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Generating scalable entanglement of ultracold bosons in superlattices through resonant shaking
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Based on a one-dimensional double-well superlattice with a unit filling of ultracold atoms per site, we propose
a scheme to generate scalable entangled states in the superlattice through symmetry-protected resonant lattice
shaking. Our scheme utilizes periodic lattice modulations with a specific two-body exchange symmetry to entangle
two atoms in each unit cell with respect to their orbital degree of freedom, and the complete atomic system in the
superlattice becomes a cluster of bipartite entangled atom pairs. To demonstrate this we perform ab initio quantum
dynamical simulations using the multilayer multiconfiguration time-dependent Hartree method for mixtures,
which accounts for all correlations among the atoms. The proposed clusters of bipartite entanglements manifest
as an essential resource for various quantum applications, such as measurement-based quantum computation. The
lattice shaking scheme to generate this cluster possesses advantages such as a high scalability, fast processing
speed, rich controllability on the target entangled states, and accessibility within current experimental techniques.
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I. INTRODUCTION

Ultracold atoms in optical lattices, which benefit from their
almost perfect decoupling from the environment and their
excellent tunability [1,2], have become a promising platform
for realizing quantum entanglement with related applications,
such as quantum metrology [3] and quantum computation
[4,5]. There have been various protocols for quantum comput-
ing with ultracold atoms, among which the measurement-based
quantum computation (MBQC) [6] is particularly suitable for
lattice atoms. The MBQC is incorporated with two elementary
steps, including the preparation of scalable multiparticle entan-
gled states [7,8] and operations of local quantum gates on the
entangled states. Various generation schemes have been pro-
posed or even experimentally realized for multiparticle entan-
gled states, such as those based on controlled collisions [4,9,10]
and superexchange interactions [11–16], among which the en-
tanglement is mainly encoded into the internal degree of free-
dom (DOF) of the atoms. There is now also a growing interest
to use the orbital DOF [17] of lattice atoms for quantum compu-
tations, which possesses advantages such as insensitivity to ex-
ternal magnetic fluctuations and high controllability by lattice
modulations. Various quantum gate operations have been pro-
posed for the orbital DOF [18–22] and it demands an efficient
scheme to generate scalable multiparticle entangled states with
respect to the orbital DOF to accomplish a complete MBQC.

The orbital DOF has a relatively short coherence time,
mainly due to the spontaneous decay of higher orbitals, and
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schemes involving second-order hoppings become unsuitable
for generating entanglement with respect to the orbital DOF.
Recently, lattice shaking has become a powerful tool to
manipulate ultracold atoms in optical lattices [23–28] and it
offers a direct access to the orbital DOF. Site-resolved lattice
shaking has already been used to design local quantum gates
operating on the orbital DOF [21]. In this work we propose a
lattice shaking scheme, which can efficiently generate scalable
lattice entanglement encoded into the orbital DOF with a
single operation. The generated entangled states can be directly
applied for MBQC, which makes the lattice shaking scheme
an elementary ingredient for MBQC with quantum information
encoded in the orbital DOF.

This paper is organized as follows. In Sec. II we present
the setup under consideration, in Sec. III the preparation
scheme for target entangled states, and in Sec. IV the numerical
method for the simulations. In Sec. V we show the numerical
evidence for the preparation scheme in terms of the validity
and accuracy (Sec. V A), the flexibility (Sec. V B), and the
efficiency (Sec. V C). A brief summary and discussion are
given in Sec. VI.

II. SETUP

We consider a one-dimensional (1D) double-well superlat-
tice loaded with contact interacting bosons, with a unit filling
per site, i.e., two bosons per unit cell. The corresponding
Hamiltonian reads

H0 =
2N∑
i=1

(−h̄2

2M
∂2
xi

+ Vsl(xi)

)
+

2N∑
i<j=1

gδ(xi,xj ), (1)
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which describes 2N atoms of mass M confined in a 1D
double-well superlattice of N unit cells. In Eq. (1), i and j

label the bosons, with the corresponding coordinates denoted
by xi and xj , respectively. The superlattice is given by Vsl(x) =
V0[sin2(kx/2) + 2 cos2(kx)], which can be formed by two
pairs of counterpropagating laser beams of wave vectors k and
k/2, respectively. In this work we consider a deep superlattice
with V0 = 10ER , where ER ≡ h̄2k2/2M is the recoil energy,
and each site possesses at least two well-defined single-particle
states, named the s and the p orbital, with the energy around
8.8ER and 16.4ER , respectively.

III. TARGETED ENTANGLED STATES
AND PREPARATION SCHEME

Employing a corresponding interaction strength, the ground
state of the system is a Mott-like state, in which to a certain
approximation each atom occupies a separate site, residing in
the lowest orbital, i.e., the s orbital of the site. This ground
state can be described as

|G〉 =
N∏

i=1

|s,s〉i , (2)

where |α,β〉i denotes that two atoms occupy the ith unit cell
of the superlattice, one in the α orbital of the left site and the
other in the β orbital of the right site of the cell. The targeted
entangled states are chosen as

|±〉 =
N∏

i=1

1√
2

(|s,p〉i ± |p,s〉i). (3)

Both |+〉 and |−〉 correspond to an entangled state, of which the
two atoms in the same unit cell become entangled with respect
to their orbital DOF, with only one atom in the cell occupying
thep orbital and the other remaining in the s orbital. Residing in
states |±〉, the complete system becomes a cluster of bipartite
entangled pairs in each unit cell. To a good approximation,
|±〉 are degenerate eigenstates of H0 and this ensures that the
system can stay stable in the entangled state after the generation
scheme, which will be of benefit to further operations on the
entangled states, such as the quantum gate operations.

It is natural to think of using resonant shaking to excite |+〉
or |−〉 from |G〉, in which case the shaking frequency matches
the energy difference between |G〉 and |±〉. However, an
intrinsic difficulty of this approach is the degeneracy of |+〉 and
|−〉, which prevents a controllable selective excitation of |+〉,
|−〉, or their on-demand superposition by an arbitrary shaking
potential. To circumvent the degeneracy-induced difficulty,
we exploit a particular two-body exchange symmetry of |G〉
and |±〉 and propose a symmetry-protected resonant shaking
scheme (SPRSS) for the selective excitation of |±〉 from |G〉.
This symmetry is related to the two-body exchange operator
T̂ : x1 ↔ −x2 acting on the two bosons confined in the same
unit cell, where x1 (2) denotes the atomic coordinate with the
origin taken at the center of the cell. It can be proven (see
Appendix A) that T̂ |G〉 = |G〉 as well as T̂ |±〉 = ∓|±〉, and
shaking potentials fulfilling T̂ VsT̂

† = +Vs (T̂ VsT̂
† = −Vs)

can exclusively couple |G〉 to |−〉 (|+〉). Guided by this
symmetry consideration, we have identified two potentials

capable of performing a selective excitation of |±〉:
V +(x,t) = V+ sin(ωt) sin(kx/2),

V −(x,t) = V− sin(ωt) cos2(kx).
(4)

Provided that T̂ V − (+)T̂ † = + (−)V − (+), the resonant shaking
V − (+) can selectively excite the system from |G〉 to |−〉 (|+〉).
Moreover, a combination of V + and V − can generate an
on-demand superposition of |+〉 and |−〉, which resembles a
rotation quantum gate and adds to the flexibility of the SPRSS.
The 1D double-well superlattice and the shaking potentials V ±
are illustrated in Fig. 1.

IV. NUMERICAL METHOD

To demonstrate the validity and efficiency of SPRSS, we
perform ab initio fully correlated numerical simulations of
the dynamical process of shaking. The method applied here
is the multilayer multiconfiguration time-dependent Hartree
method for mixtures (ML-MCTDHX) [29–31], which has been
developed from multiconfiguration time-dependent Hartree
and related methods [32–37] and works equivalently to the
multiconfiguration time-dependent Hartree method for bosons
(MCTDHB) [36–38], when handling a single-species system
of indistinguishable bosons. The ML-MCTDHX accounts for
all correlations among the bosons and can intrinsically take into
account the exact geometry of the 1D superlattice and the parity
of the shaking potentials, which turns out to be essential for the
generation scheme in this work. The atoms in the superlattice
are taken as a closed system, and effects due to finite but
sufficiently low temperature and/or spontaneous emission are
ignored, which, however, we believe will not affect the main
results of this work.

Besides a complete characterization of quantum correla-
tions of the system, the ML-MCTDHX also takes advantage
of the temporal optimization of the Hilbert space truncation to
achieve reliable simulation results. Particularly during shaking,
some highly excited states can be populated through mul-
tiphoton absorption processes and intermediate higher-order
dynamics. Such highly excited states could be easily ignored
by static truncations and it is hard to determine a priori the
Hilbert space truncation with respect to these highly excited
states. The ML-MCTDHX and related methods can avoid, to
a great extent, this danger by the temporal optimization of the
Hilbert space truncation, which could automatically activate
the population of necessary quantum states involved in the
dynamics, as long as the convergence is ensured. This unique
advantage makes the ML-MCTDHX and related methods most
suitable for simulations of quantum dynamics, particularly
under shaking. For more details on the ML-MCTDHX and
its convergence, we refer the reader to Appendixes B and C.

V. NUMERICAL RESULTS

A. Validity and accuracy

We now present evidence for the validity, accuracy, flex-
ibility, and efficiency of the SPRSS with V ± by performing
ab initio simulations via the ML-MCTDHX. Concerning the
validity and accuracy, we mainly focus on two aspects of the
scheme: (i) Within a unit cell the lattice shaking is able to
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FIG. 1. Sketch of (a) the double-well superlattice, (b) the shaking potential of V −, and (c) the shaking potential of V +. In (a), the energy
levels and the profiles of the s and p orbitals are sketched by the blue dotted and cyan dashed lines, respectively. The potentials V − and V + with
the largest shaking amplitudes are shown in (b) and (c), respectively, where it can be seen that V − provides a shaking of the intersite barriers,
whereas V + provides a temporal modulation of the energy offset between the left and right sites in a cell.

transfer the initial state to the targeted entangled state and
(ii) intercell interactions of neighboring cells will not affect
the intracell entanglement. For this purpose, simulations are
performed on a homogeneous double-well superlattices with
N = 1,2,3 unit cells, where the intra- and intercell aspects
concerning the validity of our scheme can be simultaneously
addressed. Periodic boundary conditions are used, which
however do not affect the main results discussed here. To
characterize the outcome of the shaking process, two quan-
tities are analyzed: the fidelity of the targeted eigenstates
f±(t) = |〈±|�(t)〉|2 [39], with |�(t)〉 denoting the total wave
function of the system, and the two-body correlation function
g(2)(x1,x2) = ρ2(x1,x2)/ρ1(x1)ρ1(x2) − 1, with ρ2(x1,x2) and

ρ1(xi) (i = 1,2) denoting the two-body and one-body den-
sities, respectively. The fidelity provides access to the time
evolution of the entangled states during the shaking process,
and the procedure to obtain the fidelity in our analysis is
introduced in Appendix B. The two-body correlation is used
to analyze the generated entangled states, with a focus on the
intercell interaction effects.

Figure 2(a) and 2(b) present the results for the potentials
V + and V − with N = 2 unit cells, respectively. The shaking is
applied to the lattice for a finite time period and is immediately
turned off when the fidelity of the targeted entangled states
reaches a maximum. The profiles of the shaking amplitudes
for V + and V − are shown in the upper panels of Figs. 2(a) and
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FIG. 2. Fidelity of corresponding entangled state as a function of time, under shaking via (a) V + and (b) V −, with (a) showing the profile
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t = 0 h̄/ER , (aii) t = 424 h̄/ER , and (bii) t = 548 h̄/ER , when the shaking has been turned off. The four insets share the same color bar. The
interaction strength is set to g = 2.5 here and in the following figures.
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FIG. 3. Two-body correlation function g(2) of the entangled states generated by shaking V + for (a) a single-cell, (b) a double-cell, and (c)
a triple-cell setup. The spatial interval is set to the range covering a triple-cell lattice for the convenience of comparison and the empty space
in (a) and (b) is simply because the corresponding setup does not cover the related spatial interval.

2(b), respectively. In Fig. 2(a), during the shaking with V +, the
fidelity of |+〉 monotonically increases, reaching a maximum
value. Afterward, the shaking is turned off and the system
remains stable in |+〉. The maximum fidelity of the double-cell
system is around 98.6%, indicating that the system resides
very well in a product state of bipartite entangled states of the
bosonic pairs. The fidelity for the bipartite entanglement in
each supercell is then the square root of that of the double-cell
system, that is, 99.3%. The g(2) function provides a further
indicator of the generation of the entangled states. At the initial
time t = 0 h̄/ER [Fig. 2(ai)], the system resides in |G〉 and
there is no nontrivial correlation but the antibunching of the
atoms in the diagonal blocks indicating the Mott-insulator-like
initial state due to the repulsive contact interaction. At a later
time when the shaking has been turned off, the two atoms in
the same unit cell are entangled, documented by the wings
appearing in the intracell correlation blocks. Meanwhile, the
intercell correlation remains practically zero for the complete
dynamical process, indicating that the intercell influence is
vanishingly small on the intracell entanglement generation.
Similarly, Fig. 2(b) shows the fidelity and the two-body
correlations as a function of time under the lattice shaking
of V −. A maximum fidelity around 98.7% of the bipartite
entanglement in each unit cell is reached. For the two-body
correlations, the expected wings in the intracell correlation
blocks and the vanishing intercell correlations are present.
In total, the fidelities and two-body correlations confirm the
validity and accuracy of the selective entanglement generation
scheme with a lattice shaking of V ±.

To further confirm the validity of the SPRSS in a multicell
system, we extend the simulations to six bosons in three
unit cells to further confirm the vanishing of the intercell
correlations. The g(2) functions for the setup of 2N bosons
in N unit cells with N = 1,2,3 are shown in Fig. 3. In
Figs. 3(a)–3(c) we observe that in the blocks corresponding
to the intracell correlations, almost identical biwing profiles
are present, which indicates the onset of entanglement within
each unit cell. Moreover, the correlations in the intercell blocks
are plain and approaching zero, which further confirms the
vanishingly small intercell coupling between nearest-neighbor
and next-nearest-neighbor cells, supporting the scalability of

the symmetry-protected resonant shaking scheme for entan-
glement generation.

To realize a scalable cluster of bipartite entangled pairs in
a superlattice with more unit cells, a prerequisite is the ho-
mogeneity of the lattice. In experiments, the overall harmonic
confinement would lead to an inhomogeneous lattice and vary
the resonant shaking frequency between unit cells. However,
techniques to compensate for these confinement effects have
been developed [40,41], which can be used to restore the
homogeneity of the superlattice and ensure the scalability of
the lattice shaking scheme.

B. Flexibility

The SPRSS also possesses the flexibility of generating an
on-demand superposition of |±〉 by a combined shaking of V +
and V −. This on-demand generation resembles a rotation gate
and has a potential use for |±〉-based quantum computations.
The generation of an on-demand superposition of |±〉 can
be visualized by the appearance and rotation of a biwing
structure in the profile of the two-body density. Figure 4
presents the two-body density profiles under the combined
shaking V + ± 1.37V − for two bosons in a double-well unit
cell, where the factor 1.37 is due to the fact that under the
same shaking amplitude 〈+|V +|G〉 ≈ 1.37〈−|V −|G〉. The
two-body density shown in Fig. 4(a) [Fig. 4(b)] indicates
that the system resides in a state of (|+〉 ± |−〉)/√2 = |s,p〉
(|p,s〉) by the corresponding combined shaking. These results
exemplify the flexibility of the SPRSS, in terms of generating
an on-demand superposition of |±〉.

C. Efficiency

Two main characteristics of the efficiency of the entangle-
ment generation are the maximum fidelity of the targeted state
and the preparation time to reach the maximum fidelity. We
take the shaking V − as an example and perform simulations
on a single double-well unit cell to investigate the dependence
of these two characteristics on the system parameters, among
which we focus on the shaking amplitude, since the interaction
strength mainly determines how well the whole system resides
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in the Mott-like state |G〉. Figure 5(a) shows the maximum
fidelity and the preparation time as a function of the shaking
amplitude, where as the amplitude increases, the maximum
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FIG. 5. (a) Maximum fidelity (right axis, line with pluses) and
preparation time (left axis, line with circles) as a function of the
shaking amplitude V−. The inset shows the shaking frequency as a
function of the shaking amplitude. (b) Maximum fidelity as a function
of the frequency detuning for a shaking amplitude V− = 0.002 (solid
line) and V− = 0.01 (dotted line).

fidelity and the preparation time both decrease. This can be
understood since increasing the shaking amplitude, on the one
hand, enhances the coupling between |G〉 and |−〉 and reduces
the preparation time. On the other hand, a stronger shaking
also activates eigenstates other than |−〉, which reduces the
maximum fidelity. A further analysis shows that the shaking
amplitude affects the preparation time more sensitively, as
indicated in Fig. 5(a), i.e., when the shaking amplitude in-
creases, for instance, from 0.001 to 0.005, the preparation time
decreases almost by a factor of 5, from 550h̄/ER to 116h̄/ER ,
and the maximum fidelity just decreases slightly from 99.6%
to 96.4%. Figure 5(a) also reflects the robustness of the SPRSS.

The maximum fidelity as a function of the frequency
detuning from the resonant frequency is also an important char-
acteristic, due to the imperfect control of the shaking frequency
in experiments. Figure 5(b) shows this dependence for different
shaking amplitudes. For a stronger shaking amplitude, the
maximum fidelity decreases more slowly with respect to the
frequency detuning. Using the shaking scheme, it is therefore
necessary to find a balance between the required maximum
fidelity and preparation time, in order to optimize the shaking
amplitude accordingly.

VI. CONCLUSION

We have developed and investigated a symmetry-protected
resonant shaking scheme to generate scalable entangled states
encoded within the orbital degrees of freedom of ultracold
atoms in double-well superlattices. This scheme involves a
first-order hopping process induced by a single operation
of lattice shaking, which can significantly simplify the pro-
cedure of generating a cluster of bipartite entangled states.
Moreover, the spatial symmetry of the orbital DOF endows
this scheme with the capability of selective excitation of
degenerate entangled states as well as the tunability to generate
an on-demand superposition of them. The generated cluster of
bipartite entangled states in the complete superlattice mani-
fests as an alternative source for measurement-based quantum
computations, for which various quantum gate operations
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have been proposed [14,18–21]. Inspired by related works
which focus on entangled states encoded in the spin DOF
[16,42,43], the proposed entangled states can also be used
for the investigations of dynamical transport of entanglement
and the test of Bell inequalities. The lattice shaking scheme
can be further optimized by engineering the temporal profile
to increase the fidelity [44] and could also be applied to
two-dimensional optical superlattices [45], where a true cluster
state of maximum entanglement can be generated through
resonant driving.

The orbital DOF also permits flexible manipulation and
detection manners. For instance, direct lattice shaking can
flip the orbitals, resembling the spin flipping through Raman
pulses. Although a direct detection of the orbital state is
difficult, the orbital state can be mapped to internal DOF or site
occupations, for which well-developed techniques are ready
for use. For instance, using spin-dependent superlattices can
realize site- and orbital-resolved spin flipping [46] and map the
orbital DOF to the internal DOF. Alternatively, one can map
the s and p orbitals of one site to the d and f orbitals of the
other site, and a subsequent band mapping [47–49] will count
the particle numbers in different orbitals of the two sites. The
rich manipulation and detection schemes strengthen the orbital
DOF as a candidate in various applications.
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APPENDIX A: SELECTIVE EXCITATION THROUGH
SYMMETRY-PROTECTED RESONANT SHAKINGS

The main goal of this work is to dynamically generate
the targeted entangled states |±〉 from a given initial state
|G〉, of which |±〉 and |G〉 are, to a good approximation, all
eigenstates of the system. It is natural to think of using a
resonant shaking potential to transport the system from the
unentangled initial state to the desired entangled states, of
which the shaking frequency matches the energy difference
between the initial and the targeted states. This scheme,
however, has the intrinsic difficulty that the targeted entangled
states |±〉 are almost degenerate and an arbitrary shaking
fulfilling the resonant condition cannot selectively excite one
of the degenerate entangled states. It is even not guaranteed that
such selective excitation through shaking is always possible.
However, |G〉 and |±〉 possess a spatial two-body symmetry,
which can be utilized to achieve the selective excitation. One
can design particular shaking potentials which also possess this
spatial symmetry and achieve a symmetry-protected selective
excitation of the desired entangled states. In the following we
will focus on two bosons confined in a double-well unit cell
to demonstrate such two-body symmetry-protected selective
excitation.

Let us first look at the wave functions of |G〉 and |±〉 to
gain intuition of the spatial two-body symmetry. The wave
functions of |G〉 and |±〉 for two bosons in a unit cell are
denoted by ψG(x1,x2) and ψ±(x1,x2), respectively, where x1

and x2 are the coordinates of the two bosons in the double-
well unit cell. These functions ψG(x1,x2) and ψ±(x1,x2) are
shown in Fig. 6, in which the origin is set to the center of
the unit cell. One obtains then ψG(x1,x2) = ψG(−x2, − x1),
ψ+(x1,x2) = −ψ+(−x2, − x1), and ψ−(x1,x2) = ψ−(−x2, −
x1), which indicates that all wave functions possess a rotation
symmetry along the line x1 + x2 = 0 in the configuration space
spanned by x1 and x2, i.e., a two-body exchange symmetry
x1 ↔ −x2. Here |G〉 and |−〉 are of parity 1 with respect to
this exchange symmetry, while |+〉 is of parity −1. We define
this two-body exchange as an operator T̂ : xi ↔ −x3−i (i =
1,2), with T̂ |G〉 = |G〉, T̂ |−〉 = |−〉, and T̂ |+〉 = −|+〉. Then
any shaking potential fulfilling the condition of T̂ V T̂ † = +V

(−V ) will selectively couple |G〉 to |−〉 (|+〉). For instance,
given a shaking potential with T̂ V T̂ † = V , we have

〈+|V |G〉 = −〈+|T̂ †)(T̂ V T̂ †)(T̂ |G〉=−〈+|V |G〉= 0 (A1)

and this shaking potential can only couple |G〉 to |−〉 and
realize a selective excitation of |−〉. Similarly, we can prove
that a shaking potential with T̂ V T̂ † = −V can only couple
|G〉 to |+〉 and realize the selective excitation of |+〉. It can
be verified that the shaking potentials V + and V − fulfill
the conditions T̂ V +T̂ † = −V + and T̂ V −T̂ † = V −, which
enables for V + and V − the selective excitation of |+〉 and
|−〉, respectively.

Above we have provided an intuitive approach to the two-
body exchange symmetry for |G〉 and |±〉. This can be done
more rigorously by analyzing the analytical form of the wave
functions. Approximating each well as a harmonic trap, we can
write the wave functions as

ψG(x1,x2) = α

π1/2
e−α2[(x1−xL)2+(x2−xR )2]/2 + (x1 ↔ x2),

ψ+(x1,x2) =
√

2α

π1/2
(x1 + x2)e−α2[(x1−xL)2+(x2−xR )2]/2

+ (x1 ↔ x2),

ψ−(x1,x2) =
√

2α

π1/2
(x1 − x2)e−α2[(x1−xL)2+(x2−xR )2]/2

+ (x1 ↔ x2). (A2)

In Eqs. (A2), xL and xR refer to the local minimum in the left
and right wells, respectively, and xL = −xR . In addition, α ≡√

ω0/h̄ is the normalization factor, with ω0 being the effective
confining frequency of the left and right well. Further, (x1 ↔
x2) denotes the permutation of x1 and x2 in the related wave
function. The wave functions in Eqs. (A2) directly give T̂ |G〉 =
|G〉 and T̂ |±〉 = ∓|±〉 in deep lattices.

APPENDIX B: ANSATZ AND ANALYSIS
OF THE ML-MCTDHX

To demonstrate the validity of the resonant shaking scheme,
we perform ab initio numerical simulations of the dynam-
ical process of shaking. The method applied here is the
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FIG. 6. Wave function of two bosons in a double-well unit cell, in the eigenstates (a) |G〉, (b) |−〉, and (c) |+〉. The origin is chosen to be
the center of the unit cell. The dotted lines in the figures indicate the rotation axis of T̂ .

ML-MCTDHX. The ML-MCTDHX accounts for all correla-
tions among the bosons and can intrinsically take into account
the exact geometry of the 1D superlattice and the parity of
the shaking potentials, which turns out to be essential for the
generation scheme in this work. The atoms in the superlattice
are taken as a closed system and effects due to finite but
sufficiently low temperature and/or spontaneous emission are
ignored, which, however, we believe will not affect the main
results of this work.

In simulating the shaking dynamics in this work, the first
step of the method is to construct a set of single-particle
basis functions of the discrete-variable representation (DVR)
type. In our simulations, we adopted the exponential DVR
[32], which corresponds to discretizing the continuous interval
[xi,xf ] into a set of grid points {xi + (n − 1)δx}|Gn=1, with δx =
(xf − xi)/(G − 1). Each grid point, e.g., x, is associated with
a DVR basis function φ(x), which approximates a δ function
located at the grid point x. The corresponding annihilation
(creation) operator φ̂(x) [φ̂†(x)] then denotes annihilating
(creating) a boson at the corresponding grid point. When the
set of grid points is sufficient dense, it can well approximate
the continuous space.

In the next step, we assign to the identical bosons
a set of time-dependent single-particle functions (SPFs)
{|ψi(x,t)〉}|mi=1 and each SPF is associated with an annihilation
(creation) operator {âi} ({â†

i }) as

âi =
∑

x∈[xi ,xf ]

ψi(x,t)φ(x),

â
†
i =

∑
x∈[xi ,xf ]

ψi(x,t)φ†(x).
(B1)

The SPFs span a set of Fock states for the 2N bosons confined
in a superlattice with N unit cells {|
n〉 = |(n1,n2, . . . ,nm)〉},
with ni denoting the occupation of the ith SPF and n1 + n2 +
· · · + nm = 2N . The Fock state |
n〉 is defined in the standard
second-quantization manner

|
n〉 =
√

1

n1!n2! · · · nm!

∏
i∈[1,m]

(â†
i )ni |vac〉, (B2)

where |vac〉 denotes the vacuum state.

Then the total wave function of the system becomes

|�(t)〉 =
∑


n
C
n(t)|
n〉. (B3)

Equations (3)–(5) constitute the complete wave-function
ansatz of the ML-MCTDHX. Substituting the ansatz into
the Dirac-Frenkel variational principle, we can obtain the
equations of motion for the total wave function and resultingly
the time evolution of the system.

In our analysis, besides the g(2) function, we mainly rely
on the projection of the total wave function |�(t)〉 to different
eigenstates |〈α|�(t)〉|2, where |α〉 denotes the eigenstates of
our interest, e.g., |G〉 and |±〉. The projection is calculated
with the following procedure. First we define a set of time-
independent single-particle functions, which are normalized
and orthogonal to each other. This set of single-particle
functions spans a set of time-independent Fock states |
n〉s . We
can then project the total wave function |�(t)〉 and |α〉 to the
time-independent Fock basis and further obtain the projection
of |�(t)〉 to |α〉 as

〈α|�(t)〉 =
∑


n
〈α|
n〉s〈
n|�(t)〉. (B4)

A sufficient condition for the validity of Eq. (B4) is that
|�(t)〉 and |α〉 lie within the Fock basis spanned by the time-
independent single-particle functions, i.e.,

∑

m |s〈 
m|�〉|2 ≈

1 and
∑


m |s〈 
m|α〉|2 ≈ 1. This sufficient condition is well
checked and fulfilled in our analysis. A further comment on
the choice of the time-independent single-particle functions is
that these functions can be chosen as the Wannier states or
the eigenstates of a single particle in the superlattice and our
experience shows that the latter provides a better performance.
This is due to the fact that the practical definition of Wannier
functions suffers intrinsic uncertainties, which could lead to
false fluctuations in the projection analysis, while the eigen-
states of single particles are obtained by direct diagonalization
and are more robust.

APPENDIX C: CONVERGENCE

The ML-MCTDHX manifests itself as an ab initio numer-
ical method for many-body quantum systems and it takes into
account all quantum correlations within the system. Assuming
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FIG. 7. Fidelity of |〈+|�(t)〉|2 under shaking V + for two bosons
in a double-well unit cell, with G = 41 (blue solid line), G = 81 (red
dot-dashed line), and G = 161 (cyan dashed line). The upper panel
shows the temporal profile of the shaking amplitude.

convergence, the ML-MCTDHX provides the numerically
exact dynamical process of the system in consideration. The
convergence of the simulation is mainly determined by the
two control parameter in the wave-function ansatz, namely,
the number of grid points G and the number of SPFs m. In the
setup, G should be large enough for the discrete grid points
to well approximate the continuous space. The size of SPFs
m must be sufficiently large to well characterize the quantum
correlations of the system.

To determine the convergence in terms of G, we can directly
compare the numerical results for different G. Convergence
is reached if the results remain, to some desired precision,
the same as G increases. Figure 7 compares the temporal
evolution of the fidelity of |〈+|�(t)〉|2 under the shaking V +
in a single double-well unit cell with G = 41, 81, and 161. It
can be seen that the curves for different G almost lie on top
of each other, which indicates a good convergence for using
41 grid points per unit cell, which is what we apply in our
simulations.

It is also important to verify the convergence in terms of the
number of SPFs, which demonstrates how accurately quantum
correlations are taken into account. A well-accepted strategy
to verify the convergence with respect to m is through the
natural population of the system. More specifically, the one-
body density matrix is calculated during the dynamics and is
diagonalized to obtain the so-called natural orbitals and natural
populations, which are the eigenstates and corresponding
eigenvalues of the one-body density matrix, respectively. A
signature of convergence with respect to m is that the lowest
natural populations in the dynamical process are close to zero,
which indicates that abundant SPFs have been supplied for the
calculation and quantum correlations are adequately taken into
account. For this purpose, we calculate the natural populations
during the shaking dynamics of two bosons in a single unit cell
[Fig. 8(a)] with m = 4 and 6, as well as those of four bosons
in two cells with m = 8 and 12 [Fig. 8(b)]. Comparing the
natural populations for m = 4 and 6 in Fig. 8(a), one can see
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FIG. 8. Temporal evolution of the natural populations in (a) the
single-cell and (b) the double-cell setup. In the single-cell case, m = 4
and m = 6, and in the double-cell case, m = 8 and m = 12 are used
for comparison.

that only four natural orbitals are significantly occupied and
the natural populations of the remaining two natural orbitals
are very small. The natural-population profiles of the occupied
natural orbitals in the setup of m = 6 lie on top of the profiles of
the corresponding natural populations of the setup for m = 4,
despite numerical fluctuations. Both indicate that it is sufficient
to supply four SPFs for a single-cell simulation. In Fig. 8(b) we
observe a similar temporal behavior of the natural populations,
which indicates that eight SPFs are sufficient for four bosons in
two double-well unit cells. The convergence diagnosis in both
the single and the double unit-cell setups indicates that four
SPFs per unit cell can give very-well-converged results for the
dynamics. Nevertheless, in the simulations shown in the main
text for setups of single and double unit cells, we employ six
SPFs per unit cell to obtain a higher precision. Only in the
simulation with three unit cells, we employ four SPFs per unit
cell.
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