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Nonanalytic crossover behavior of SU(Nc) Fermi liquid
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We consider the thermodynamic potential of a dilute Fermi gas with a contact interaction, at both finite
temperature T and nonzero effective magnetic fields H, and derive the equation of state analytically using
second-order perturbation theory. Special attention is paid to the nonanalytic dependence of � on temperature
T and (effective) magnetic field H, which exhibits a crossover behavior as the ratio of the two is continuously
varied. This nonanalyticity is due to the particle-hole pair excitation being always gapless and long ranged. The
nonanalytic crossover found in this paper can therefore be understood as an analog of the Ginzburg-Landau
critical scaling, albeit only at the subleading order. We extend our results to an Nc-component Fermi gas with an
SU(Nc)-symmetric interaction and point out possible enhancement of the crossover behavior by a large Nc.
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I. INTRODUCTION

The Fermi liquid (FL) paradigm is an important cornerstone
of our understanding of nature. It was originally conceived
as a phenomenological theory for liquid 3He, but turned out
to be generally a good description for most physical systems
with fermionic degrees of freedom at low enough temperature.
There has long been a consensus [1–14] that the thermody-
namic behavior of an FL must be nonanalytic, in contrast to
the Ginzburg-Landau (GL) theory, which assumes that the free
energy takes an analytic form away from a phase transition.
Historically, the specific heat of normal 3He was the earliest
experimentally studied example [15,16], where the observed
trend cannot be fitted to an analytic function. Theoretical efforts
[1,2,4,5,10,13] indicate, to leading order, a T 3 ln T correction
on top of the linear T dependence from the leading-order FL
behavior. This nonanalytic correction is a generic feature of
any FL, in the sense that it is entirely captured by considering
the interaction and scattering between Landau quasiparticles
on the Fermi surface. This term has also been studied in the
context of heavy fermion metals [17,18]. In ordinary metal,
however, it was concluded [19] that the effect will be too small
to be observed experimentally.

In the context of an electron liquid, a magnetic field causes
a Zeeman split between the two spin components. It was later
realized that the magnetic response of an electron liquid is
also nonanalytic beyond the leading order [7,10,11,14], with
the underlying physics closely related to the temperature case.
Theories indicate an H 2 ln H correction to the constant Pauli
susceptibility. In two space dimensions, similar considerations
lead to the prediction of a T 2 correction to specific heat and
an |H | correction to spin susceptibility [7,8,10,11,14]. This
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nonanalytic magnetic response has a much more dramatic
consequence: It can change the order of the itinerant Ferro-
magnetic quantum critical point [14,20,21] from second order,
as dictated by the GL paradigm, to weakly first order [22].

The particle-hole pair excitation around the Fermi surface
has been identified as the cause of this nonanalytic behavior
[1,4,13,23]. Such a pair is always gapless in the normal phase.
The infrared singularity of the pair’s Green’s function, while
not strong enough to cause a full-fledged divergence, results in
the nonanalyticity.

Yet it remains difficult to draw a more precise conclusion
beyond the statement that theories and experiments agree qual-
itatively. Theoretically, even within the Fermi liquid picture,
the calculations were usually performed by considering only a
subset of all possible interaction processes [1,4,10,23], where
the omitted processes solely give rise to analytic terms. One
then obtains the nonanalytic term, but on top of an unknown
background of analytic contributions. Experimentally, even for
the well-studied case of 3He specific heat, the uncertainty in
interacting parameters is large enough [24,25] to prevent a
more meaningful comparison (see, for example, the discussion
of [4,13]). The H 2 ln H behavior of spin susceptibility has not
been observed; however there is experimental evidence of its
two-dimensional counterpart: Reference [26] pointed out that
the normal state of iron pnictide exhibits a spin susceptibility
that increases linearly with temperature [27,28]. This is con-
sistent with the linear nonanalyticity in two dimensions when
temperature is dominant, as discussed in [29].

In this paper we theoretically study the nonanalytic effects
in the context of a dilute Fermi gas in three space dimensions,
in second-order perturbation theory. This choice of theoretical
model is made with possible cold-atom experiments in mind.

Experimentally, cold quantum gas has several advan-
tages over other realizations of FL. First of all, the inter-
action between particles is well approximated by contact
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interaction and is highly tunable through the Feshbach res-
onance technique [30] (see [31] for a review). One may realize
the weakly interacting dilute limit, amenable to a perturbative
treatment. Second, through the use of a nonhomogeneous trap
and the local-density approximation, one has direct access to
the equation of state of the gas [32–36]. Finally, one is not
confined to two-component spin- 1

2 fermions: Isotopes such as
173Yb and 87Sr have large pseudospins [37–40], which enhance
the effects of interaction and potentially make the nonanalytic
part more visible experimentally.

At the center of our attention is the thermodynamic potential
� of the gas. Extending from our previous paper [41], we will
study the behavior of � using perturbation theory to second
order, focusing on the interplay of temperature and magnetic
field. In particular, we investigated the crossover between
the zero-magnetic-field limit and the zero-temperature limit.
We obtain an equation of state for the gas, quantifying both
the analytic and the nonanalytic contributions to �, thereby
facilitating a direct comparison with future experiments.

Since the particle-hole pair excitation is always gapless, it is
legitimate to ask if the resultant physics shares any similarities
with the usual GL critical phenomenology. We will see that
the crossover behavior is strongly reminiscent of a quantum
critical point, albeit only at the subleading order. One may
claim that a nonmagnetic Fermi liquid is, in a sense, always
“critical,” regardless of the interaction strength. A similar idea
was explored by Belitz et al. [42].

II. THERMODYNAMIC POTENTIAL

A. Model Hamiltonian

The Nc-component fermion gas is modeled with anticom-
muting quantum fields ψa , where the index a runs from 1
to Nc. The generalized Zeeman shift in an SU(Nc)-invariant
theory is given by a traceless Hermitian matrix H, but without
loss of generality it may be put into a diagonal form with an
appropriate SU(Nc) transformation. We therefore write the free
Hamiltonian as

H0 =
Nc∑
a=1

∫
d3x ψ†

a

(
− ∇2

2m
− μ0 − Ha

)
ψa. (1)

Here Ha is an eigenvalue of H. The traceless condition of H
translates to

∑
a Ha = 0. It is sometimes also convenient to

consider the species-dependent effective chemical potential

μa ≡ μ0 + Ha. (2)

We also define the associated momentum scale kμ =√
2mμ0 and the analogy of Fermi velocity vμ = kμ/m. To

the order of approximation adopted in this paper, these are
interchangeable with the actual Fermi momentum and velocity
kF and vF .

In this paper we will treat μ0 and H, rather than the
fermion number density, as the “tuning knobs” of the system.
Experimentally, the (position-dependent) chemical potential of
a trapped quantum gas within the local-density approximation
is readily available. So we do not see this as a difficulty.

We employ a zero-range interaction

HI = 4πa

m

Nc∑
a,b=1

∫
d3x ψ†

a (x)ψ†
b (x)ψb(x)ψa(x). (3)

The quantity a is the scattering length of the zero-range two-
body potential. We will perform our calculation in the dilute
limit, where akF is a small expansion parameter. We work in
the units h̄ = kB = 1.

Two-particle scattering amplitudes of this model diverge in
the Cooper channel. This is the usual pathology of a δ-function
potential and can be absorbed by renormalization. In the
following we will implicitly assume that all such divergences
are removed. Related to this diverging behavior is a pairing
instability in the Cooper channel at an exponentially small
transition temperature. This instability will be ignored in all
subsequent discussion.

Staring from this point, we will consider the caseNc = 2, as
the crossover advertised in the beginning is essentially an effect
between two spin components. The generalization to a generic
Nc > 2 will be discussed later in the paper. For the Nc = 2
case, we denote the two spins ↑ and ↓, with the convention
H↑ = H/2 and H↓ = −H/2. Without loss of generality, one
can always assume H � 0.

B. Origin of nonanalyticity

For an in-depth discussion of the result quoted in this
section, we refer our readers to the work of Chubukov et al.
[13] and the references therein.

For theNc = 2 case, the specific heat and spin susceptibility
have been shown to receive logarithmic corrections, and
the particle-hole pair excitation is solely responsible for the
nonanalytic behavior of �. As shown in Fig. 1(a), we denote

ε,k

a

(a)

(b) (c)

b

FIG. 1. Feynman diagrams representing (a) the particle-hole bub-
ble �ab(ε,k), (b) an example of a ring diagram with three particle-hole
pairs joined together, and (c) an example of a ladder diagram, also
with three particle-hole pairs. Note that the spins a and b in �ab can be
different. The low-momentum limit of the ring and ladder diagrams
is the origin of the nonanalytic thermodynamic behaviors of a normal
Fermi liquid.
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FIG. 2. The same second-order vacuum Feynman diagram can
be drawn as either (a) a ring diagram or (b) a ladder diagram. The
low-momentum limits of either form correspond to the limit where
qr = k1 − k3 or q l = k1 − k4 vanishes, respectively. This term is
labeled �2a .

the spins of the particle and hole in such a pair as a and b,
respectively, which may or may not be the same. We denote
the Green’s function for such pair excitation by �ab.

The thermodynamic potential � can be computed by sum-
ming over vacuum Feynman diagrams. The pair excitation
modes contribute to � via two classes of diagrams: the ring
diagrams where each bubble consists of the same spin and
the ladder diagrams where the particle and hole legs have
different spins. Figures 1(b) and 1(c) are examples with three
particle-hole pairs.

These pair fluctuation are bosonic and remain soft down to
zero momentum. The long-range correlation of these bosonic
modes is not strong enough to cause full-fledged infrared
divergence in the present case, but results in weaker logarithmic
corrections only at higher orders. This is the origin of the
nonanalyticity. For a review of this soft-mode paradigm, and
in particular how it affects the critical behavior, see [42] and
the references therein.

These soft modes must be cut off by some relevant infrared
scale. Temperature is an obvious candidate. In the presence of
Ha − Hb �= 0, it can be seen that the energy of pair excitation
�ab is shifted by Ha − Hb; therefore, the magnetic field can
also serve as the cutoff. One expects the larger of the two scales
to dominate, and this hints at possible crossover behavior when
the ratio T/H is varied continuously between the two extremes
[11]. However, each particle-hole pair in the ring diagram is
of the same spin and is insensitive to the magnetic field. The
crossover behavior is thus exhibited only in the ladder-type
nonanalyticity.

In this paper we work to second order in perturbation theory.
The ring and ladder diagram at second order is actually one
and the same, as shown in Fig. 2. However, the two small-
momentum limits refer to distinct regions of the momentum
integral.

At second order, the ring diagram is known to yield further
nonanalytic terms in the region qr ≈ 2kF [13]. Historically this
has been linked to the dynamic Kohn anomaly [2,4,13]. How-
ever, this nonanalytic contribution only comes from the limit
where q1 and q2 are antiparallel [2] and can be identified with

the small-ql limit of the ladder diagram [13,14]. Conversely, the
ladder diagram also contributes to the nonanalyticity around
ql ≈ 2kF and this translates to the small-qr limit of the ring
diagram. We argue that, rather than the traditional zero-and-
2kF picture, it is more natural to look at the nonanalyticity as
coming solely from the zero-momentum limit of particle-hole
pairs, but then consider all possible spin combinations.

C. Possible form of �

The thermodynamic potential is � = −T ln Z. In the
thermodynamic limit, it is more convenient to consider the
intensive quantity �/V , where V is the volume of space.

The usual GL paradigm dictates that � be an analytic
function of T and H . Coupled with the symmetry of the
problem, one expects that � can be expanded as a polynomial
of T 2 and H 2 only. However, the known T 3 ln T specific heat
and H 2 ln H spin susceptibility imply that the GL picture is
not good already at fourth order.

Define the dimensionless quantities t = T/μ0 and h =
H/μ0. On dimensional ground, and with the knowledge that
the Sommerfeld expansion cannot generate odd powers of T ,
one writes down schematically the possible form of �, omitting
all coefficients:

�

V
∼ vμk4

μ{1 + (t2 + h2) + F4(t,h) + · · · }. (4)

Here the (generalized) fourth-order term F4 is defined to be
the sum of all terms that scale as (energy)4, up to possible
logarithmic dependence. We know that F4 must be nonanalytic
at T = H = 0. Its behavior near the origin of the (T ,H ) plane
will depend on the direction of approach. In particular, if one
attempts a double expansion of F4 in t and h, the result will
depend on the order in which the expansions are carried out.

D. What is and is not Fermi liquid

First verified by Pethick and Carneiro [4], an oft-repeated
observation is that the leading logarithmic correction is a
“universal” feature of any FL. This raises the question of what
can be considered universal in the expression (4).

We try to address this question in the context of a dilute
Fermi gas. The FL is then a low-energy effective theory of
the model, with only degrees of freedom near the Fermi
surface. One can take a linearized quasiparticle dispersion and
an approximated constant density of state around the Fermi
surface as the working definition of this effective theory. All
the higher-energy modes are integrated out, renormalizing the
parameters of this effective theory.

Furthermore, FL is only accurate when all external scales in
the problem, such as T and Ha , are dwarfed by the Fermi sea.
In other words, μ0 and kF should be considered essentially
infinite when compared with other scales. This means that,
at high enough order, terms in (4) will eventually be deemed
infinitesimal and outside the scope of the FL.

For the noninteracting gas, one can calculate � exactly. It
can be shown that the leading correction to the free gas (second
order in t and h) in (4) depends only on the Fermi velocity and
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FIG. 3. Hartree-Fock diagrams (a) �1 and (b) �2b contributing to
the thermodynamic potential up to second order.

density of state at the Fermi surface.1 So one can conclude that
these are within the FL picture, while fourth- and higher-order
terms are beyond the FL. In contrast, the nonanalytic terms at
fourth order do come from the Fermi surface only, as mentioned
above.

To go beyond the dilute limit and perturbation theory, one
can replace the Fermi velocity, density of state, and scattering
amplitudes of quasiparticles with their fully renormalized
values, as suggested in Refs. [13,14]. By construction, this
simple replacement yields FL results (second- and third-order
terms and the fourth-order logarithmic correction) that remain
valid in the strongly interacting regime. This however will not
apply to terms outside the scope of the FL and we lose all
ability to calculate them in the strongly interacting regime.

III. SOMMERFELD EXPANSION OF � FOR FERMI GAS

In this section we take a break from the FL picture and
attempt to evaluate the thermodynamic potential of a weakly
interacting Fermi gas. This will confirm some assertions made
in Sec. II B and also give us some hints at the possible form
of F4.

We wish to calculate the thermodynamic potential of the
gas. To second order of perturbation theory, there are three
Feynman diagrams to be included. Following the notation of
[41], we label these three terms �1, �2a , and �2b, respectively.
Depicted in Fig. 3, �1 and �2b are part of the Hartree-Fock
approximation and are analytic in T and H . On the other hand,
�2a as shown in Fig. 2 is both a ring and a ladder diagram and
is solely responsible for the nonanalyticity of � at this level of
approximation.

In this section we will first attempt an expansion in T ,
writing � = α0(H ) + α2(H )t2 + · · · at finite H . Analytic
closed-form solutions of these H -dependent coefficients can
be obtained, but we found that it is much more elucidating
to further expand each coefficient in a series of H (see
Appendix A for more detail).

1For the general case of Nc > 2, third-order terms in the magnetic
field are possible (see Sec. VI); however, they are also determined
exclusively by FL parameters.

To maintain consistency with [41], we define the dimen-
sionless ω via

�

V
= k3

μ

6π2

k2
μ

2m

Nc∑
a=1

⎡
⎣ω

(a)
0 + (kμa)

∑
b �=a

ω
(ab)
1

+ (kμa)2

⎛
⎝∑

b �=a

ω
(ab)
2a +

∑
b �=a

∑
c �=a

ω
(abc)
2b

⎞
⎠+ · · ·

⎤
⎦, (5)

where each ωx originates from the respective �x with the same
label. We have temporarily restoredNc in the above expression.
For Nc = 2, the sum over spin is quite trivial and we define
the spin-symmetrized version:

w0 = 1
2 (ω(↑)

0 + ω
(↓)
0 ), (6a)

w1 = 1
2 (ω(↑↓)

1 + ω
(↓↑)
1 ), (6b)

w2a = 1
2 (ω(↑↓)

2a + ω
(↓↑)
2a ), (6c)

w2b = 1
2 (ω(↑↓↑)

2b + ω
(↓↑↓)
2b ). (6d)

A. Free gas and Hartree-Fock contributions

Let ε(k) denote the kinetic energy of free gas, na(x)
the Fermi function for fermions with spin a, and N0

a the
noninteracting number density for these fermions:

ε(k) ≡ k2

2m
, (7a)

na(k) ≡ (eβ(ε(k)−μa ) + 1)−1, (7b)

N0
a ≡

∫
d3k

(2π )3
na(k). (7c)

The thermodynamic potential of a free gas is given by

�0

V
= T

∑
a=↑,↓

∫
d3k

(2π )3
ln[1 − na(k)]. (8)

Likewise, the two Hartree-Fock terms �1 and �2b are

�1

V
=
(

4πa

m

)
N0

↑N0
↓, (9)

�2b

V
=
(

4πa

m

)2 1

2

[(
∂N0

↑
∂μ0

)
N0

↓N0
↓ +

(
∂N0

↓
∂μ0

)
N0

↑N0
↑

]
. (10)

From here one can identify the associated dimensionless ω0,
ω1, and ω2b. Up to fourth order in t and h, they are

w0 = −2

5
− π2

4
t2 − 1

16
h2 + 7π4

960
t4 + 1

1024
h4 + π2

128
t2h2,

(11a)

w1 = 2

3π
+ π

6
t2 − 1

4π
h2 + π3

40
t4 + 1

64π
h4 + π

16
t2h2,

(11b)

w2b = − 4

3π2
− 5

18
t2 − 11

24π2
h2 − 17π2

1440
t4

+ 47

512π2
h4 + 35

192
t2h2. (11c)
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B. Two-bubble diagram �2a

The term �2a (Fig. 2) is unique among all vacuum diagrams.
Depending on how the diagram is arranged, the scattering
process involved can be seen as taking place in any one of the
three channels: scattering of a particle-hole pair of the same
spin, scattering of a particle-hole pair of different spins, and
scattering of a particle-particle pair. The first two correspond to
the ring and ladder classifications, respectively. The particle-
particle Cooper channel is linearly divergent in the UV and
we implicitly subtract the diverging part. In the remainder of
this section we will consider the diagram exclusively in the
ring configuration. Setting Nc = 2, the Feynman diagram in
Fig. 2(a) yields

�2a

V
= −

(
4πa

m

)2 ∫ 3∏
i=1

d3ki

(2π )3

× n↑(k1)n↓(k2)[n↑(k3) + n↓(k4)]
1

2m

[
k2

1 + k2
2 − k2

3 − k2
4

] , (12)

where k1 + k2 − k3 − k4 = 0 by momentum conservation.
From here one identifies the quantity w2a as defined in (6):

w2a(t,h) = 6π2m

k7
μa2

�2a(T ,H )

V
. (13)

In [41], this term was examined numerically at H = 0. It has
the form

w2a(t,0) = B + C1t
2 + D1t

4 ln t + E1t
4 + · · · . (14)

On the other hand, at zero temperature the integral (12) can be
done analytically [43], yielding

w2a(0,h) = B + C2h
2 + D2h

4 ln |h| + E2h
4 + · · · . (15)

Next we attempt the double expansion, first in t and then in h.
The result is of the form

w2a(t,h) = B + C1t
2 + C2h

2 + f4(t,h) + (sixth order),

(16)

where the fourth-order term f4 is

f4(t,h) = 1

2
D1t

4(ln |h| + ln ) + D2h
4 ln |h|

+F1t
4 + E2h

4 + F3t
2h2

+ t4

[
ξ (t,) +

∞∑
i=1

F4,i

(
t

h

)2i
]
. (17)

Here  is an infinitesimal infrared cutoff imposed on the
momentum transfer qr = k1 − k3 to regularize the results.
(See Appendix A for the complication of a momentum cutoff.)
Apart from the infinitely many F4,i , all coefficients appearing
in (14), (15), and (17) are given in Table I.

Instead of a nonanalytic t4 ln t term, we found t4(ln h +
ln ). Going to higher orders in T , we found increasingly

singular terms with powers of h and  in the denominator,
combining to an overall fourth order. We are naturally unable to
carry this calculation to infinite order in T , but it is not difficult
to infer, using dimensional analysis and symmetry argument,
that the h part forms an infinite series of (t/h)2n.

In (17), we denote the  counterpart of these higher singular
terms by ξ (t,). We made no attempt to infer a general form
of ξ , but it is clear that the original integral (12) is finite.
One therefore concludes that all infrared divergent terms must
resum into a finite quantity, that is,

1
2D1 ln  + ξ (t,) = 1

2D1 ln t + κ, (18)

where κ is a constant yet unknown. It will be determined later
by matching with the numerical result (14). Note that when one
sets t to zero, f4(0,h) as given in (17) reduces to D2h

4 ln h +
E2h

4, in exact agreement with (15).
By imposing an upper cutoff in |qr | that is smaller than the

Fermi momentum, we also verified that the t4 ln h term has
a contribution only from 2

√
2mμ↓ < |qr | < 2

√
2mμ↑. That

is, it comes from the region where |qr | ≈ 2kF , confirming the
earlier claim in the literature [13,14].

The absence of a logarithmic term with the t2h2 prefactor in
(17) is notable. The accepted wisdom [6] is such that the spin
susceptibility does not scale asT 2 ln T , which is in line with our
result here. Granted, in the present form (17) is only appropriate
when t/h � 1, while spin susceptibility is defined near zero
magnetic field. However, the coefficients to the logarithmic
terms are robust: Resummation of the series (t/h)2i cannot
generate a separate t2h2 logarithmic term. If it is absent for
t/h � 1, it must remain so for all values of the ratio.

IV. RESUMMING THE SINGULAR TERMS:
FERMI LIQUID PICTURE

The original loop integral (12) is finite when h is set to
zero; however, the expression (17) is not even well defined
in the same limit. To obtain a well-defined expression for f4

in this limit, in principle one only needs to swap the order of
the h and t expansions. Unfortunately, we cannot analytically
evaluate the resultant integrals. Instead, we will identify the
2kF nonanalyticity of (12) with the infrared nonanalyticity of
the ladder diagram [Fig. 2(b)] and evaluate the latter exactly
within the FL picture.

A. Equivalence between ladder and 2kF nonanalyticity

Historically, the study of nonanalyticity of FL was framed
in terms of the quasiparticle self-energy. Amit et al. [2] were
the first to observe that interaction with a particle-hole pair at
either zero or 2kF momentum results in the leading logarithmic
correction to the self-energy. In a lengthy paper, Chubokov and
Maslov [10] established that the nonanalytic contribution from
the scattering of a particle-hole pair at 2kF is exactly equivalent
to that of a particle-particle pair at zero momentum. Noting that

TABLE I. Coefficients for w2a . The value of E1 comes from the numerical fit in [41]. The value of κ is determined by Eq. (29).

B C1 C2 D1 D2 E1 E2 F1 F3 κ

4(11−2 ln 2)
35π2 − ln 2 + 1

2 − 1+2 ln 2
8π2 − π2

10
1

32π2 1.62 29−102 ln 2
1536π2

6597−704 ln 2
38 400π2

19−6 ln 2
64 1.70
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the proper self-energy is obtained by differentiating vacuum
two-particle-irreducible Feynman diagrams, the above result
essentially constitutes a proof that, for our�2a term (see Fig. 2),
the |ql| = 0 nonanalyticity is equivalent to that of |qr | →
2kμ. Nevertheless, we will offer a stand-alone argument here,
applied specifically to �2a .

Nonanalyticity of �2a must come from where the integrand
in (12) is singular at T = H = 0. One notes that the denom-
inator of the integrand is proportional to q l · qr . It may then
appear that there are three separate cases: q l = 0, qr = 0, and
q l ⊥ qr . However, one can find a suitable change of variables
such that the integration measure transforms as

d3k1d
3k2d

3k3 → d3qrd
3q ld

3 X, (19)

where X is some way to represent the remaining three degrees
of freedom. It is clear that the vanishing integration measure
renders the limits q l → 0 and qr → 0 regular by themselves.
The only actual singularity is where q l and qr are orthogonal
to each other.

We have shown at the end of Sec. III B that the nonanalytic
terms come from either |qr | → 0 or |qr | → 2kμ; now we
concentrate on the 2kμ condition. The region of the momentum
integration that contributes to the nonanalyticity must then
satisfy both the 2kμ and the orthogonality conditions.

Let us now analyze the part of (12) that is proportional to
n↑(k1)n↓(k2)n↑(k3). At zero temperature and magnetic field,
these Fermi functions all become the step function, restricting
k1, k2, and k3 to within the Fermi sphere. The 2kμ condition
forces k1 and k3 to sit exactly on the Fermi surface and
be polar opposites to one another. Note that, by momentum
conservation, q l = k3 − k2. The orthogonality condition then
forces q l to vanish (see Fig. 4 for illustration). For the
other part of (12) where n↑(k3) is replaced by n↓(k4), one
can identify qr = k2 − k4 and q l = k1 − k4 and the same
argument follows.

One can reverse the argument to show that the q l → 2kμ

nonanalyticity is always paired with the limit qr → 0. It is
thus concluded that nonanalyticity of �2a comes from the
limiting regions of momentum integration where one of qr

and q l vanishes and the other approaches 2kμ. This can be
thought of as a duality between the ring and ladder diagrams
(see Fig. 2): The 2kμ nonanalyticity in the ring form is exactly

|qr| = 2kμ

k3k1

k2k4

ql

FIG. 4. Configuration from which the 2kμ nonanalyticity of �2a

comes. The dashed lines represent the Fermi sphere. The requirements
are |qr | → 2kμ, q l ⊥ qr , and that k1, . . . ,k3 lie within the Fermi
sphere. Consequently, q l must vanish and all four momenta k1, . . . ,k4

must be exactly on the Fermi surface.

the zero-momentum nonanalyticity in the ladder form and vice
versa.

Finally, we note that, in either limit, k4 is forced to sit on
the Fermi surface too by momentum conservation. Therefore,
to capture the nonanalyticity of �2a , it suffices to consider
the small-momentum limit of both ring and ladder diagrams
in Fig. 2, with all four fermion legs restricted to be near the
Fermi surface.

B. Ladder diagram and Fermi liquid approximation

Consider the ladder Feynman diagram [Fig. 2(b)], which
gives the term �ab

2a before summing over spins. The Feynman
diagram can be understood as the trace of the square of
the particle-hole Green’s function �ab(iν,q), where ν is the
bosonic Matsubara frequency. This reduces to Eq. (12) if the
full noninteracting form of �↑↓ is used.

However, our present goal is to compute all nonanalytic
terms not coming from |qr | → 0, and the preceding discussion
made clear that one only needs to look at the limit |q l| → 0,
with k1, . . . ,k4 all near the Fermi surface. One can then employ
the asymptotic form of �↑↓ for small q, denoted by π↑↓:

π↑↓(ε,q) = k2
μ

(2π )2vμ

{
2 + ε

vμq
ln

[(
ε+H
vμq

)− 1(
ε+H
vμq

)+ 1

]}
. (20)

Corrections to this approximated form are introduced as
positive powers of (H/vμkμ)2, (T/vμkμ)2, or (q/kμ)2. Since
kμ is to be viewed as an ultraviolet scale of the FL effective
theory, these corrections are to be regarded as vanishingly
small in the present approximation. It is also not difficult to
see that these beyond-FL corrections only yield overall sixth-
order terms and higher if they are included in the following
calculation.

We define a modified w̃2a based on w2a , with the full
particle-hole bubble �↑↓ replaced by π↑↓:

w̃2a(t,h) = −
(

24π4

k7
μm

)
T
∑

ν

∫ � d3q

(2π )3
[π↑↓(iν,q)2

+π↓↑(iν,q)2]. (21)

This quantity contains the contribution to w2a coming from the
ql → 0 region of the momentum integral. Due to the small-q
approximation, a large-momentum cutoff � is necessary to
render the expression finite. We assume the hierarchy of scales
vμkμ � vμ� � T ,H .

With a convergence factor eiω0+
appended, the Matsubara

frequency sum in (21) can be carried out using standard contour
integration tricks. The sum is transformed into an integral over
energy ε, weighted by the usual Bose function nB(ε) = (eβε −
1)−1, around the branch cut of πab(ε,q)2 on the real axis. The
energy integral only picks up the discontinuity of the integrand
across the branch cut, which is precisely the imaginary part.
The integration in q can also be carried out.

The end result contains a number of analytic terms: T 4,
H 4, T 2H 2, �2T 2, �2H 2, and �4. The cutoff � appears here
because the omitted large-q processes can nonetheless have
small energy and contribute equally well at orders T 2 and
H 2. The cutoff dependence signals the incompleteness of our
treatment. This nevertheless poses no problem, as we only
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want to capture the nonanalytic terms with this approach. The
nonanalytic part of (21) reads

w̃2a(t,h) = − 3m4

π2k8
μ

{
2
∫ ∞

0
dε nB(ε)ε2(ε + H ) ln

∣∣∣∣ε + H

vμ�

∣∣∣∣
+
∫ vF �−H

0
dε ε2(ε + H ) ln

∣∣∣∣ε + H

vμ�

∣∣∣∣
}

+ (H → −H ) + (analytic part). (22)

The second term above can be integrated to yield
h4 ln |H/vμ�| plus analytic terms. In addition, one can split
ln |(ε + H )/vμ�| = ln |ε/vμ�| + ln |(ε + H )/ε| in the inte-
grand and notes that

1

2
D1t

4 ln

(
T

vμ�

)
= − 6m4

π2k8
μ

∫ ∞

0
dε nB(ε)ε3 ln

∣∣∣∣ ε

vμ�

∣∣∣∣
+ (analytic part). (23)

This relation can be used to write w̃2a in the form

w̃2a(t,h) = χ (t,h) + 1
2D1t

4 ln t + D2h
4 ln h

+ (analytic part), (24)

where the crossover function χ (t,h) is defined as

χ (t,h) = − 6m4

π2k8
μ

∫ ∞

0
dε nB(ε)ε2

[
(ε + H ) ln

∣∣∣∣ε + H

ε

∣∣∣∣
+ (ε − H ) ln

∣∣∣∣ε − H

ε

∣∣∣∣
]
. (25)

Expressions (24) and (25) capture all the ladder-type nonan-
alytic terms, which we were unable to obtain to infinite order
using the Sommerfeld expansion approach in (17). Indeed,
both t4 ln t and h4 ln |h| are recovered with correct coefficients.

In order to make a comparison with (16) and (17), one needs
to evaluate χ (t,h) in the limit where the ratio α = t/h � 1.
This is accomplished by expanding the logarithm in (25),
assuming ε/H is always small. The expansion is justified
because the Bose function nB(ε) allows only a contribution
from the range ε < T . The result is

χ (t,h) = 1

2
D1t

4 ln

(
h

t

)

+ t4

[
π4(5 − 6γE) + 540ζ ′(4)

120π2
+ O(α2)

]
. (26)

One immediately notes that the ln |h/t | term correctly converts
the ln t in (24) into ln |h| in the limit α → 0 where h dominates
over t .

Finally, one can compare (24) and (26) with (16) and (17)
and identify the O(α2) terms in (26) with the infinite series in
(17). This yields

∞∑
i=1

F4,iα
2i = χ (t,h)

t4
+ 1

2
D1 ln(α)

−
(

π4(5 − 6γE) + 540ζ ′(4)

120π2

)
. (27)

As an extra check, we computed the coefficient F4,1 both using
the Sommerfeld expansion and the crossover function χ (t,h).
Both approaches give the identical answer F4,1 = π4/63.

C. The term �2a near the T axis

The infinite series in (17) has been resummed using (27). It
is natural to ask if one can now find a well-defined expression
for w(t,h) when the ratio α is large.

As it turns out, it is quite tricky to expand χ (t,h) around a
small 1/α. We relegate the details to Appendix B and note the
result here:

χ (t,h) = D2h
4 ln

(
t

h

)
− 1

16
t2h2

+h4

[
12(ln 2π − γE) + 7

384π2
+ O

(
1

α2

)]
. (28)

Equations (27) and (28) can be substituted into (17) to give
an expression of f4(t,h) well defined in the limit of large α. In
particular, we are finally in a position to determine the constant
κ appearing in (18). Matching the coefficient of t4 terms, one
obtains

E1 = F1 −
(

π4(5 − 6γE) + 540ζ ′(4)

120π2

)
+ κ, (29)

which yields κ = 1.51.
With this final piece of the puzzle found, one has the

complete nonanalytic equation of state of a dilute Fermi gas up
to overall fourth order in t and h. The fourth-order term f4(t,h)
as defined in (16) is nonanalytic, and its series expansion takes
different forms depending on the size of α = t/h.

When α � 1, one has

f4(t,h) = D1

2
t4(ln h + ln t) + D2h

4 ln h

+ (F1 + κ)t4 + E2h
4 + F3t

2h2

+ t4
∞∑
i=1

(F4,iα
2i). (30)

The coefficients F4,i for arbitrary i can be computed using (27).
Even better, one can just numerically evaluate χ (t,h) to resum
the series.

One can obtain the corresponding expansion for α � 1
using (28). The result is

f4(t,h) = D1t
4 ln t + D2h

4 ln t

+E1t
4 + G2h

4 + G3t
2h2

+h4
∞∑
i=1

(G4,iα
−2i), (31)

with G2 = E2 + 12(ln 2π−γE )+7
384π2 and G3 = F3 − 1

16 . The infinite
series in (31) sums to

∞∑
i=1

G4,iα
−2i = χ (t,h)

h4
− D2 ln(α) + 1

16
α2

−
[

12(ln 2π − γE) + 7

384π2

]
. (32)
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FIG. 5. Sketch of the crossover behavior of the ladder-type non-
analyticity. The shaded crossover region separates the two near-axis
areas, where one scale dominates the other. The analytic line in the
crossover region is where the two sets of nonanalyticity precisely
cancel each other out. The two paths (a) and (b) are discussed in the
text.

V. CROSSOVER BEHAVIOR

As discussed in Sec. II B, the ladder-type nonanalyticity
[Fig. 2(b)] can be cut off in the infrared by either T or H .
The competition between the two scales results in a nontrivial
crossover. We sketch the behavior in Fig. 5.

Consider the expression (16) for w. The nonanalytic f4 term
admits two different expansions (30) and (31), good for the
regions near the t and h axes in Fig. 5, respectively. When
the ratio α = t/h is neither larger nor small, the higher-order
terms are important in both expansions and this corresponds
to the shaded crossover region. Fortunately, the series can be
resummed exactly using (27) and (32).

A. Path (a): Raising t with a fixed h

This is perhaps the scenario most relevant to the experiment.
As the effective magnetic field is controlled via the number
densities of individual spin components, moving along path
(a) in Fig. 5 corresponds to fixing the composition of the gas
and tuning the temperature.

In the region near the h axis, Eq. (30) is the appropriate
expression to use. To identify the ladder-type nonanalyticity,
from the thermodynamic potential one subtracts all the analytic
terms and half of the total t4 ln t term associated with the ring-
type nonanalyticity. The result reads

Ia(t,h) = D1

2
t4 ln |h| + t4

∞∑
i=0

F4,iα
2i . (33)

We have taken the liberty to subtract D2h
4 ln h, which is

a constant along the path. When α is small, Ia approaches
D1
2 t4 ln h. When α grows large, however, using (27) and (28),

one deduces Ia ∼ t4[D1
2 ln t + O(α−2)].

For an intermediate value of α, the crossover can be fol-
lowed by numerically integrating χ (t,h). We plot Ia/t4 against
ln α in Fig. 6(a). The crossover region can be identified from

(a)

(b)

FIG. 6. Plots of the ladder-type nonanalytic parts (a) Ia/t4 and
(b) Ib/h4 against ln α up to a vertical offset of (a) ln h and (b) ln t .
The green dashed lines indicate the crossover regions on each plot,
corresponding to the shaded area in Fig. 5. Each curve approaches
zero on one side of the crossover region, indicating the asymptotic
t4 ln h and h4 ln t behaviors of Ia and Ib, respectively. On the opposite
side of the crossover region, Ia and Ib become t4 ln t and h4 ln h,
respectively, as indicated by the asymptotically linear behavior.

the plot as 0.1 < α < 1, where the behavior of the function Ia

substantially deviates from either asymptotic forms.
The result of this section also answers a dangling question

from the previous discussion: the fate of the t4 ln t behavior in
an SU(Nc) Fermi gas when the SU(Nc) symmetry is broken
by unequal number densities of spin components. The ring
contribution to the t4 ln t term is wholly unaffected, while the
ladder contribution remains robust as long as the ratio α is of
order unity or bigger.

B. Path (b): Raising h with a fixed t

For completeness, we consider this complementary sce-
nario. The appropriate expansion for f4 is (31) near the t

axis. After subtracting the analytic terms and the t4 ln t term
for being constant along the path, one obtains the ladder-type
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nonanalyticity

Ib(t,h) = D2h
4 ln t + h4

∞∑
i=0

G4,iα
−2i . (34)

Using (28) and (32), one sees that Ib ∼ h4[D2 ln h +
O(α2)] asα gets large. A similar crossover plot of Ib/h4 against
ln α is presented in Fig. 6(b). The crossover region 0.1 < α < 1
can be consistently identified from the plot.

C. Analytic line

The analytic line is the most striking feature in Fig. 5, though
perhaps also the hardest to access experimentally. Consider the
case where one takes both t and h to zero at fixed α. Let us
define the Euclidean distance l on the (t,h) plane:

l2 ≡ t2 + h2 = h2(1 + α2) = t2

(
1 + 1

α2

)
. (35)

It can be shown that χ as given in (25) is of the form l4χ̃(α),
where the function χ̃ is independent of l. Thus the ladder-type
nonanalyticity can be cast into the following function:

I (t,h) = χ (t,h) + D1

2
t4 ln t + D2h

4 ln |h|

=
[
D1α

4 + D2

(1 + α2)2

]
l4 ln l + O(l4). (36)

The l4 ln l term vanishes at the special ratio

αc = ± 4

√∣∣∣∣D2

D1

∣∣∣∣ = ± 4

√
8

5
π. (37)

If one approaches t = h = 0 along this direction, the thermo-
dynamic potential appears as an entirely analytic function of
the distance l and, by extension, of t or h. The two sets of
nonanalytic behaviors “cancel” each other out.

D. Away from the dilute limit

The preceding discussion assumes the dilute condition. As
we have argued that the logarithmic correction is well within
the FL theory, the dilute condition should not be essential
for the nonanalytic crossover. We will show that, by replacing
the interaction vertices in perturbation theory with the full
quasiparticle scattering amplitudes, one can write down the
nonanalytic terms in a form that remains valid beyond the dilute
limit.

In this section we instead consider a microscopic interaction
potential that couples through the particle density (or, conven-
tionally for an electronic system, the charge):

HI =
∑
a,b

∑
p,k,q

U (|q|)
2

ψ†
a

(
p − q

2

)
ψ

†
b

(
k + q

2

)
ψb

(
k − q

2

)

×ψa

(
p + q

2

)
. (38)

This alternative model directly allows for same-spin scattering.
Thus all scattering channels in the full FL phenomenology
are already present at first order in perturbation theory and
one may directly extrapolate from there. Because of the
added possibility of same-spin scattering, �2a gains an extra

ql

qr

k1

k3

k2

k4

FIG. 7. Feynman diagram corresponding to the new �2c term. It
is arranged in the unconventional crescent shape to better expose the
particle-hole pair structure.

contribution and another vacuum diagram �2c contributes to
the nonanalyticity at second order, as shown in Fig. 7. We
mention in passing that, under the zero-2kF duality that map
ladder and ring diagrams onto each other, this new crescent
diagram �2c is self-dual.

Assuming that U (|q|) is analytic and positive everywhere,
the nonanalyticity of �2a still comes from the same zero-2kF -
momentum-transfer limits and likewise for the new �2c. One
is then allowed to make the approximation U (|ql,r |) ≈ U (0) or
U (2kμ) where appropriate and write

�2a + �2c

V
=
(

k7
μm

96π4

)
{[2U (0)2 − 2U (0)U (2kμ)

+U (2kμ)2]w̃2a(t,0) + U (2kμ)2w̃2a(t,h)}
+ (analytic part). (39)

The nonanalytic part of w̃2a is to be identified from Eq. (24).
The so-called fixed-point vertices �s and �c were intro-

duced in [13]. They represent the exact scattering amplitudes
of two quasiparticles, where the subscripts s and c stand for
the spin and charge channel, respectively. Here we are only
interested in the limits where k1 and k3 are either equal or
on opposite sides of the Fermi surface. To the lowest order
in perturbation theory, the limiting values for the scattering
amplitudes are

�c = mkμ

π2

[
U (0) − 1

2
U (2kμ)

]
,

�s = −mkμ

π2

1

2
U (2kμ). (40)

One may now identify U (0) and U (2kμ) in (39) with appro-
priate combinations of �c and �s . Higher-order terms in the
perturbation theory will only serve to renormalize the values of
kμ, m, �c, and �s . One then obtains an expression that remains
valid outside the dilute regime:

(nonanalyticity) = k5
F

96m∗

{(
�2

s + �2
c

)D1

2
t4 ln t

+ 2�2
s

(
D1

2
t4 ln t+D2h

4 ln h+χ (t,h)

)}
.

(41)
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As advertised, (41) only depends on parameters in FL theory
and should be valid where the FL picture holds. One notes that
the crossover is controlled solely by the spin channel, as is
intuitively expected.

There are limitations when one wishes to apply (41) to
a system beyond the dilute regime. First of all, one loses
the ability to calculate the analytic terms at fourth order,
which we have shown to mix with the nonanalytic terms
during the crossover [see Eqs. (27) and (32)]. Therefore,
one no longer has a consistent approximation to the equa-
tion of state. Furthermore, while the replacement of the
bare interaction vertices with the full scattering amplitudes
in (41) is certainly valid, it captures only the so-called
backscattering processes. As was shown in Ref. [13], the
nonanalyticity receives an additional contribution beyond
backscattering.

To leading order in perturbation theory, these neglected
contributions come from the small-momentum limit of the
third-order Feynman diagrams in Figs. 1(b) and 1(c). The
new contributions arise from the region of loop integration
where all three particle-hole bubbles are dynamical, i.e.,
frequency dependent. The renormalization of the scattering
amplitudes, which is a static effect, cannot account for the new
contributions.

We were well justified to drop these terms and retain only the
second order �2a (Fig. 2) in our initial treatment that assumed
dilute conditions. However, these neglected terms can indeed
grow to be just as significant as the backscattering processes
if the dilute condition no longer holds and they should be
considered alongside (41) for a more complete description of
the nonanalyticity beyond the dilute regime.

VI. GENERALIZATION TO SU(Nc)

When Nc > 2, the additional complexity leads to a rich
and exotic phase diagram. However, the mean-field treatment
in the existing literature [38,40] by construction yields an
analytic expression for the free energy. The nonanalytic effect
discussed in the preceding section will qualitatively affect the
phase transition [14,21,42].

In this section we give the equation of state including
the nonanalytic effect, in the nonmagnetic phase, generalized
to Nc > 2. We also propose an experimental scenario that
offers the advertised large-Nc enhancement of the nonanalytic
term.

A. Equation of state

It will be convenient to consider the dimensionless magnetic
fields ha = Ha/μ0. The thermodynamic potential must be
SU(Nc) symmetric overall. The analytic part can be conve-
niently expressed in terms of these SU(Nc) invariants:

Sn ≡
Nc∑
a=1

(ha)n, n = 2, . . . ,Nc. (42)

Any n � Nc term is a linear combinations of S2, . . . ,SNc
.

The first term S1 vanishes by the traceless condition. These
quantities serve as monomials in a generalized power series
expansion.

Generally speaking, H → −H is no longer a symmetry
of the model. Thus, starting from S3, odd terms are allowed
in the expansion of the thermodynamic potential. In the
treatment of [38,40], the same physics manifests as odd powers
of magnetization in the Ginzburg-Landau expansion of free
energy.

Up to second order in perturbation theory, the generic
expression for the thermodynamic potential (5) is valid for
arbitrary Nc. For �0, �1, and �2b, the spin sum can still be
carried out straightforwardly and the results can be expressed
in terms of Sn. In analogy to (6), we define

ω0 = 1

Nc

Nc∑
a=1

ω
(a)
0 , (43a)

ω1 = 1

Nc(Nc − 1)

Nc∑
a=1

∑
b �=a

ω
(ab)
1 , (43b)

ω2a = 1

Nc(Nc − 1)

Nc∑
a=1

∑
b �=a

ω
(ab)
2a , (43c)

ω2b = 1

Nc(Nc − 1)2

Nc∑
a=1

∑
b �=a

∑
c �=a

ω
(abc)
2b . (43d)

Let x denote 0, 1, or 2b. Up to the fourth overall order in t and
h, these quantities have the general form

ωx = a
(x)
0 + a

(x)
1 t2 + a

(x)
2 S2 + a

(x)
3 S3 + a

(x)
4 t4

+ a
(x)
5 S4 + a

(x)
6 (S2)2 + a

(x)
7 t2S2 + · · · . (44)

The coefficients {a(x)
i } are summarized in Table II.

For ω2a , it is easier to first withhold the spin sum and
consider instead ω

(ab)
2a with definite spins a and b. To this end,

one defines the centered chemical potential

μab = μ0 + 1
2 (Ha + Hb), (45)

as well as related quantities kab, vab, and tab, where one replaces
all occurrences of μ0 with μab in the original definitions. Also,
one defines hab = (Ha − Hb)/μab.

Since the dimensionless ω
(ab)
2a is symmetric under the

exchange of a and b (which is obvious from the Feynman
diagrams in Fig. 2), one may rewrite it with explicit spin
symmetrization

ω
(ab)
2a = 12π2m

k7
μa2

�
(ab)
2a + �

(ba)
2a

2V
. (46)

This nearly coincides with the Nc = 2 spin-symmetrized w2a .
However, to adapt the Nc = 2 result, one must replace μ0 with
μab, with all the scales and dimensionless parameters modified
accordingly. The upshot is

ω
(ab)
2a (t,h) =

(
kab

kμ

)−7

w2a(tab,hab). (47)

One may now carry out the spin average over all pairs a and
b in (46). While the nonanalytic terms cannot be expressed
with the SU(Nc) invariants Sn in a simple way, the analytic
part can still be summed. The nonanalytic part is not affected
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TABLE II. Numerical values of coefficients a
(x)
i appearing in Eqs. (44) and (49).

i x = 0 x = 1 x = 2a x = 2b

0 − 2
5

2
3π

4
35π2 (11 − 2 ln 2) − 4

3π2

1 − π2

4
π

6
1
2 (1 − 2 ln 2) − 5

18

2 − 3
4Nc

1
2π

Nc−4
Nc(Nc−1)

1
2π2

(5Nc−11)+(− 3
2 Nc+1) ln 2

Nc(Nc−1) − 1
6π2

5N 2
c −22Nc+35
Nc(Nc−1)2

3 − 1
8Nc

− 1
12π

Nc+8
Nc(Nc−1)

1
2π2

(Nc− 11
2 )+(− 7

8 Nc+ 3
2 ) ln 2

Nc(Nc−1)
1

12π2
N 2

c −2Nc−35
Nc (Nc−1)2

4 7π4

960
π3

40 0 − 17π2

1440

5 1
64Nc

1
32π

1
Nc−1

1
256π2

(5Nc−88)+(−13Nc+8) ln 2
Nc(Nc−1) − 1

96π2
N 2

c −6Nc+35
Nc(Nc−1)2

6 0 3
32π

1
Nc(Nc−1)

1
256π2

39+9 ln 2
Nc(Nc−1) − 1

16π2
Nc−16)

Nc(Nc−1)2

7 − π2

32
1
Nc

π

8
1

Nc−1
3

32
(Nc−2)(1−ln 2)

Nc (Nc−1) − 1
48

3N 2
c −26Nc+5

Nc(Nc−1)2

by the shift from kμ to kab at leading order:(
kab

kμ

)7

f4(tab,hab) = f4(t,ha − hb) + (sixth order). (48)

In analogy to (44), the spin-symmetric ω2a can be written
as

ω2a = a
(2a)
0 + a

(2a)
1 t2 + a

(2a)
2 S2 + a

(2a)
3 S3

+ a
(2a)
5 S4 + a

(2a)
6 (S2)2 + a

(2a)
7 t2S2

+ 1

Nc(Nc − 1)

∑
a

∑
b �=a

f4(t,ha − hb) + · · · . (49)

The coefficients are also given in Table II. Note that the t4 term
is identically zero in the above expansion.

B. Experimental scenario: Nc → Nc
2 + Nc

2

We consider the experimental setup that forbids transitions
among SU(Nc) spin states. However, the SU(Nc) symmetry
is still broken by the unequal densities of spin components,
which is equivalent to a nonzero generalized magnetic field in
our model.

To observe the nonanalytic crossover, a magnetic field is
obviously needed, yet we hope for an enhancement of the
nonanalytic effect, which receives “extra copies” of the same
contribution due to the unbroken part of the symmetry. The
simplest scenario works best to fulfill the requirements: We
will considerNc even and the SU(Nc) being broken neatly into
SU(Nc

2 ) × SU(Nc

2 ). This corresponds to the effective magnetic
fields

Ha =
{

H/2, a � Nc

2

−H/2, a > Nc

2 .
(50)

This particular scenario closely resembles the spin- 1
2 electron

gas and offers the largest enhancement of the nonanalytic
terms.

Let h = H/μ0, similarly to the Nc = 2 case. In this partic-
ular scenario, the SU(Nc)-invariant Sn defined in (42) becomes

Sn =
{
Nc

(
h
2

)n
for n even

0 for n odd.
(51)

The odd power terms vanish identically due to the restored
H → −H symmetry.

One can substitute (51) into (44) and (49) to recover the
equation of state. The full expression is very long and we will
not print it here, but we point out the nonanalytic part of �2a:∑

a

∑
b �=a

f4(t,ha − hb)

= Nc(Nc − 2)

2
f4(t,0) + N 2

c

2
f4(t,h). (52)

Both terms are proportional to N 2
c , compared with the linear

scaling of the noninteracting part. This is the potential large-
Nc enhancement that we hope can make the experimental
detection of the nonanalytic behaviors less difficult.

C. Hartree-Fock resummation

The above argument for the large-Nc enhancement is
flawed, however. From Table II one can see that both ω1 and
ω2b scale as O(1) when Nc is large. After spin sum, �1 also
scales as O(N 2

c ), while �2b is O(N 3
c ).

Since we have been advocating the large-Nc enhancement,
one may question if this does not actually make �2a less
visible in an experiment. In fact, at each order of perturbation
theory, the diagrams that form parts of the Hartree-Fock
approximation are always proportional to the highest possible
power of Nc. As an alternative, we propose that the Hartree-
Fock terms may be resummed using a scheme inspired by the
familiar Luttinger-Ward (LW) functional [44].

The lowest-order skeleton diagram for the LW scheme
coincides with the diagram for �1 [Fig. 3(a)]. If one chooses
to include only this diagram, the LW scheme produces only
a spin-dependent constant shift σa on top of the chemical
potential μa . We will denote the resultant (approximated)
thermodynamic potential by �HF,

�HF

V
=
(

mT

2π

)3/2∑
a

[T Li5/2(−eβ(μ0+Ha−σa ))

+ 1

2
σaLi3/2(−eβ(μ0+Ha−σa ))], (53)

where Lis is the polylogarithm.
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The usual stationary condition for the Luttinger-Ward func-
tional yields a self-consistent condition of the energy shifts:

σa = −4πa

m

(
mT

2π

)3/2∑
b �=a

Li3/2(−eβ(μ0+Hb−σb)). (54)

The above approximation exactly resums the Hartree-Fock
self-energy to all orders in perturbation theory, thus the
subscript HF. One can add to �HF any beyond-HF vacuum
diagram to further refine the approximation. In particular, we
wish to write

� ≈ �HF + �2a + O((kμa)3). (55)

We keep the perturbative power counting for beyond-Hartree-
Fock corrections, despite the resummation leading to �HF

being already nonperturbative.
Experimentally, one may already solve (54) using the

measured values of T , μ0, and Ha . Then one can calculate
�HF from (53) and subtract it from the measured value of �

to expose �2a . However, we propose a further approximation
scheme that simplifies the analysis.

First, one notes that Na , the physical number density of spin
a, satisfies the following relation:

Na = −
(

mT

2π

)3/2

Li3/2(−eβ(μ0+Hb−σb)) + O((kμa)2). (56)

Comparing this equation with (54) and dropping the correction
terms on the right-hand side of (56), one may make the
approximation

σa ≈ 4πa

m

∑
b �=a

Nb. (57)

Then �HF can be approximated as

�HF

V
≈

Nc∑
a=1

[(
mT

2π

)3/2

T Li5/2(−eβ(μ0+Ha−σa )) − σaNa

2

]
.

(58)

This approximation does away with the transcendental equa-
tion (54). Crucially, the error introduced to �HF is only
O((kμa)3). Therefore, Eq. (55) remains valid and can be used
to identify �2a experimentally.

For the present scenario (50), the number density of each
spin component must satisfy

Na =
{

N0 + N
2 for a � Nc

2

N0 − N
2 otherwise.

(59)

Then the self-energy shift (57) becomes

σa ≈
{

4πa
m

[
(Nc − 1)N0 − N

2

] ≡ σ↑ for a � Nc

2
4πa
m

[
(Nc − 1)N0 + N

2

] ≡ σ↓ otherwise
(60)

and �HF is

�HF

V
≈ Nc

2

{( m

2π

)3/2
T 5/2[Li5/2(−eβ(μ0+H/2−σ↑))

+ Li5/2(−eβ(μ0−H/2−σ↓))]

− 4πa

m

[
(Nc−1)N2

0 −N2

4

]}
. (61)

One notes that the dangerous N 3
c terms are effectively re-

summed into the polylogarithms.
After resumming Hartree-Fock diagrams to all orders with

the above procedure, �2a is precisely the next-leading-order
correction. Using Eqs. (46) and (49), up to fourth overall order,

�2a

V
≈ k7

μa2

12mπ2

{
Nc(Nc − 1)

[
a

(2a)
0 + a

(2a)
1 t2 + a2a

2
Nc

4
h2

+
(

a
(2a)
5

Nc

16
+ a

(2a)
6

N 2
c

16

)
h4 + a

(2a)
7

Nc

4
t2h2

]

+Nc

(Nc

2
− 1

)
f4(t,0) + N 2

c

2
f4(t,h)

}
. (62)

The sum of �HF and �2a gives the desired approximation to
the thermodynamic potential.

The �2a term is O(N 2
c ). For Nc > 2, this brings its size

closer to the dominating free-gas contribution, which only
scales as O(Nc). This is the advertised large-Nc enhancement,
and we hope that this will make the quantitative measurement
of the nonanalyticity less difficult.

VII. DISCUSSION AND CONCLUSION

We have presented the equation of state for an SU(Nc) Fermi
gas that can in principle be tested in a cold-atom experiment
setup. We found that the thermodynamic potential � depends
nonanalytically on temperature T and effective magnetic field
H and displays a crossover behavior as the ratio of T and H is
continuously varied. There is a potential enhancement of this
nonanalytic behavior if Nc > 2.

The familiar Ginzburg-Landau paradigm asserts that, away
from a phase transition, the thermodynamic behavior of a
physical system should be analytic. This is in direct contrast
with our result, where the equation of state is nonanalytic for
any nonzero strength of interaction. Yet the qualitative behavior
seen in Fig. 5, even though only at a higher order, is very much
reminiscent of what is seen near a typical GL critical point.

This result should hardly come as a surprise. Recall that
much of the GL critical phenomenology rests on one single
assertion: a diverging correlation length. The particle-hole
pair excitation in our present problem exactly fills the role of
infinite-range correlation and this is independent of the interac-
tion strength. In this sense, a FL in the normal phase is always
critical in the subleading order.

In order to compute the equation of state, we employed
a two-step approach in this paper. Analytic terms up to
fourth order in t and h were obtained from considering
scattering processes with arbitrary momentum transfer in the
dilute Fermi gas, and the nonanalytic terms at fourth overall
order were then found by considering only small-momentum
scattering processes, with the appropriate asymptotic form for
the particle-hole pair Green’s function being used instead of
the exact form.

One is able to do this because, from the Fermi gas picture,
it can be seen that these small-momentum-transfer on-Fermi-
surface processes are precisely those contributing to the nonan-
alyticity. The two steps are thus complementary and between
them provide the full answer to the calculation. This also serves
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as yet another confirmation of the oft-cited observation that the
leading nonanalytic correction is universal to all FLs [4].

Our analysis is limited to second-order perturbation theory.
On one hand, cold-atom gas experiments have achieved the
dilute regime where this approximation is justified; on the other
hand, this approximation allows one to analytically obtain a
consistent approximation to the equation of state. So we do
not find the limitation too restrictive.

As pointed out by Chubukov and co-workers [13,14],
one could carry out the same calculation, but with the fully
renormalized quasiparticle dispersion and scattering ampli-
tudes in the Fermi liquid theory. The resultant expression
(41) remains valid beyond the dilute regime, as long as the
Fermi liquid picture is applicable. However, only the so-called
backscattering processes were retained in our original analysis.
We justified the exclusion of all other processes as being of
higher orders using the dilute condition. When the condition no
longer holds, these neglected contributions can indeed grow to
be as important. We acknowledge that Eq. (41) is only a partial
description of the nonanalyticity beyond the dilute regime.

Experimental confirmation of this nonanalytic behavior will
be challenging, to say the least. However, we hope to see
closure of this old but interesting problem.
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APPENDIX A: SOMMERFELD EXPANSION

The original Sommerfeld expansion is concerned with
integration of a function f (ε) of energy ε, weighted by the
Fermi function nF (ε) = 1

eβε+1 . One expands the function f (ε)
as a power series of ε and reduces the original integral into the
sum of moments of the Fermi function.

In the present work our integration variable is the single-
particle momentum k, rather than the energy. Assuming f (k)
depends only on the magnitude k = |k|, we adapt the original
procedure into∫

d3k
[
na(k) − �

(
μa − k2

2m

)]
f (|k|)

=
∞∑

n=0

τ2n+2

∫
d3k δ(k −

√
2mμa)

× 1

k2

[(
m

k

∂

∂k

)2n+1

kf (k)

]
, (A1)

where na is given in (7), � is the Heaviside step function, and
the coefficient τn is defined to be

τn = 2m

(n − 1)!

∫ ∞

0
dε nF (ε)εn−a. (A2)

Generally, the procedure outlined above does not commute
with a momentum cutoff. Any cutoff must be implemented

formally as a weighting function multiplied by the original
integrand, and the partial derivatives in (A1) should act on the
cutoff function equally. We implemented a sharp cutoff using a
Heaviside step function to analyze the origin in the momentum
space of nonanalyticity in �2a .

APPENDIX B: CROSSOVER FUNCTION χ AT SMALL h

The small-h expansion of χ , given in (28), is quite tricky
to derive. Unlike its small-t counterpart, the region where
ε < Hab is not suppressed in the integral. A straight series
expansion in h is therefore doomed with infrared divergences.

As the expression (25) is manifestly even in h, one can take
h > 0. At fixed t , we define

c(λ) ≡ 1

t4
χ̃(t,h), (B1)

where λ = h/t . By construction c(0) vanishes. Also, by being
an even function, its first derivative at zero c′(0) also vanishes.
Our strategy will be to evaluate the second derivative c′′(λ) and
then integrate it twice to get back to c.

First, the ε integral in (25) must be reinterpreted as∫ ∞

0
dε →

(∫ H−

0
dε +

∫ ∞

H+
dε

)
. (B2)

This does not affect c(h) in any way, but allows one to
interchange the order of ε integration and h differentiation.
Also, a convergence factor x−2ε with ε → 0+ is needed: Even
though the end result is itself finite, we will break the integral
into multiple (diverging) parts, and the convergence factor
consistently regularizes these fictitious divergences. One may
then write

c′′(λ) = − 3

8π2

∫ ∞

0
dx

(
2x1−2ε

ex − 1
+ 2λ2

ex − 1

x1−2ε

x2 − λ2

)
. (B3)

The first term in the above integral can be straightforwardly
integrated, yielding −1/8.

For the second piece, one needs to take x to the complex
plane and the path of integration is as shown in Fig. 8. One
may complete the contour into a close loop as shown, which
integrates to zero identically. The arc at infinity vanishes due to

Re x

Imx

x = λ

FIG. 8. Contour for (B3). The entire loop integrates to zero, while
the solid part is the desired path.
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the Bose function. The required c′′ is therefore the sum of the
small semicircle around x = λ and the line integral along the
imaginary-x axis. The other necessary trick is to rewrite
the Bose function as

1

ex − 1
= −1

2
+ 1

x
+

∞∑
k=1

2x

x2 + (2πk)2
(B4)

and carry out the integration term by term.
The small semicircle around the x = λ pole is easily

evaluated using the residue theorem. With the aforementioned
convergence factor x−2ε , the integral along the imaginary-

x axis and the sum over k can be performed using stan-
dard ε-expansion and ζ -function regularization techniques,
respectively. Individually the pieces in (B4) yield 1/ε poles,
which cancel among themselves. After taking ε → 0, the end
result is

c′′(λ) = − 3

8π2

[
π2

3
+ λ2 ln |λ| + λ2(γE − ln 2π )

+ λ2
∞∑

n=1

(−1)nζ (2n + 1)

(
λ

2π

)2n]
. (B5)

Integrating this result twice with respect to λ and imposing the
condition c(0) = c′(0) = 0, one recovers (28), as desired.
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