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Breathing-mode frequency of a strongly interacting Fermi gas across the two- to
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We address the interplay between dimension and quantum anomaly on the breathing mode frequency of a
strongly interacting Fermi gas harmonically trapped at zero temperature. Using a beyond-mean-field Gaussian
pair fluctuation theory, we employ periodic boundary conditions to simulate the dimensionality of the system
and impose a local-density approximation, with two different schemes, to model different trapping potentials in
the tightly confined axial direction. By using a sum-rule approach, we compute the breathing mode frequency
associated with a small variation of the trapping frequency along the weakly confined transverse direction and
describe its behavior as a function of the dimensionality, from two to three dimensions, and of the interaction
strength. We compare our predictions with previous calculations on the two-dimensional breathing mode anomaly
and discuss their possible observation in ultracold Fermi gases of 6Li and 40K atoms.
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I. INTRODUCTION

Low-lying collective excitations play a fundamental role
in understanding many-body phenomena and the recent re-
alization of ultracold atomic gases provides a unique setting
for investigating various novel collective dynamics [1]. In
particular, low dimensional atomic Fermi gases (in one and
two dimensions) at the crossover from a Bose-Einstein conden-
sate (BEC) to a Bardeen-Cooper-Schrieffer (BCS) superfluid
present a broad range of intriguing collective phenomena
that are now being successfully studied from both theoret-
ical and experimental perspectives [2–7]. Low-dimensional
regimes are experimentally achieved by using a combination
of harmonic oscillator (HO) traps [1,8], whose oscillating
frequencies are tuned in order to reach both two-dimensional
(2D) pancake [9,10] and 1D cigar traps [11]. Alternatively,
a standing wave laser beam in a given selected direction can
force the system into a quasi-2D pancakelike regime, where
multiple almost independent 2D clouds are realized [12–15].

It is well known that the long-range order parameter is
expected to be highly suppressed by fluctuations in low
dimensions, however it is still possible to achieve superfluidity
with a quasi-long-range order according to the Berezinskii-
Kosterlitz-Thouless phase transition universality [16,17]. The
interest around low-dimensional quantum gases, in particular
for the 2D case, is further emphasized by features that are
known to have no classical counterpart. At low temperatures
an interacting Fermi gas experiences mainly s-wave scattering,
which are theoretically modeled by a contact interaction.
It is straightforward to observe that in two dimensions the
Hamiltonian of such a system is invariant under length scaling,
however due to the contact interaction unphysical contributions
at large momenta are included. The solution to this problem is
to introduce an extra length scale upon renormalization, the
scattering length a2D, which breaks the scale invariance of
the classical Hamiltonian and leads to the phenomenon of the
so-called quantum anomaly [18].

A well-known consequence due to the breaking of scale
invariance in two-dimensional gases can be found when excit-
ing the harmonically trapped cloud via collective excitations.
Namely, a small perturbation of the transverse harmonic
frequency ω⊥ induces a breathing mode excitation whose
frequency is given by ωB = 2ω⊥ [19,20]. This classical result
is modified when the quantum anomaly is considered. The
breathing mode frequency gains a weak dependence on the
scattering length and deviates from the classical value ωB =
2ω⊥ within a range of 5%–10% [3,4,21]. This should be
contrasted with the case of a three-dimensional gas, in which
the classical Hamiltonian is in general not invariant under
length scaling. Due to the contact interaction we must also
renormalize the Hamiltonian with the 3D scattering length
a3D and the breathing mode thus strongly depends on the
scattering length. The only exception is the unitarity limit,
where the scattering length diverges, a3D = ±∞, and the
quantum Hamiltonian becomes scale invariant. As a result
of the restored scale invariance, the breathing mode does not
depend on temperature [22]. In the 3D regime, for a unitary
Fermi cloud in the highly pancakelike trapping potential, the
scale invariant breathing mode takes ωB = √

3ω⊥ [23,24]. It
is of great interest to study how the breathing mode frequency
evolves at the dimensional crossover from three to two dimen-
sions, while aiming for the realization of a truly 2D gas.

In this work, motivated by the recent experimental activities
of Peppler et al. at Swinburne University of Technology
[25], we address the role of dimension and interaction on
the breathing mode frequency and the quantum anomaly.
The suppressed superfluid order parameter in low dimensions
requires a beyond mean-field (MF) treatment [26,27], which
is possible when we consider periodic boundary conditions
(PBCs) in the axial direction [28]. Moreover, the effect of
harmonic trapping in the transverse direction on the integrated
2D density distribution can be well described by a local-
density approximation (LDA). We describe the breathing mode
frequency for a given pair of parameters: a length that tunes
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the dimension and a scattering length that sets the interaction
strength. By using a sum-rule approach, in the spirit of
Ref. [29], we determine the breathing mode frequency while
changing the dimensional regime and tuning the scattering
length. We further address a comparison with the previous
results of the breathing mode frequency in the purely 2D regime
[3–5]. Our predictions could be readily examined in future
cold-atom experiments with fermionic 6Li and 40K atoms.

The paper is set out as follows: in Sec. II A we go through
the beyond-MF, Gaussian pair fluctuation (GPF) theory to
study a homogeneous strongly interacting Fermi gas with
periodic boundary conditions, and in Sec. II B we introduce
two different LDA schemes to account for different axial
confinements. In Sec. II D we briefly derive the sum-rule for the
breathing mode frequency calculations, which are extensively
addressed in the Appendix, for the sake of clarity. Finally
in Sec. III we show the behavior of the breathing mode
frequency in various dimensional regimes and the comparison
with previous 2D results.

II. THEORETICAL MODELS

A. Homogeneous strongly interacting Fermi gases at the
dimensional crossover

Following our previous work in Ref. [28], we model a
two-component spin balanced Fermi gas near a broad Fesh-
bach resonance via a two-body contact interaction. In order
to describe the dimensional crossover, we split the spatial
coordinates into in-plane x = (x,y) and axial z components,
combined in the shorthand notation (x,z). The grand canonical
single-channel Hamiltonian reads [30]

H =
∑

σ=↑,↓
ψ†

σ (x,z)

(
− h̄2

2m
∇2 − μ

)
ψσ (x,z)

−U0ψ
†
↑(x,z)ψ†

↓(x,z)ψ↓(x,z)ψ↑(x,z), (1)

where ψσ are the annihilation field operators for the
(pseudo)spin populations labeled by σ = ↑ , ↓, μ is the
chemical potential, m is the mass of the fermions, and U0 > 0
is the bare interaction strength of the contact potential. We
introduce the Hubbard-Stratonovich auxiliary bosonic field,
�̂(x) = U0ψ↓(x,z)ψ↑(x,z), and we perform a saddle point
approximation with the mean-field order parameter and the
fluctuation bosonic field [31,32], �̂(x) = � + φ̂(x,z). This
approximation allows us to directly compute the thermody-
namic potential up to second order in the fluctuation, � =
�MF + �GPF, where at the MF level we have

�MF

V
= �2

U0
+ 1

V

∑
k,kz

(ξk,kz
− Ek,kz

), (2)

where V is the volume of the system and we have introduced
the BCS theory notation, slightly modified for the dimensional
crossover, for a generic momentum (k,kz): We define ξk,kz

=
εk + εkz

− μ and Ek,kz
= √

ξ 2
k,kz

+�2. The GPF contribution to
the thermodynamic potential, at finite temperature kBT = β−1,
is

�GPF = − 1

β
ln

∫
Dφ∗Dφ exp[SGPF(φ∗,φ)], (3)

where kB is the Boltzmann constant and the GPF action SGPF

can be written as

SGPF = βV

2

∑
Q

(φ∗
Q φ−Q)M(Q)

(
φQ

φ∗
−Q

)
. (4)

We have introduced the multi-index notation Q ≡ (q,qz,iqν)
with momenta (q,qz) of the fluctuation field φ and the bosonic
Matsubara frequencies qν = 2πν/β for all ν ∈ Z. The matrix
operator M at zero temperature can be written

M11 = 1

U0
+ 1

V

∑
k,kz

(
u2

+u2
−

iqν − E+ − E−
− v2

+v2
−

iqν + E+ + E−

)
,

M12 = 1

V

∑
k,kz

(
− u+u−v+v−

iqν − E+ − E−
+ u+u−v+v−

iqν + E+ + E−

)
, (5)

M21(Q) = M12(Q) and M22(Q) = M11(−Q). Here we use the
notation [31–33]

u2
± = 1 − v2

± = 1

2

(
1 + ξ±

E±

)
, (6)

with E± =
√

ξ 2± + �2 and ξ± ≡ ξk±q/2,kz±qz/2. At zero tem-
perature, for β → ∞, we can Wick rotate the Matsubara
frequencies [32,33], iqν �→ ω, swapping the sum on iqν with
an integration on ω,

�GPF = 1

V

∑
q,qz

∫ ∞

0

dω

2π
ln −1(q,qz,ω), (7)

where

−1(Q) = M11(Q)M11(−Q) − M12(Q)2

MC
11(Q)MC

11(−Q)
, (8)

and we have introduced an additional term to converge the
integrations [32,33],

MC
11(Q) = 1

U0
+ 1

V

∑
k,kz

u2
+u2

−
iqν − E+ − E−

. (9)

The dispersion relation of the bosonic field should be gapless,
hence we determine the order parameter � at the MF level by
solving the gap equation

M11(Q = 0) − M12(Q = 0) = 0 (10)

or, more explicitly,

1

U0
− 1

V

∑
k,kz

1

2Ek,kz

= 0. (11)

In the spirit of Ref. [28], we introduce the tuning param-
eters of the dimensional crossover as follows: The in-plane
coordinates are sent to the thermodynamic limit, while we
require PBCs to hold on the axial direction. The characteristic
PBC length lz tunes the dimensional crossover from the 3D
(large lz) limit towards the 2D (small lz) regime. We define
the characteristic Fermi momentum kF and Fermi energy
εF = h̄2k2

F /2m from the free Fermi density nf . That is, for
a fixed box length lz, we take the discretization of momenta
in the z direction, kz = 2πNz/lz, for any integer Nz. The free
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Fermi density is then given by [28]

nf = 1

2πlz

Nmax∑
Nz=−Nmax

[
k2
F −

(
2πNz

lz

)2
]
, (12)

where Nmax is the largest natural number smaller than kF lz/2π .
Here kF represents the Fermi momentum in the quasi-2D
regime and it is computed from Eq. (12) once nf is fixed.
Since, in the 2D and 3D limits, the Fermi momentum kF should
approach, respectively, their limiting values k2D

F and k3D
F , and

due to the PBC choice, we must set n2D = nf lz and n3D = nf .
This equivalence sets the relationship between kF and k3D

F and
k2D
F . For convenience, we introduce the dimensional crossover

tuning parameter via the 3D Fermi momentum k3D
F [28]

η ≡ k3D
F lz. (13)

We renormalize the bare interaction strength, U0, by re-
quiring that the two-body T -matrices in the quasi-2D and
3D regimes match when lz → ∞, which defines a quasi-2D
binding energy B0 [34,35] as a function of a3D, with an explicit
dependence on lz,

B0 = 4h̄2

ml2
z

arcsinh2

[
elz/2a3D

2

]
. (14)

The binding energy fixes the BCS-BEC crossover tuning
parameter lz/a3D which spans from negative (BCS) to positive
(BEC) values. When lz → 0, the quantity B0/2εF is well
defined and spans the 2D BCS-BEC crossover by introducing

−ln
(
k2D
F a2D

) = −ln

√
B0

2εF

. (15)

Finally, we can define the density of the system as a function
of two parameters, namely, the chemical potential, μ, and the
PBC length lz via the number equation

n(μ,lz) = − 1

V

∂�(μ,lz)

∂μ

∣∣∣∣
μ;�(μ)

, (16)

where, for each pair (μ,lz), �(μ) means we have solved the
gap equation before taking the derivative.

B. Local-density approximation

As we will see, the breathing mode frequency in the
transverse plane can be calculated from the integrated 2D
density or the so-called column density

n2D(ρ =
√

x2 + y2) =
∫

dz n(ρ,z) (17)

by using a sum-rule approach. We now discuss how to deter-
mine the column density using the uniform density equation of
state (16) and the LDA approach, in the presence of a harmonic
trapping potential in the xy plane and two types of confinement
in the axial direction

VT (ρ,z) = 1

2
mω2

⊥ρ2 +
{

V∞�[|z| − lz/2]
1
2mω2

zz
2,

(18)

where the potential V∞�[|z| − lz/2], with V∞ → ∞ and step
function �(x), simulates a hard-wall box confinement that
may be realized in future experiments and mω2

zz
2/2 is the

standard harmonic trapping potential [9,10]. In both cases,
the trap aspect ratio, characterized by λ = h̄/mω⊥l2

z under the
hard-wall confinement and λ = ωz/ω⊥ in the case of harmonic
potential, should be much larger than 1.

To calculate the column density, let us first clarify the
different dimensional regimes. As we show in Ref. [28],
where the relationship between the PBC system and hard-wall
(HW) system, at the mean-field level, the HW confinement
imposes a negligible finite size effect on a limited part of the
confined system, namely near the infinite walls. The center
of the HW confined system can be reproduced by using a
uniformly dense PBC system by properly tuning the PBC
periodicity according to the original HW size. Moreover, this
approximation becomes exact when we move towards the
strongly interacting regimes. The dimensional crossover of a
PBC system can then be used to describe a nearly homogeneous
quasi-2D Fermi cloud under hard-wall confinement, and is split
into three regimes. These are distinguished through the position
of the maximum of the superfluid critical velocity vmax

c , which
has a nontrivial dependence on the dimensional parameter η.
For η � 2 the maximum of the superfluid velocity is logarith-
mically dependent on η, and we denote this as the 2D regime.
The maximum of the superfluid velocity becomes linear in η

when η � 8 marking the 3D regime. The nonmonotonic region
contained between the 2D and 3D regimes is the quasi-2D
regime. For further details on other choices of characterizing
the crossover, see Supplemental Material in Ref. [28].

To understand the dimensional crossover in the presence of
a tight harmonic axial trapping potential, we may determine
an equivalent PBC length scale by approximating

lz ∼ lHO
z =

√
h̄

mωz

. (19)

By doing so, Eq. (16) depends on lz as an external parameter
fixed by the axial harmonic frequency ωz. We then compare lz
with k3D

F and obtain a simple relation to compare the PBC to
the harmonically trapped system

η ∼ k3D
F lHO

z =
√

2ε3D
F

h̄ωz

. (20)

The single-particle criterion for the harmonically trapped
Fermi gas in the 2D regime is given by requiring (i) kBT � εF

to avoid thermal excitations of the axial harmonic-oscillator
ground state and (ii) h̄ωz > εF to ensure that the whole system
is contained in the ground state. By solving n3D = nf , we see
that from Eq. (12) we always have εF < ε3D

F for η < 3π/2.
By taking k3D

F lHO
z <

√
2, we may interpret k3D

F lz <
√

2 as a
good approximate regime of the 2D limit for the trapped
case. We refer to this regime as the HO 2D regime. This
distinguishes between the PBC 2D regime and the 2D regime
for a harmonically trapped Fermi gas.

In Figs. 1 and 2 we show the dimensional regimes as a
function of η and differentiate the PBC and harmonically
trapped 2D regimes using different colors. We note that, the
harmonically trapped Fermi gas density has been experimen-
tally studied [36,37]. A plateau in the column density has been
observed, by decreasing the total number of atoms to reach
the 2D regime at a given 3D s-wave scattering length [37]. By
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FIG. 1. Breathing mode frequency ωB in units of ω⊥ as a function
of the dimensional crossover tuning parameter η ≡ k3D

F lz, when
the BCS-BEC crossover is tuned at unitarity with a3D = ∞. Here
we consider the hard-wall confinement along the axial direction. The
top and bottom dashed lines are the scale-invariant predictions in the
2D and 3D limits, ωB,2D = 2ω⊥ and ω

(HW)
B,3D = √

10/3ω⊥ � 1.83ω⊥,
respectively.

converting the experimentally determined threshold number
density to the dimensional parameter [i.e., using Eq. (20)], we
qualitatively determine the boundary of the HO 2D regime
as a function of the interaction strength (k3D

F a3D)−1. This is
illustrated in Fig. 3(a) by the pink shaded region.

1. In-plane LDA

For a hard-wall confinement along the axial direction, the
density distribution is nearly uniform as a function of z (i.e.,
see Supplemental Material in Ref. [28]). Our theory of a ho-
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FIG. 2. Breathing mode frequency ωB divided by ω⊥ as a function
of the dimensional crossover tuning parameter η ≡ k3D

F lz when the
BCS-BEC crossover is tuned at unitarity with a3D = ∞. The results
from the in-plane LDA (green stars) and all-direction LDA (brown
circles) schemes are merged when the lines match to form a qualitative
fit (blue solid line). The dimensional crossover is divided into the
three-dimensional regimes as in Ref. [28] and the HO 2D regime is
determined using the experimental criterion of Ref. [36] for a 2D
harmonically trapped Fermi gas. The top and bottom dashed lines are
the scale-invariant predictions in the 2D and 3D limits, ωB,2D = 2ω⊥
and ω

(HO)
B,3D = √

3ω⊥ � 1.73ω⊥, respectively.
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FIG. 3. (a) Interaction parameter (k3D
F a3D)−1, as a function of η,

fixed by the BCS, BEC, and vmax
c lines in order to span the dimensional

crossover and maintain the system in the BCS (dash-dotted green
line), unitarity (solid red line), and BEC (dashed blue line) interacting
regimes. According to Ref. [28] the solid red line is taken to be a good
criterion to distinguish the BCS and BEC regimes. (b) we show the
breathing mode frequency ωB in units of ω⊥ as a function of the
dimensional crossover parameter η ≡ k3D

F lz for the BCS (dash-dotted
green line), unitarity (solid red line), and BEC (dashed blue line)
interacting regimes.

mogeneous strongly interacting Fermi gas at the dimensional
crossover, as outlined in Sec. II A, could be quantitatively
applicable. Thus, we must have the column density

n2D[μ(ρ)] = lzn[μ(ρ),lz], (21)

where n[μ(ρ),lz] can be calculated using Eq. (16), once a local
chemical potential μ(ρ) at the radius ρ is provided. For a slowly
varying transverse potential mω2

⊥ρ2/2, the assignment of a
local chemical potential is a well-established approximation,
as the surface energy related to the potential change becomes
negligible compared to the bulk energy scale. This treatment
is known as the Thomas-Fermi approximation or LDA. More
explicitly, we have a local chemical potential in Eq. (21),

μ(ρ) = μg − 1
2mω2

⊥ρ2, (22)

where the chemical potential at the trap center μg should be
adjusted to yield the total number of atoms N , i.e.,

N = 2π

∫ ∞

0
ρn2D(ρ)dρ. (23)

In the following, this LDA scheme is referred to as the in-plane
LDA.
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2. All-direction LDA

The situation becomes much more complicated for a har-
monic axial trapping potential. This soft-wall potential allows
density variation in the z direction. It is clear that the density
distribution of the Fermi cloud could have very different z

dependence at different dimensional regimes. Deep in the
2D regime, we anticipate that the density profile may be
approximated by

n[μ(ρ,z)] � n2D(ρ)|�0(z)|2, (24)

where �0(z) is the ground-state HO wave-function along the z

direction that is normalized to unity, i.e.,
∫

dz|�(z)|2 = 1. As
the confinement is tight along the z direction, we are of course
not allowed to define a z-dependent local chemical potential
and use Eq. (16) to calculate n2D(ρ). However, there is an
interesting observation in the deep 2D regime. As all the atoms
are confined in the ground state of the tight confinement, the in-
plane motion of the atoms should be universally described by
the same 2D Hamiltonian, regardless of the detailed form of the
confinement. This implies that the 2D density equation of state
n2D(μ) should be independent of the form of tight confinement,
as far as the confinement gives the same 2D binding energy or
2D scattering length. Therefore, we could still use Eq. (21) to
determine the column density, provided that the length lz is
accurately approximated in the presence of the axial harmonic
trapping potential.

Away from the deep 2D limit, we expect this approximation
to increasingly fail in describing the harmonically confined
system when the dimensional parameter η moves towards
the quasi-2D and 3D regimes of the PBC confined model.
Fortunately, in the deep 3D regime, the axial trapping potential
mω2

zz
2/2 becomes slowly varying in space as well. In this case,

we may implement an all-direction LDA scheme, by setting

μ(ρ,z) = μg − 1
2mω2

⊥ρ2 − 1
2mω2

zz
2. (25)

We can introduce a new set of variables, ξ 2 = ρ2 + λ2z2 and
tan ψ = λz/ρ, and rewrite the chemical potential as a function
of ξ only, μ(ξ ) = μg − mω2

⊥ξ 2/2, for a fixed aspect ratio λ.
The number of particles, N , of the system approximated with
LDA, in cylindrical coordinates, is given by

N = 2π

∫ ∞

−∞
dz

∫ ∞

0
dρ ρ n[μ(ρ,z)]. (26)

This equation can be used as well for the in-plane LDA
to replace Eq. (23), if we require n(ρ,lz) = n(ρ) when z ∈
[−lz/2,lz/2] and n(ρ,lz) = 0 otherwise.

As a brief summary, in the presence of an axial harmonic
trapping potential, we will use the in-plane LDA in the 2D
regime and the all-direction LDA in the 3D regime, as an
accurate description for the column density equation of state.
At the 2D-3D crossover, we take interpolation between these
two limits and obtain a qualitative description.

C. Polytropic column density equation of state

In some limiting cases, the column density may be well
approximated by a polytropic form

μ(n2D) ∝ n
γ

2D, (27)

which, as we will see, provides a significant simplification in
understanding the breathing mode. For example, in the deep
2D limit, the weak violation of the scale invariance implies that
[3,5]

γ2D ∼ 1, (28)

regardless of the type of the tight axial confinement. In the
3D regime, if we consider a unitary Fermi gas, the well-known
relation μ = ξεF ∝ n2/3, where ξ is the Bertsch parameter [1],
gives rise to

γ
(HW)
3D = 2

3 , (29)

γ
(HO)
3D = 1

2 , (30)

where the superscripts HW and HO distinguish the hard-wall
and harmonic axial trapping potentials. When we reach the
3D limit, the HW potential approximates an untrapped model,
hence it is expected to reproduce the 3D Fermi gas at unitarity.
The harmonic trapping in all three directions modifies the
polytropic equation of state through a different exponent
which explains the prediction of the breathing mode frequency
for a trapped 3D Fermi gas [23,24]. We anticipate that the
implementation of the LDA along the z axis will reduce the
value of the polytropic exponent.

D. Breathing mode frequency

Once we calculate the density as a function of the chemical
potential and position, the collective oscillations of the Fermi
gas can be derived from the hydrodynamic treatment of
the system [29,38]. These techniques have been successfully
employed to predict a large variety of collective oscillations
for fermionic systems [24,39,40]. In this work, we adopt the
commonly used sum-rule method [4,41], where the breathing
mode frequency ωB is given by the ratio

h̄2ω2
B = M1

M−1
. (31)

Here M1 is given by the energy weighted moment of the density
(second order central momentum of the density distribution),
M1 = 2Nh̄2〈ρ2〉/m, and M−1 is related to a perturbation of the
radial coordinate, M−1 = Nδ〈ρ2〉/ε, where δ〈ρ2〉 represents
the second order momentum when the transverse harmonic-
oscillator potential is perturbed by−ερ2. The expectation value
of the radius squared is given by

〈ρ2〉 ∝
∫ ∞

0
ρ3n2D(ρ)dρ (32)

and we can recast the perturbation of the radial coordinate to
a perturbation of ω⊥, obtaining the closed form [29]

h̄2ω2
B = −2〈ρ2〉

[
d〈ρ2〉
d(ω2

⊥)

]−1

. (33)

From Eq. (33) we observe that we need to know 〈ρ2〉 up to
any constant which does not implicitly depend on ω⊥. We show
in the Appendix that the number of particles falls out of the
computation of ωB when we dimensionalize the results with
the transverse frequency ω⊥. The right-hand side of Eq. (33)
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is expected to be linear in ω2
⊥ and return a constant when we

evaluate ωB/ω⊥ (for further details see the Appendix).
It is worth noting that, when the equation of state has a

polytropic form μ(n2D) ∝ n
γ

2D, the sum-rule approach for eval-
uating the breathing mode frequency become exact [23,24]. It
gives (see the Appendix for the derivation),

ωB

ω⊥
=

√
2 + 2γ . (34)

Therefore, we anticipate that in different dimensional regimes
the breathing mode frequency may behave like

ωB,2D ∼ 2ω⊥, (35)

ω
(HW)
B,3D =

√
10/3ω⊥, (36)

ω
(HO)
B,3D =

√
3ω⊥. (37)

The latter two results hold for a unitary Fermi gas only.

III. RESULTS

We now report the breathing mode frequency at the di-
mensional crossover and consider the two different types of
axial confinement: the hard-wall box trapping potential and
soft-wall harmonic potential. The former case is only briefly
discussed, as the hard-wall confinement is yet to be experi-
mentally demonstrated. Hereafter, without any confusions we
use k3D

F ≡ (3π2n0)1/3 to represent the 3D Fermi momentum
of an interacting Fermi gas at the trap center with density
n0 ≡ n(ρ = 0,z = 0). In our case of considering two different
axial confinements, this turns out to be a more convenient
option than the use of the 3D Fermi momentum of an ideal
Fermi gas at the trap center.

A. Hard-wall axial confinement

In Fig. 1 we present the breathing mode frequency of a
unitary Fermi gas at the dimensional crossover, in the presence
of a hard-wall axial confinement. The mode frequency is
calculated by using the in-plane LDA, as a function of the
dimensional parameter η expanding from the PBC 2D regime
when η � 2 to the 3D regime when η � 8. As our GPF
theory provides reliable equation of state at the dimensional
crossover, we anticipate that our prediction on the breathing
mode frequency is reliable. In the PBC 2D regime, the mode
frequency is larger than 2ω⊥, indicating a pronounced quantum
anomaly. As we move to the quasi-2D regime, the frequency
decreases rapidly, reaches a minimum at η ∼ 5 and finally
approaches the 3D limiting value of ω

(HW)
B,3D = √

10/3ω⊥ at
η � 10.

B. Harmonic axial confinement

In Fig. 2 we show the dimensional crossover of the breathing
mode again for the unitary Fermi gas, but with the harmonic
axial trapping potential. Here the 3D regime is reached as
before when η � 8, and the HO 2D regime is realized when
η �

√
2. As we mentioned earlier, we calculate the breathing

mode frequency using the in-plane LDA scheme near the 2D
regime (green stars) and using the all-direction LDA scheme

close to the 3D regime (brown circles). The in-plane LDA fails
to describe the 3D regime, so we show its prediction at η < 4
only. The all-direction LDA scheme fails in the 2D regime,
since the ground state wave-function in the axial direction is
essentially a Gaussian. As a guide to the eye, we combine
the two different LDA schemes with the blue solid line, and
this qualitatively describes the breathing mode frequency in
two mutually exclusive regions of the dimensional crossover.
By increasing η, we find that the mode frequency shows the
same behavior as in the case of the hard-wall confinement:
It decreases quickly away from the 2D regime, exhibits a
minimum in the quasi-2D regime and then saturates to a
3D limiting value, which is ω

(HO)
B,3D = √

3ω⊥ � 1.73ω⊥ in the
presence of the harmonic trapping potential.

We now turn to describe the behavior of the breathing mode
frequency at the BEC-BCS crossover other than the unitarity
limit. For this purpose, we need to distinguish different inter-
acting regimes and clarify the so-called unitarity regime. In all
the previous discussions, the unitarity regime and an infinite 3D
scattering length are two exchangeable terminologies, both of
which can be used without any confusions in the 3D regime, in
particular in Fig. 2 the interaction parameter a3D = ∞ denotes
the usual unitary regime across the dimensional crossover.
Away from the 3D limit, within the crossover, however it seems
more intuitive to extend [28] the unitarity regime as the regime
where the coherence length of Cooper pairs is comparable to
the interparticle distance and where the fermionic superfluidity
is most robust.

It is worth noting that, fixing a constant 3D interacting
parameter is the best way to compare with experimental results,
however from a theoretical point of view we want an interaction
parameter which probes the same interacting regime as a
function of η. If we choose the simple condition for the 3D
interacting parameter, i.e., (k3D

F a3D)−1 fixed equal to a constant,
when we span the dimensional parameter η, the system crosses
different interacting regimes. For example, in Fig. 1 where
we have set the 3D scattering length to infinity, we are in the
unitarity regime in the 3D limit while the system enters the BEC
regime for the quasi-2D and 2D regimes. In the HO 2D case,
the system is even in the deep BEC regime [36]. From now on,
we fix the unitary regime through the maximum of the critical
velocity, as described in our previous work in determining
the dimensional regimes [28]. This is a reasonable definition,
since the maximum critical velocity implies the most robust
fermionic superfluidity.

Figure 3(a) displays the choices made for the BCS (dash-
dotted green line) and BEC (dashed blue line) crossover
regimes, in which the two lines are obtained by vertically
shifting the maximum critical velocity curve down and up
by some amounts. These choices appear to be optimal since
they both span the 2D and 3D limits (η = 2 and η = 20,
respectively). For the 2D limit both the PBC 2D regime and
the HO 2D regime are reached, and converting the scattering
length to its 2D counterpart, ln(k2D

F a2D), we observe that it
spans the relevant part of BCS-BEC crossover.

In Fig. 3(b) we plot the ratio ωB/ω⊥ in the different
interacting regimes as per Fig. 3(a), the BCS (dash-dotted
green line), unitarity (solid red line), and BEC (dashed blue
line) regimes. We see that the deviation of the breathing mode
from the classic result, ωB = 2ω⊥, appears when the 2D region
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FIG. 4. Quantum anomaly deviation δωB = ωB − 2ω⊥ of the
breathing mode frequency ωB in units of the transverse harmonic
trapping frequency ω⊥. Our results (red circles) are obtained by
applying the in-plane LDA for the PBC confined 2D Fermi gas (η = 1)
at the GPF level. For comparison, we show also the polytropic fit from
Ref. [3] (dashed green line), the sum-rule results from Ref. [4] (orange
squares), and the zero-temperature analytic predictions for the far BCS
(solid black line) and BEC (dash-dotted black line) regimes.

is entered. Since the quantum anomaly is due to the presence
of the renormalization energy B0, which tends to vanish while
approaching the BCS regime, we observe a strong deviation
in the BEC regime (dashed blue line) which is progressively
reduced in the unitarity regime (solid red line). Qualitatively,
the fit between the in-plane and all-direction LDA results drop
from 2ω⊥ to a range of values around the 3D unitarity limit
ωB = √

3ω⊥. The unitarity results (solid red line) converge to
this value, while as remarked in Ref. [42], the BEC regime
provides a larger value of ωB , and in the BCS limit there is a
nontrivial behavior below ωB = √

3ω⊥.

C. Quantum anomaly in the deep 2D regime

In Fig. 4, focusing on the 2D regime, i.e., η = 1, we compare
our results with previous two-dimensional studies [3,4]. Since
the choice η = 1 and a large range of values of ln(k2D

F a2D)
are contained both in the PBC 2D and harmonic-oscillator
2D regime, we compare the anomaly through the quantity
δωB/ω⊥, where δωB = ωB − 2ω⊥.

We observe that the qualitative behavior of the quantum
anomaly is recovered by our data, and the maximum of the
deviation, δωB , is approximately the same height of Ref. [4].
The shift of the anomaly to the BEC side in our results is due
to either the GPF contribution to the global chemical potential
μg in comparison to the quantum Monte Carlo schemes, or
that for η = 1 the range of ln(k2D

F a2D) is shifted with respect
to the exact 2D case when we consider the exact 2D limit.

IV. CONCLUSION

We have characterized the breathing mode of a strongly
interacting Fermi gas at the dimensional crossover from two to
three dimensions, as a function of the interatomic interaction
strength. Using two schemes for the local density approxima-
tion, through the hydrodynamic formalism and sum rules we

are able to calculate the breathing mode within a beyond-mean-
field Gaussian pair fluctuation theory. Two kinds of tight axial
confinements have been considered: a hard-wall box potential
and a soft-wall harmonic trapping potential. In both cases, we
have shown that the quantum anomaly will be visible in the
breathing mode frequency as we approach two dimensions
in the strongly interacting regime. We have compared our
breathing mode anomaly in two dimensions directly to the
previous predictions based quantum Monte Carlo simulations
and have found a good agreement. As the dimension of the
system changes to quasi-2D, the breathing mode decreases in
a non-monotonic way, and towards the 3D regime, it saturates
to the anticipated scaling invariant values, in the case of an
infinite three-dimensional scattering length.

Our results may be quantitatively applicable to the case of
the hard-wall axial confinement, where the density distribution
along the axial direction is more or less uniform. For the case
of an axial harmonic trapping potential, we instead anticipate
that our results provide a good qualitative description, due to
ambiguity in interpreting the length of axial confinement lz. We
are now working on the density equation of state by explicitly
including harmonic trapping in the axial direction, and aim to
provide a more quantitative description.
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APPENDIX: SUM RULE FOR THE BREATHING
MODE FREQUENCY

According to Eq. (33), we need to know 〈ρ2〉 up to any
constant which is not dependent on ω⊥, this comes from the
fact we need to divide the function by its own derivative. We
notice also that we must follow different approaches for the
in-plane and the all-direction LDA schemes.

1. In-plane LDA

In the in-plane LDA we start from Eq. (32) and impose
n2D(ρ) = lzn(ρ), since n(ρ,z) = n(ρ) when z ∈ [−lz/2,lz/2]
and vanishing otherwise. We then apply the LDA and we
require n(ρ) ≡ n[μ(ρ)] where

μ(ρ) = μg − 1
2mω2

⊥ρ2 (A1)

and μg is a constant. Thus we can compute Eqs. (26) and (32)
employing a change of variables from ρ to μ,

− dμ

mω2
⊥

= ρdρ, ρ = 1

ω⊥

√
2

m
(μg − μ), (A2)

with μ(ρ = 0) = μg and μ(ρ = ∞) = −∞. We thus obtain,
from Eq. (26),

Nm

2πlz
ω2

⊥ =
∫ μg

−∞
dμn(μ), (A3)
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which is always convergent, as when μ � −B0/2 we have n =
0. Also to simplify the notation we introduce the constant κp =
Nm/2πlz and a new variable y = κpω2

⊥. From the definition
of the density n(μ) = −∂μ�, we integrate to obtain

y = −�(μg). (A4)

From Eq. (A3) then we can numerically compute the depen-
dence of μg on ω⊥, via the function μg ≡ μg(y). Also by
applying the same change of variable as before, we obtain
from Eq. (32),

〈ρ2〉 ∝ − 1

y2

∫ μg(y)

−∞
dμ�(μ). (A5)

Since we have d/d(ω2
⊥) ∝ d/dy, we obtain

d

dy
〈ρ2〉 ∝ − 2

y
〈ρ2〉 − 1

y2

d

dy

∫ μg(y)

−∞
dμ�(μ). (A6)

We use the fact that � turns out to be always strictly decreasing
monotonically, which means that y is a strictly increasing
monotonic function of μg and we can apply the inverse
derivative theorem globally, i.e.,

d

dy
=

(
dy

dμg

∣∣∣∣
μg(y)

)−1
d

dμg

∣∣∣∣
μg(y)

, (A7)

which gives

d

dy
〈ρ2〉 ∝ − 2

y
〈ρ2〉 + 1

y

1

n[μ(y)]
. (A8)

Finally, due to the proportionality constant κp, we can compute

ω2
B

ω2
⊥

= − 2

y

〈ρ2〉
d〈ρ2〉/dy

=
(

1 − 1

2n[μg(y)]〈ρ2〉
)−1

. (A9)

For a polytropic density equation of state, which takes the
form with the step function �(x),

n(μ) ∝
(

μ + B0

2

)1/γ

�

[
μ + B0

2

]
, (A10)

it is easy to see that

�(μ) ∝
(

μ + B0

2

)(1+γ )/γ

, (A11)

y ∝
(

μg + B0

2

)(1+γ )/γ

, (A12)

〈ρ2〉 ∝
(

μg + B0

2

)(1+2γ )/γ

, (A13)

by using Eqs. (A4) and (A5), respectively. Thus, we obtain

〈ρ2〉 ∝ y−1/(1+γ ). (A14)

Using Eq. (A9) we also arrive at the well-known sum-rule
relation

ω2
B

ω2
⊥

= 2 + 2γ. (A15)

In actual computations, the density equation of state gen-
erally does not follow the idealized polytropic form. Using
the GPF theory as outlined in Sec. II A, we calculate the

thermodynamic function �(μ) for a broad range of values at
a given set of parameters (such as lz and 3D scattering length
a3D), starting from the minimum chemical potential −B0/2
where � = 0. We then compute the quantity y2n[μg(y)]〈ρ2〉,
which is quadratic in y by solving Eq. (A4). We fit the results
with a quadratic function and extract the second order Taylor
coefficient at each y, using this coefficient in Eq. (A9) to
directly obtain ωB/ω⊥. We finally convert the peak density
at the trap center n0 = n[μg(y)] at the given y to the 3D
Fermi momentum at the trap center k3D

F = (3π2n0)1/3 and show
the breathing mode frequency ωB/ω⊥ as a function of the
dimensional parameter k3D

F lz.

2. All-direction LDA

The all-direction LDA mirrors the procedures for the in-
plane LDA case. Again we start from the number equation and
exploit the symmetry in z,

N = 4π

∫ ∞

0
dz

∫ ∞

0
dρ ρ n[μ(ρ,z)], (A16)

where we have assumed

μ(ρ,z) = μg − 1
2mω2

⊥(ρ2 + λ2z2). (A17)

The variables z and ρ span the first quadrant of R2 and such
a surface can be mapped by the polar coordinates ξ ∈ [0,∞]
and ψ ∈ [0,π/2], defined as

ξ 2 = ρ2 + λ2z2, tan ψ = λz

ρ
. (A18)

The number of particles is

Nλ

4π
=

∫ ∞

0
dξ [ξ 2n(ξ )]. (A19)

A change of variables, identical to Eq. (A2), allows us to obtain

y = κcω
2
⊥ = −

∫ μg

−∞
dμ

√
μg − μ

d�

dμ
, (A20)

with

κc = Nωz

2π

(m

2

)3/2
ωz = κp

lzωz

2

√
m

2
. (A21)

By applying lz � √
h̄/mωz, we obtain the ratio κc/κp =

h̄/2
√

2mlz. With a very similar procedure we also compute

〈ρ2〉 ∝ − 1

y2

∫ μg(y)

−∞
dμ

√
μg(y) − μ �(μ) (A22)

and then its derivative

d〈ρ2〉
dy

∝ −2y−1〈ρ2〉 − y−2 d

dy

∫ μg(y)

−∞
dμ

√
μg(y) − μ �(μ).

(A23)

Since μg(y) is a monotonic function of y we can invert the
derivative globally by using Eq. (A7), which introduces the
quantity

I (μg) = dy

dμg

= −
∫ μg

−∞
dμ

√
μg − μ

d2�

dμ2
, (A24)

063622-8



BREATHING-MODE FREQUENCY OF A STRONGLY … PHYSICAL REVIEW A 97, 063622 (2018)

and, as observed before,

d

dμg

∫ μg(y)

−∞
dμ

√
μg − μ �(μ) = −y. (A25)

Similarly to the in-plane LDA case, we have

ω2
B

ω2
⊥

=
(

1 − 1

2I (μg(y))〈ρ2〉
)−1

. (A26)

The computation of the breathing mode frequency in the
all-direction LDA requires a further step. We are going to fit
quadratically the function y �→ y2I (μg(y))〈ρ2〉 and obtain the

second-order Taylor coefficient, as for the in-plane LDA, but
we need to consider an important subtlety: The number of
particles N was hidden by the y variable in both in-plane and
all-direction schemes and these need to be the same in order
to make a consistent comparison in the case of the harmonic
axial trapping potential. Equation (A20) needs to be computed
for a fixed κp and then the ratio κc/κp adjusted according to
the choice of lz we are considering. By doing so we are not
modifying the form of Eq. (A26), but only adjusting μg to the
correct number of particles (which is never explicit but fixed)
in Eq. (A20).
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