

σ
(n)
3I = sin

(
φ − θ + 	φ

2

)
sin

	φ

2
. (18)

Obviously, when Aw = 1, Eq. (17) is equal to Eq. (18). If one
lets φ = π , |σ (n)

3 | becomes

∣∣σ (n)
3

∣∣ =
∣∣∣∣ 1

A2
w

sin

(
Awθ − 	φ

2

)
sin

	φ

2

∣∣∣∣
≈

∣∣∣∣ (2Awθ − 	φ)	φ

4A2
w

∣∣∣∣. (19)

When |θ | � |	φ|, |σ (n)
3 | decreases monotonically along Aw �

1, so the noise of the WVAI scheme is less than that of the SI
scheme. The SNR of the WVAI scheme could benefit from the
attenuated noise. The simulated results with 	φ = 10−4 rad
are illustrated in Fig. 8. If one lets φ = π/2, Eq. (19) becomes

∣∣σ (n)
3

∣∣ =
∣∣∣∣ 1

A2
w

cos

(
Awθ − 	φ

2

)
sin

	φ

2

∣∣∣∣

≈
∣∣∣∣
(
1 − A2

wθ2 − 	2φ

4 + Awθ
)
	φ

4A2
w

∣∣∣∣, (20)

where |σ (n)
3 | also is monotonically decreases along Aw �

1 when φ = π/2. Figure 9 is the calculated diagram with

FIG. 9. Noise caused by the fluctuation of 	φ = 10−4 at the offset
π/2 calculated by Eq. (20).

	φ = 10−4 rad. Apparently, the SNR of the WVAI outper-
forms that of the SI with a π/2 offset.

IV. EXPERIMENT

As mentioned in Sec. II, the results of other types of
interferometer are similar to the Mach-Zehnder type. Because
it is easier to build and adjust, we choose instead a Michel-
son interferometer to demonstrate the proposed scheme. The
experiment is set as illustrated in Fig. 10. A monochromatic
laser beam, generated by a diode laser (Toptica, DL100) with
a central wavelength of λ0 = 780 nm, is prepared in the state
|ψi〉 = 1/

√
2(|H 〉 + |V 〉) by the first polarizer (labeled “Pre.”)

Then the beam enters a Michelson interferometer. The phase
difference between two arms is φ + 2nπ , where n is an integer.
The difference is set by the motor fixed on the mirror M2.
After the beams recombine through the BS, a polarizer (labeled
“Post”) selects them at state |ψf 〉 = cos α|H 〉 + sin α|V 〉. In
both arms of the interferometer, we place a pair of wave-
plates to introduce a phase delay between horizontal and
vertical polarization. It has been proved in [12,13] that the
two waveplates could equivalently realize a thin birefringent

Pre

Post

M1

M2

1

2

3 4

ˆ ( )
2

U

ie

Polarizer
HWP
Mirror
BS
Motor
CCD
OA

ˆ ( )
2

U

FIG. 10. Experimental setup: HWP, half-wave plate; BS, 50:50
beam splitter; and OA, optical axis.
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crystal. The optical axes (OAs) of the half-wave plates (HWPs)
are perpendicular to each other to cancel their phase delay.
Tilting one of the HWPs around its OA by a tiny angle γ

increases the optical path of this HWP, which introduces a
unitary operation Û (θ ) = e−iθA. In this experiment, the HWPs
are binary compound zeroth-order half-wave plates, so the
relationship between γ and θ is [13]

θ = 2π (ne − no)hγ 2

λn2
, (21)

where ne, no, and n are refractive indices of quartz for extraor-
dinary light, ordinary light, and average light, respectively,
h is the thickness of the plate, and λ is the wavelength of
the light. The tilt also increases the optical path in one arm,
which causes a variation of offset φ, so we put the HWPs into
both arms to diminish this influence. As shown in Fig. 10, the
OAs of HWP1 and HWP4 are in the horizontal direction and
those of HWP2 and HWP3 are in the vertical direction. We
tilt HWP1 and HWP3 along their OAs by the same angle γ

to introduce opposite phase delay and to compensate for the
increased optical path length.

By rotating the postselection polarizer to a different po-
sition, we could set the required Aw. The offset is set at π

for the total destructive interference. However, the minimum
step size of the motor on mirror M2 limits the practical
accuracy of setting φ. The vibration of the optical platform
and the deformation of the motor cause fluctuations of the
offset. To prove the amplification effect, we use the intensity
contrast ratio C = I (θ )/I (0) as a criterion. When φ > Awθ ,
we obtain that

CφA = Iφ(θ )

Iφ(0)
= 1 + cos(φ − Awθ )

1 + cos φ
. (22)

When |ψf 〉 = |H 〉, the experiment becomes a traditional
Michelson interferometer with the path difference of φ − θ

between the two arms. In this situation the intensity contrast
ratio becomes

CφI = Iφ(θ )

Iφ(0)
= 1 + cos(φ − θ )

1 + cos φ
, (23)

which is the same as the standard interferometry result dis-
cussed before.

The experimental results are shown in Fig. 11. All curves
fit well with Eqs. (22) and (23). We calculate that φ = 3.0711,
which meets the set value π mentioned before. Apparently,
the intensity contrast ratio increases along the amplification

0 1 2 3 4 5

10-3

0.5

1

1.5

2

2.5

3

C

A
w

=10.17

A
w

=2.03

Interference

FIG. 11. Relation of the phase delay θ and intensity contrast
ratio I (θ )/I (0). Blue circles, red plus signs and black asterisks
are experimental results with Aw = 10.17,2.03 and interference,
respectively. φ = 3.0711. The corresponding lines are fitting with
Eq. (22) and Eq. (23).

factor Aw, as predicted in Sec. II. The results firmly support
the amplification effect in the WVAI scheme.

V. CONCLUSION

We have proposed a scheme, named weak-value-amplified
interferometry, which combines the weak value amplification
and the standard interferometry. This scheme can amplify
the phase difference between different paths at the cost of
decreasing the detected probability. Although the proposed
scheme has lower detected intensity than the standard interfer-
ometry, the investigation showed that it has a higher intensity
contrast ratio and stronger robustness against technical noises.
We demonstrated a proof-of-principle experiment based on
a Michelson interferometer. The results successfully validate
the phase amplification effect. Due to the ability of noise
resistance, the proposed scheme may be applied on high-
precision measurements such as gravitational wave detection,
optical coherence tomography, and other phase detections.
We believe that this scheme is a good alternative to the
standard interferometry, where high sensitivity and strong
noise resistance are required.
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