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Exploring the nonlinear regime of light-matter interaction using electronic spins in diamond
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The coupling between defects in diamond and a superconducting microwave resonator is studied in the nonlinear
regime. Both negatively charged nitrogen-vacancy and P1 defects are explored. The measured cavity mode
response exhibits strong nonlinearity near a spin resonance. Data is compared with theoretical predictions and a
good agreement is obtained in a wide range of externally controlled parameters. The nonlinear effect under study
in the current paper is expected to play a role in any cavity-based magnetic resonance imaging technique and to
impose a fundamental limit upon its sensitivity.
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I. INTRODUCTION

Cavity quantum electrodynamics (CQED) [1] is the study
of the interaction between photons confined in a cavity and
matter. CQED has applications in a variety of fields, including
magnetic resonance imaging and quantum computation [2].
The CQED interaction can be probed by measuring the
response of a cavity mode. Commonly, the effect of matter
on the response diminishes as the energy stored in the cavity
mode under study is increased [3]. This nonlinear effect, which
is the focus of the current study, imposes a severe limit upon
the performance of a variety of CQED systems.

In the current study, we explore the nonlinear CQED
interaction between defects in a diamond crystal and a super-
conducting microwave cavity (resonator) having a spiral shape
[4]. Two types of defects are investigated: a negatively charged
nitrogen-vacancy NV− defect and a nitrogen 14 (nuclear spin-
1) substitutional defect (P1). Strong coupling between defects
in the diamond and a superconducting resonator has been
demonstrated at ultralow temperatures [5–11]; however, the
regime of nonlinear response was not addressed. In this study,
we find that the cavity response becomes highly nonlinear
near a CQED resonance. In addition, for the case of NV−

defects, the response is strongly affected by applying optically
induced spin polarization (OISP). The experimental findings
are compared with theory and good agreement is obtained.

II. EXPERIMENTAL SETUP

The experimental setup is schematically depicted in
Fig. 1(a). Defects in a [100]-type Ib diamond are created
using 2.8 MeV electron irradiation with a dose of approxi-
mately 8 × 1018e/cm2, followed by annealing at 800 ◦C for
8 hours and acid cleaning, resulting in the formation of NV−

defects with density of 1.23 × 1017 cm−3 [12]. The diamond
wafer is then placed on top of a sapphire wafer supporting
a superconducting spiral resonator made of niobium [see
Fig. 1(b)]. Externally applied magnetic field B is employed
for tuning the system into a CQED resonance. A coaxial cable
terminated by a loop antenna (LA) transmits both injected
and off-reflected microwave signals. The LA has a coupling

given by γf/2π = 0.367 MHz to the spiral’s fundamental
mode, which has a frequency of ωc/2π = 2.53 GHz and an
unloaded damping rate of γc/2π = 0.253 MHz [these values
are extracted from a fitting based on Eq. (7) below]. All
measurements are performed at a base temperature of T = 3.1
K. A network analyzer (NA) measurement of the temperature
dependence of the resonance line shape is seen in Fig. 1(c). The
color-coded plot depicts the reflectivity coefficient Rc = Pr/Pp

in dB units, where Pp = −70 dBm and Pr are, respectively, the
injected power into the LA and the off-reflected power from the
LA, as a function of both frequency of injected signal ωp/2π

and temperature T . Laser light of wavelength λL = 532 nm
and intensity IL (in units of power per unit area) is injected
into the diamond wafer using a multimode optical fiber F1,
and another multimode optical fiber F2 delivers the emitted
photoluminescence (PL) to an optical spectrum analyzer [see
Fig. 2(a)]. Numerical calculation is employed for evaluating
the shape of the spiral’s fundamental mode [see Fig. 1(d)].

III. CAVITY-BASED DETECTION OF MAGNETIC
RESONANCE WITH NV CENTERS IN DIAMOND

The negatively charged NV− defect in diamond consists of
a substitutional nitrogen atom (N) combined with a neighbor
vacancy (V) [13]. The ground state of the NV− defect is
a spin triplet having symmetry 3A2 [14,15], composed of a
singlet state |me = 0〉 and a doublet |me = ±1〉. The angular
resonance frequencies ω± corresponding to the transitions
between the state |me = 0〉 and the states |me = ±1〉 are
approximately given by [16–18]

ω± = D ±
√

γ 2
e B2

‖ + E2 + 3

2

γ 2
e B2

⊥
D

, (1)

where B‖ is the magnetic field component parallel to the axis
of the NV defect and B⊥ is the transverse one. The parameter
γe = 2π × 28.03 GHz T−1 is the electron spin gyromagnetic
ratio. In the absence of strain and when the externally applied
magnetic field vanishes, one has ω± = D, where D = 2π ×
2.87 GHz. Internal strain, however, may lift the degeneracy
between the states |me = −1〉 and |me = +1〉, and give rise to
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FIG. 1. The experimental setup. (a) A loop antenna (LA) is
coupled to the spiral resonator. Two multimode optical fibers are
coupled to the diamond wafer. Fiber F1 is employed for delivering
laser light of wavelength λL = 532 nm, and fiber F2 probes the emitted
photoluminescence (PL). (b) The spiral resonator has three turns, an
inner radius of 0.59 mm, and an outer radius of 0.79 mm. (c) The
resonance line shape of the spiral’s fundamental mode vs temperature.
(d) The magnetic induction magnitude |Bc(r)| of the fundamental
mode vs position r in a plane perpendicular to both wafers that
contains the center of the spiral.

a splitting given by 2E (in our sample, E = 2π × 10 MHz).
In a single-crystal diamond, the NV defects have four different
possible orientations with four corresponding pairs of angular
resonance frequencies ω±.

The technique of optical detection of magnetic resonance
(ODMR) can be employed for measuring the resonance fre-
quencies ω± [19,20]. The measured PL spectrum is seen in
Fig. 2(a). The integrated PL signal in the band 660–760 nm
is plotted as a function of microwave input frequency ωp/2π

and externally applied magnetic field |B| in Figs. 2(b) and
2(c). In this measurement, the microwave input power is set to
Pp = 20 dBm. The direction of the externally applied magnetic
field B is found by fitting the measured ODMR frequencies ω±
with the calculated values given by Eq. (1).

FIG. 2. ODMR. (a) The measured emitted PL spectrum. (b),(c)
ODMR spectrum vs driving frequency ωp/2π and magnetic field |B|.
The white dotted lines represent the frequencies ω±/2π calculated
using Eq. (1). The fitting procedure yields the direction of the magnetic
field b̂, which is expressed as b̂ = Tẑ(θz)Tŷ(θy)Tx̂(θx)ẑ, where x̂, ŷ,
and ẑ are unit vectors in the crystal directions [100], [010], and [001],
respectively, and Tŝ(θs) is a rotation operator around the axis ŝ, where
s ∈ {x,y,z}. The rotation angles found from the fitting procedure are
θx/π = −0.02, θy/π = 0.002, and θz/π = 0.05.

The ODMR spectrum contains a profound resonance
feature at the frequency of the spiral resonator, ωc/2π =
2.53 GHz [see Fig. 2(b)]. This feature is attributed to heating-
induced change in the internal stress in the diamond wafer.
Two (out of four) resonance frequencies ω−/2π can be tuned
close to the spiral resonator frequency ωc/2π by setting the
magnetic field |B| close to the value of 16 mT. The two groups
of NV− defects giving rise to these two resonances have the
smallest angles with respect to the externally applied magnetic
field (see caption of Fig. 2). In this region, which is magnified
in Fig. 2(c), the deepest ODMR is obtained when the magnetic
and resonator frequencies coincide.

The same two spin resonances seen in Fig. 2(c) can be
detected without employing the technique of ODMR provided
that their frequencies are tuned close to the spiral resonator
frequency ωc/2π . The plots (D: P1; L0), (D: P2; L0), and (D:
P3; L0) of Fig. 3 depict NA measurements of the microwave
reflectivity coefficient Rc with three different values of the
injected signal microwave power Pp. No laser light is injected
into the diamond wafer in these measurements (labeled by L0
in Fig. 3). Henceforth, this method of spin detection is referred
to as cavity-based detection of magnetic resonance (CDMR).
Both CDMRs seen in Fig. 3 exhibit strong dependence on Pp,
indicating thus that the interaction with the spins makes the
cavity response highly nonlinear.

IV. SPIN-INDUCED NONLINEARITY

To account for the observed spin-induced nonlinearity, the
experimental results are compared with theoretical predictions
[21]. The decoupled cavity mode is characterized by an
angular resonance frequency ωc, Kerr coefficient Kc, linear
damping rate γc, and cubic damping (two-photon absorption)
rate Gc. The response of the decoupled cavity in the weak
nonlinear regime (in which nonlinearity is taken into account
to lowest nonvanishing order) can be described by introducing
the complex and mode-amplitude-dependent cavity angular
resonance frequency ϒc, which is given by

ϒc = ωc − iγc + (Kc − iGc)Ec, (2)

where Ec is the averaged number of photons occupying the
cavity mode. The imaginary part of ϒc represents the effect
of damping and the terms proportional to Ec represent the
nonlinear contribution to the response.

The effect of the spins on the cavity response in the
weak nonlinear regime is theoretically evaluated in [22]. The
steady-state cavity mode response is found to be equivalent
to the response of a mode having effective complex cavity
angular resonance frequency ϒeff given by ϒeff = ϒc + ϒs,
where ϒs = ∑

n ϒn and ϒn, which represents the contribution
of a spin labeled by the index n, and is given by (see Eq. (4)
in [22])

ϒn = − g2
n

�n

1 − i
�nT2,n

1 + 1+4g2
nT1,nT2,nEc

�2
nT

2
2,n

PzS,n, (3)

where gn is the coupling coefficient between the nth spin
and the cavity mode, T1,n and T2,n are the spin’s longitudinal
and transverse relaxation times, respectively, �n = ωc − ωs,n

is the frequency detuning between the cavity frequency ωc
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FIG. 3. Cavity mode reflectivity Rc with NV− defects for various values of injected microwave power Pp (P 1 = −90, P 2 = −70, P 3 =
−60, and P 4 = −50 dBm) and laser power IL (L0 = 0, L1 = 5.6, L2 = 12.8, and L3 = 30 mW mm−2). For each pair, the top plot is
experimental data (labeled D) and the bottom is the theoretical prediction (labeled F). The bottom row shows the effective normalized resonance
frequency (ωeff/ωc), which is obtained from the minimum reflectivity signal for each magnetic field, as a function of magnetic field. Each
column corresponds to a single microwave power (DF; P1–P4) and each plot shows all four laser powers (L3 in red, L2 in black, L1 in blue, and
L0 in green). Cross markers denote experimental data and solid lines represent theoretical predictions. Plots are vertically shifted for clarity.
The parameters used for the calculation for the case of laser on (off) are PzST = −0.035, PzSO = −0.55, ρs = 1.23 × 1017 cm−3, T2 = 219 ns,
T1T = 23 ms (T1T = 565 ms) [23] and gs/2π = 5.05 Hz (gs/2π = 2.72 Hz). The rate T −1

1O of OISP is taken to be given by T −1
1O = 0.16 × γO,

where γO = ILσλL/hc is the rate of optical absorption, where σ = 3 × 10−17 cm2 [24] is the optical cross section, h is the Plank’s constant,
and c is the speed of light in vacuum. The effective coupling coefficient gs for both cases of laser on and off is calculated using Eq. (5) and the
numerically calculated mode shape [see Fig. 1(d)]. The volume inside the diamond wafer illuminated by the laser is 0.76 mm3.

and the spin’s transition frequency ωs,n, and PzS,n is the spin’s
longitudinal polarization. The term proportional to Ec in the
denominator of Eq. (3) gives rise to a nonlinear response.

The coupling coefficients gn can be extracted from the
numerically calculated magnetic field induction Bc(r) of the
spiral’s fundamental mode [see Fig. 1(d)] using the expression
gn = γe|Bc(rn)| sin ϕn/E

1/2
c [6], where Bc(rn) is the cavity

mode magnetic induction at the location of the spin rn and
ϕn is the angle between Bc(rn) and the NV axis. When all
contributing spins share the same detuning factor �, polariza-
tion PzS, and the same relaxation times T1 and T2, and when
the variance in the distribution of gn is taken into account to
lowest nonvanishing order only, one finds that

ϒs = Neffg
2
s

�

1 − i
�T2

1 + 1+ Ec
Ecc

�2T 2
2

, (4)

where ρs(r) is the density of contributing NV− defects, Neff =
− ∫

drρsPzS is their effective number, the effective coupling

coefficient gs is given by

g2
s = γ 2

e μ0h̄ωc
∫

drρs|Bc|2 sin2 ϕPzS∫
dr|Bc|2

∫
drρsPzS

, (5)

and Ecc = (4g2
s T1T2)−1.

The underlying mechanism responsible for the spin-induced
nonlinearity in the cavity mode response is attributed to the
change in spin polarization that occurs via the cavity-mediated
spin driving. As can be seen from Eq. (A83) of Ref. [22], the
normalized change in polarization is proportional to the ratio
Ec/Ecc. Consequently, the induced nonlinearity is expected
to be negligibly small when Ec � Ecc [as is also seen from
Eq. (4)]. On the other hand, when Ec � Ecc, spin depolar-
ization becomes saturated. In this limit, ϒeff = ϒc + ϒs 	 ϒc

[see Eq. (4)], and, consequently, the cavity mode is expected
to become effectively decoupled from the spins (this effective
decoupling refers only to the averaged response, whereas noise
properties remain affected by the spins). The regime of weak
nonlinearity, in which nonlinearity can be taken into account
to lowest nonvanishing order only, is discussed in Appendix.
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Note, however, that in the current experiment, the nonlinearity
can be considered as weak only in a narrow region, and most
observations cannot be properly explained without accounting
for higher-order nonlinear terms.

In general, the averaged number of photons Ec is found from
the steady-state solution of the equations of motion that govern
the dynamics of the system [22]. To lowest nonvanishing
order in the coupling coefficient gs, the effect of spins can
be disregarded in the calculation of Ec. When, in addition, the
intrinsic cavity mode nonlinearity, which is characterized by
the parameters Kc and Gc, has a negligibly small effect, the
number Ec can be approximated by the following expression
(see Eq. (37) in [25]):

Ec = 4γfPp

h̄ωc

1

(ωp − ωc)2 + (γf + γc)2
. (6)

As can be seen from Eq. (4), |ϒs| is a monotonically decreasing
function of Ec. This suggests that the approximation in which
Eq. (6) is employed for evaluating Ec (without taking into
account both nonlinearity and the coupling to the spins) re-
mains valid even when 4g2

s T1T2Ec � 1, provided that intrinsic
cavity mode nonlinearity remains sufficiently small. When
intrinsic cavity mode nonlinearity can be disregarded, the
cavity mode reflectivity Rc is given by [25]

Rc = (ωp − �c)2 + (γf − c)2

(ωp − �c)2 + (γf + c)2
, (7)

where the real frequencies �c and c are related to the complex
frequency ϒeff by the relation ϒeff = �c − ic.

The fully analytical theoretical predictions given by
Eqs. (4), (6), and (7) are employed for generating the plots
(F: P1; L0), (F: P2; L0) and (F: P3; L0) of Fig. 3, which
exhibit good agreement with the corresponding CDMR data
plots (D: P1; L0), (D: P2; L0), and (D: P3; L0). The parameters
that have been employed for the calculation are listed in the
figure caption. These findings support the hypothesis that the
above-discussed spin-induced nonlinearity is the underlying
mechanism responsible for the suppression of electron spin
resonance (ESR) at relatively high microwave input power Pp.

The CDMR data plots in Fig. 3 labeled L1, L2, and L3
are obtained from measurements with laser intensities 2.15,
12.8, and 30 mW mm−2, respectively. As can be seen from the
comparison to the plots labeled L0, in which the laser is turned
off, the optical illumination strongly affects the measured
cavity response.

The laser-induced change in the cavity response is attributed
to the mechanism of OISP [23,26–29]. Spin is conserved in
the optical dipole transitions between the triplet ground state
3A2 of NV− and the triplet first excited state 3E. However,
transition from the spin states me = ±1 of 3E to the ground
state is also possible through an intermediate singlet states in
a two-step nonradiative process. Such nonradiative process is
also possible for the decay of the state me = 0 of 3E; however,
the probability of this process is about seven times smaller
than the probability of nonradiative decay of the me = ±1
states [13]. The asymmetry between the decay of the me = 0
state, which is almost exclusively radiative, and the decay
of the states me = ±1, which can occur via a nonradiative
process, gives rise to OISP. For our experimental conditions,

the probability to find any given NV− defect at any given time
not in the triplet ground state 3A2 is about 10−5 or less [13].
This fact is exploited below for taking the effect of OISP into
account within the framework of a two-level model.

The effect of OISP can be accounted for by adjusting the
values of the longitudinal relaxation time T1 and longitudinal
steady-state polarization PzS and make them dependent on
laser intensity IL. The total rate of spin longitudinal damping
γs1 is given by [30]

γs1 = −Pz − PzST

T1T
− Pz − PzSO

T1O
, (8)

where the first term represents the contribution of thermal
relaxation and the second one represents the contribution of
OISP. Here, Pz is the instantaneous longitudinal polarization
and T −1

1T (T −1
1O ) is the rate of thermal relaxation (OISP). In

the steady state and when T −1
1T � T −1

1O (i.e., when OISP is
negligibly small), the coefficient PzST = − tanh (h̄ωs/2kBT ) is
the value of Pz in thermal equilibrium, where kB is Boltzmann’s
constant and where T is the temperature. In the opposite limit
of T −1

1O � T −1
1T (i.e., when thermal relaxation is negligibly

small), the coefficient PzSO is the value of Pz in the steady
state. Note that the total longitudinal damping rate γs1 (8)
can be expressed as γs1 = −T −1

1 (Pz − PzS), where T −1
1 =

T −1
1T + T −1

1O is the effective longitudinal relaxation rate, and
the effective steady-state longitudinal polarization PzS is given
by T −1

1 PzS = T −1
1T PzST + T −1

1O PzSO.
The theoretical expressions given above for T −1

1 and PzS are
employed for generating the plots labeled F of Fig. 3 for both
cases of laser off (L0) and laser on (L1, L2, and L3). In spite of
the simplicity of the model that is employed for the description
of OISP, good agreement is obtained from the comparison with
the CDMR data plots labeled D in a very wide range of values
for the microwave power and laser intensity (the entire explored
range of Pp < 0 dBm and IL < 30 mW mm−2). Note that no
resonance splitting is observed in all CDMR measurements.

The line shapes of both ODMR and CDMR depend on the
values of spin longitudinal T1 and transverse T2 damping times.
In order to check consistency, we employ Eq. (2) of Ref. [31]
in order to express the full width at half minimum (FWHM)
�ν of the ODMR in terms of T1, T2 and the driving amplitude,
which is denoted by ω1 (ω1 coincides with the Rabi frequency
at resonance). In the calculation of ω1, it is assumed that the
loop antenna can be treated as a perfect magnetic dipole. By
substituting the damping times T1 and T2 that are listed in
the caption of Fig. 3 into Eq. (2) of Ref. [31], one obtains
�ν = 14 MHz, whereas the FWHM value extracted from the
ODMR data using a fit to a Lorentzian is 13.5 MHz.

V. CAVITY-BASED DETECTION OF MAGNETIC
RESONANCE WITH P1 CENTERS IN DIAMOND

A CQED resonance due to P1 defects [32,33] is
observed when the externally applied magnetic field is tuned
close to the value of 89 mT (see Fig. 4). When both the
nuclear Zeeman shift and nuclear quadrupole coupling are
disregarded, the spin Hamiltonian of a P1 defect is given by
[9,34,35] H = γeB · S + h̄−1A⊥(SxIx + SyIy) + h̄−1A‖SzIz,
where S = (Sx,Sy,Sz) is an electronic spin-1/2 vector op-
erator, I = (Ix,Iy,Iz) is a nuclear spin-1 vector operator,
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FIG. 4. Cavity mode reflectivity Rc with P1 defects for various
values of injected microwave power Pp (P 1 = −90, P 2 = −80,
and P 3 = −70 dBm) with laser off. For each pair, the top plot
is experimental data (labeled D) and the bottom is the theoretical
prediction (labeled F). The parameters used for the calculation are
γc/2π = 0.304 MHz, γf/2π = 0.349 MHz, ρs = 1 × 1018 cm−3,
T2 = 438 ns, and T1T = 470 ms [36]. The values of PzST and gs are
the same as in Fig. 3 for the case of laser off.

A‖ = 2π × 114.03 MHz and A⊥ = 2π × 81.33 MHz are,
respectively, the longitudinal and transverse hyperfine pa-
rameters, and the z direction corresponds to the diamond
〈111〉 axis. When the externally applied magnetic field B is
pointing close to a crystal direction 〈100〉, i.e., when cos2 θ 	
1/3, the electron spin resonance at angular frequency γeB is
split due to the interaction with the nuclear spin into three
resonances, corresponding to three transitions, in which the
nuclear spin magnetic quantum number is conserved. To first
order in perturbation theory, the angular resonance frequencies
are given by γeB − ωen, γeB, and γeB + ωen, where ω2

en =
A2

‖ cos2 θ + A2
⊥ sin2 θ . For the case where cos2 θ = 1/3, the

calculated splitting is given by ωen/2π = 93.5 MHz, whereas
the value extracted from the data seen in Fig. 4 is 93.82 MHz.
The plots labeled F in Fig. 4 represent the theoretical prediction
based on the analytical expressions (4), (6), and (7). The
comparison with the CDMR data plots (labeled D) yields a
good agreement. The parameters that have been employed for
the calculation are listed in the figure caption.

VI. CONCLUSION

The nonlinearity in cavity response has an important impact
on the sensitivity of spin detection. Let SN be the minimum
detectable change in the number of spins δNs per a given
square root of the available bandwidth (i.e., the inverse of
the averaging time). It is assumed that sensitivity is limited
by the fundamental bound imposed upon the signal-to-noise
ratio by shot noise. When the cavity’s response is linear, SN

is proportional to E
−1/2
c (see Eq. (1) in [37]), and thus in this

regime sensitivity can be enhanced by increasing the energy
stored in the cavity Ech̄ωc. However, nonlinearity, which can
be avoided only when Ec � Ecc [see Eq. (4)], imposes a bound
upon sensitivity enhancement. When the sensitivity coefficient
SN is calculated according to Eq. (1) in Ref. [37] for the case
where the number of cavity photons is taken to be Ecc and the
responsivity is calculated using Eq. (A2) below, one finds that

SN becomes

SN 	 2

|PzST|3/2

(
γc

g2
s

2T1

T2

)1/2

. (9)

Note that in general, 2T1/T2 � 1 (see Eq. (A79) in [22]). For
example, for the parameters of our device with laser off, Eq. (9)
yields SN = 5 × 107 Hz−1/2. The estimate given by Eq. (9) is
expected to be applicable for any cavity-based technique of
spin detection.

To conclude, in this work we have observed strong coupling
(i.e., cooperativity larger than unity) between a superconduct-
ing microwave cavity and spin ensembles in diamond (the mea-
sured values of the cooperativity parameter Neffg

2
s /γcγ2 are 14

with the NV− ensemble and laser intensity of 30 mW mm−2

and 6.2 with the P1 ensemble). We find that the coupling
imposes an upper bound upon the input microwave power,
for which the cavity response remains linear. This bound
has important implications for the sensitivity of traditional
spin-detection protocols that are based on linear response. On
the other hand, in some cases, nonlinearity can be exploited
for sensitivity enhancement (e.g., by generating parametric
amplification). However, further study is needed to explore
ways of optimizing the performance of sensors operating in
the nonlinear regime.
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APPENDIX: WEAK NONLINEARITY

In the weak nonlinear regime, it is assumed that the averaged
number of cavity mode photons Ec is sufficiently small to allow
one to take nonlinearity into account to lowest nonvanishing
order only. In this limit, the cavity mode has a nonlinear
response that can be adequately described using the well-
known Duffing-Kerr model [38]. However, as is discussed
below, when higher-order terms in Ec become significant,
the response can no longer be described by the Duffing-Kerr
model. The distinction becomes most pronounced in the limit
of high-input microwave power. Both our experimental (see
Figs. 3 and 4) and theoretical [see Eq. (4)] results indicate
that the cavity mode becomes effectively decoupled from the
spins in the limit of high microwave power. Consequently,
linearity is restored at high-input power, provided that the input
power is not made too high and is kept below the region where
intrinsic cavity mode nonlinearity, which is characterized by
the intrinsic Kerr coefficient Kc and intrinsic cubic damping
rate Gc, becomes significant. Note that in our device, the
intrinsic nonlinearity becomes noticeable only when the input
power exceeds a value of about 0 dBm, which is 5–6 orders of
magnitude higher than the value at which the cavity becomes
effectively decoupled from the spins.

To first order in Ec, the spin-induced shift ϒs in the
complex cavity mode angular frequency can be expanded as
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[see Eq. (4)]

ϒs = ωcs − iγcs + (Kcs − iGcs)Ec + O
(
E2

c

)
, (A1)

where the shift in linear frequency ωcs and the Kerr coefficient
Kcs are given by

ωcs = Neffg
2
s

�

1

1 + ζ 2
2

, (A2)

Kcs = −Neffg
2
s

�Ecc

(
ζ2

1 + ζ 2
2

)2

, (A3)

the linear damping rate is given by γcs = ζ2ωcs, the cubic
damping rate is given by Gcs = ζ2Kcs, and where ζ2 = 1/�T2.
In the regime of linear response (i.e., when ϒs = ωcs − iγcs),
Eq. (A1) reproduces well-known results for spin-induced
frequency shift and broadening of the cavity resonance [1].

The validity conditions for Eqs. (4) and (A1) are discussed in
Ref. [22].

In general, in the weak nonlinear regime, in which higher-
order terms in Ec can be disregarded, the terms proportional
to Ec in the complex angular frequency shift ϒs [see Eq. (A1)]
may give rise to bistability in the response of the system to an
applied monochromatic driving. At the onset of bistability, the
averaged number Ec obtains a value denoted by Eco. When
the value of Eco is estimated based on the assumption that
higher-order terms in Ec may be disregarded, one finds for the
parameters of our device that Eco 	 2Ecc (calculated using
Eq. (42) in Ref. [25]). On the other hand, the assumption that
higher-order terms in Ec may be disregarded is applicable only
when Ec � Ecc, and thus the nonlinearity cannot be consid-
ered as weak in this region. When the bistability is accessible,
the system can be used for signal amplification [38], which can
yield a significant gain close to the onset of bistability [25].
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