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Floquet topological phases in a spin-1/2 double kicked rotor
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The double kicked rotor model is a physically realizable extension of the paradigmatic kicked rotor model in
the study of quantum chaos. Even before the concept of Floquet topological phases became widely known, the
discovery of the Hofstadter butterfly spectrum in the double kicked rotor model [J. Wang and J. Gong, Phys.
Rev. A 77, 031405 (2008)] already suggested the importance of periodic driving to the generation of Floquet
topological matter. In this work, we explore Floquet topological phases of a double kicked rotor with an extra
spin-1/2 degree of freedom. The latter has been experimentally engineered in a quantum kicked rotor recently
by loading 87Rb condensates into a periodically pulsed optical lattice. Theoretically, we found that under the
on-resonance condition, the spin-1/2 double kicked rotor admits rich topological phases due to the interplay
between its external and internal degrees of freedom. Each of these topological phases is characterized by a pair
of winding numbers, whose combination predicts the number of topologically protected zero and π -quasienergy
edge states in the system. Topological phases with arbitrarily large winding numbers can be easily found by tuning
the kicking strength. We discuss an experimental proposal to realize this model in kicked 87Rb condensates, and
suggest detecting its topological invariants by measuring the mean chiral displacement in momentum space.
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I. INTRODUCTION

A topological characterization of a quantum chaos model,
the so-called kicked-Harper model by Leboeuf et al. [1],
pioneered the use of periodic driving fields to create topological
phases of matter absent in time-independent systems. Though
there was a proposal [2] to physically realize a class of
kicked-Harper models, there are still no actual experimental
activities yet on the kicked-Harper model. Along another
avenue, by extending the paradigmatic kicked rotor model
in the study of quantum chaos [3–11], Wang and Gong [12]
discovered Hofstadter’s butterflylike Floquet spectrum [13] in
the so-called double kicked rotor model that was already under
intense experimental studies [14–16] . The finding by Gong and
Wang [12] strongly suggested that such periodically driven
systems are topologically rich and should be highly useful
as dynamical systems to explore condensed-matter physics.
Indeed, their work has led to the proposal of a topological
Thouless pump in momentum space [17], the proof of the
topological equivalence between the double kicked rotor model
and the kicked-Harper model [18–20], and the identification of
many topological edge states in both of the two models [21].

To date, Floquet topological states of matter have been
well recognized as a promising concept and a fruitful topic.
Floquet states, being intrinsically out of equilibrium, can
be engineered to carry topological properties that are either
analogous to [22–34], or even beyond their static cousins
[35–47]. The latter includes, but is not limited to, degener-
ate π -quasienergy edge states [36–39], counterpropagating
[40–42] and anomalous chiral edge states [43,44] in both
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insulating [45] and superconducting [46] band structures,
leading to new types of topological classification schemes
and bulk-boundary relations [47–51]. Accompanying great
theoretical efforts in exploring these intriguing features [52],
Floquet topological states have also been observed in several
experimental settings, including ultracold atom [53], photonic
[54–56], phononic and acoustic systems [57].

Motivated by recent experimental advances [58–61], here
we continue to explore Floquet topological phases in the
context of the double kicked rotor model. The Hamiltonian
of an earlier quantum double kicked rotor (DKR) model [12],
which can be realized by cold atoms subjected to pairs of pulses
in an optical lattice [14–16], is given by

Ĥ = p̂2

2
+ κ1 cos(x̂)

∑
m

δ(t − mT )

+ κ2 cos(x̂ + β)
∑
m

δ(t − mT − τ ). (1)

The stroboscopic dynamics of the system is governed by
its evolution operator over one δ-kicking period T , i.e., the
Floquet operator

F̂ = e−i(T −τ ) p̂2

2h̄ e−i
κ2
h̄

cos(x̂+β)e−iτ
p̂2

2h̄ e−i
κ1
h̄

cos(x̂). (2)

Here all quantities are in dimensionless units. x̂ and p̂ are
position and momentum operators for cold atoms. β is the
phase shift between two kicking optical lattice potentials of
strengths κ1 and κ2, separated by a time delay τ ∈ (0,T ). Due
to the spatial periodicity of kicking potentials, the momentum
p̂ take values p = (n + η)h̄, where η ∈ (0,1) is the conserved
quasimomentum and n ∈ Z. For a Bose-Einstein condensate
(BEC) of large coherence width [9,62], η can be set to zero,
and p̂ = n̂h̄ only takes integer multiples of Planck constant h̄.
Then under the on-resonance condition [9,10,62] h̄T = 4π ,
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the quantum DKR has a Hofstadter’s butterflylike quasienergy
spectrum [13], characterized by fruitful topological band-gap
structures and consecutive topological phase transitions versus
the change of the system’s effective Planck constant h̄ [12].

In this work, we take one step further in the study of
DKR by considering an internal spin-1/2 degree of freedom.
The Floquet operator of such a spin-1/2 double kicked rotor
(DKRS) is given by

Û = e−i(T −τ ) p̂2

2h̄ e−i
κ2
h̄

cos(x̂+β)σy e−iτ
p̂2

2h̄ e−i
κ1
h̄

cos(x̂)σx , (3)

where σx,y,z are Pauli matrices acting on internal spin space
of the rotor. More specifically, in the case of quasimomentum
η = 0 [9,62], time delay τ = T/2, and under on-resonance
condition [11,62] h̄τ = 4π , the Floquet propagator of DKRS
reduces to

Û = e−iK2 cos(x̂+β)σy e−iK1 cos(x̂)σx , (4)

where K1,2 = κ1,2/h̄ are rescaled kicking strengths. In the
following, we will first discuss a possible way of engineering
the on-resonance DKRS (ORDKRS) described by Eq. (4) in
a periodically pulsed BEC, thanks to a recent experimental
realization of quantum walks in momentum space [58,59].
Next, we will explore the rich topological phases of ORDKRS.
Finally, we suggest to probe bulk topological invariants of
ORDKRS by measuring the mean chiral displacement of a
wave packet over tens of kicks, which is also experimentally
available in both photonic [60] and cold atom [61] systems.

Before closing this section, we would like to point out that
one may understand the time evolution operator depicted in
Eq. (4) out of the kicked rotor context. For example, it can
be interpreted as a Floquet operator of a periodically quenched
lattice system with internal degrees of freedom. We shall return
to this point later.

II. REALIZATION OF THE ORDKRS

The formalism of ORDKRS as described by Eq. (4) is
inspired by a recent experiment, which realizes discrete time
quantum walks in momentum space with a BEC of 87Rb
[58,59]. The experimental platform is sketched in Fig. 1 of
Ref. [58]. Each step of the quantum walk is composed of two
consecutive operations. First, a resonant microwave is applied
to the 87Rb condensate, which introduces a rotation within the
two-state space of its ground hyperfine levels 5 2S1/2F = 1 and
5 2S1/2F = 2. This realizes a “coin toss” described by [58,59]

M (α,χ ) = e−i α
2 [sin(χ)σx−cos(χ)σy ], (5)

where σx,y,z are Pauli matrices acting on the internal two-state
space and the rotation angles α,χ are controllable experi-
mentally. Next, the BEC is subjected to a short laser pulse,
whose frequency is detuned from the frequency between the
two hyperfine levels, realizing the far off-resonant condition
and producing periodic potentials. This step employs the
atom-optical realization of the quantum kicked rotor (ratchet

accelerator) with a kicking strength k = �2τp

�
, where � is the

Rabi frequency, τp is the pulse length, and � is the detuning of
laser light from the atomic transition. Notably, the detuning �

is positive for the state 5 2S1/2F = 1 and negative for the state
5 2S1/2F = 2 of 87Rb. Then under the quantum on-resonance
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FIG. 1. Floquet topological phase diagram of the ORDKRS ÛR

versus kicking strengths (K1,K2). Red solid (blue dashed) lines
are phase boundaries, where the Floquet spectrum gap close at
quasienergy 0 (π ). Each closed patch corresponds to a unique topo-
logical phase, characterized by a pair of winding numbers (W0,Wπ )
deduced from Eq. (14), as denoted in the figure for some representative
phases.

condition [58,59] (corresponding to the choice h̄τ = 4π in
our model), the second operation in a quantum walk step is
described by a propagator [63]

T = e−iK cos(x̂)σz , (6)

where K = �2τp

|�| is the absolute value of kicking strength. The
coupling between the internal degrees of freedom (hyperfine
levels F = 1,2) and the external motion (hopping in momen-
tum space) is realized by the term cos(x̂)σz.

The successful implementations of coin toss operation
M (α,χ ) and spin-dependent walk T in kicked BECs set the
starting point for the realization of an ORDKRS as described
by Eq. (4). To see this, we rewrite the Floquet operator of
ORDKRS as

Û = V̂2V̂1, (7)

where V̂1 = e−iK1 cos(x̂)σx and V̂2 = e−iK2 cos(x̂+β)σy . Then each
of these two propagators can be realized by proper combina-
tions of coin toss and spin-dependent walk operations:

V̂1 = e−iK1 cos(x̂)σx = M
(
−π

2
,0

)
T1M

(π

2
,0

)
, (8)

V̂2 = e−iK2 cos(x̂+β)σy = M
(
−π

2
,
π

2

)
T2M

(π

2
,
π

2

)
, (9)

where T1 = e−iK1 cos(x̂)σz and T2 = e−iK2 cos(x̂+β)σz are two
spin-dependent walks. The different kicking strengths K1,2 =
�2

1,2τp/|�1,2| may be realized by letting the two walks have
either a different Rabi frequency �1 �= �2 or a different
detuning |�1| �= |�2|. Putting together, the Floquet opera-
tor of ORDKRS is realized by a sequence of operations
as Û = M (−π

2 , π
2 )T2M ( π

2 , π
2 )M (−π

2 ,0)T1M ( π
2 ,0). Since

each substep in this sequence is already realized in the quantum
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walk experiment of 87Rb condensates [58,59], the realization of
ORDKRS as described by Eq. (4) should already be available
in the same experimental setup or other similar platforms.

To further motivate experimental interests, we will analyze
the topological properties of ORDKRS in the following sec-
tions. To be more explicit, we choose the phase shift between
the two kicks to be β = −π

2 in Eq. (4). This gives us the
following Floquet operator of an ORDKRS:

ÛR = e−iK2 sin(x̂)σy e−iK1 cos(x̂)σx . (10)

As will be shown theoretically, this system possesses rich
Floquet topological phases, with their topological winding
numbers detectable by measuring momentum distributions of
the system over tens of driving periods.

Note in passing that by choosing the initial state to be
a coherent superposition of several momentum eigenstates
[58,59], the Floquet operator ÛR may also be used to engineer
a split step quantum walk in the momentum space of BECs,
whose topological properties have been thoroughly explored
in previous studies [64]. Compared with the split step quantum
walk, the ORDKRS introduced here admits a richer topological
phase diagram, with the possibility to access phases with large
topological invariants.

III. TOPOLOGICAL PHASES OF THE ORDKRS

Similar to their static cousins [65], single-particle Floquet
topological phases in one dimension are all symmetry pro-
tected [50]. The Floquet operator ÛR , as defined in Eq. (10),
possesses a chiral symmetry. Its topological phases are then
characterized by a pair of integers (Z × Z), defined in two
complementary chiral symmetric time frames [48]. These inte-
gers predict the number of degenerate zero- and π -quasienergy
edge states in the two spectrum gaps of ÛR , respectively. These
will be demonstrated in the following subsections.

A. Chiral symmetric time frame and topological
winding number

The chiral symmetry of ÛR is most clearly seen by trans-
forming it into two chiral symmetric time frames [48], in which
it has the following forms:

Û1 = e−i
K1
2 cos(x̂)σx e−iK2 sin(x̂)σy e−i

K1
2 cos(x̂)σx , (11)

Û2 = e−i
K2
2 sin(x̂)σy e−iK1 cos(x̂)σx e−i

K2
2 sin(x̂)σy . (12)

It is seen that both Û1 and Û2 are related to ÛR by unitary
transformations, meaning that they all share the same Floquet
quasienergy spectrum. Furthermore, both Û1 and Û2 possess
the chiral symmetry as

Û1 = Û
†
1 , Û2 = Û

†
2 ,  = σz. (13)

Here the chiral symmetry operator  is both Hermitian and
unitary, i.e.,  = † = −1. Based on the Periodic Table of
Floquet topological states [50], each phase of ÛR is then
characterized by a pair of integer winding numbers (W0,Wπ ) ∈
Z × Z [48], given by

W0 = W1 + W2

2
, Wπ = W1 − W2

2
, (14)

where W1 and W2 are winding numbers of Floquet operators
Û1 and Û2, respectively. The winding numbers (W0,Wπ ) allow
us to achieve a full classification of the topological phases of
ÛR , as will be discussed in Sec. III B.

To compute these winding numbers for each Floquet topo-
logical phase, we rewrite Û� (� = 1,2) by combining its three
pieces. In the position representation {|θ〉|θ ∈ [−π,π )}, we
then have Û� = ∑

θ |θ〉〈θ |e−iE(θ)n�·σ . The quasienergy bands
are ±|E(θ )| (see Appendix A for more details), with

E(θ ) = arccos[cos(K1) cos(K2)], (15)

where K1 ≡ K1 cos θ and K2 ≡ K2 sin θ . The vector of ma-
trix σ = (σx,σy) and the two-component unit vectors n� =
(n�x,n�y) for � = 1,2 are explicitly given by

n1x = sin(K1) cos(K2)√
sin2(K1) cos2(K2) + sin2(K2)

, (16)

n1y = sin(K2)√
sin2(K1) cos2(K2) + sin2(K2)

, (17)

and

n2x = sin(K1)√
sin2(K1) cos2(K2) + sin2(K2)

, (18)

n2y = sin(K2) cos(K1)√
sin2(K1) cos2(K2) + sin2(K2)

, (19)

Using these vectors, the winding number W� of Floquet
operator Û� [60] can be computed as

W� =
∫ π

−π

dθ

2π
(n� × ∂θn�)z, � = 1,2. (20)

As evidenced by this expression, the winding number W�

counts the number of times that the unit vector n� rotates around
the z axis when θ changes over a period from −π to π . Thanks
to the chiral symmetry of Û�, the vector n� is constrained to
rotate on the x−y plane, ensuring W� to be a well-defined
integer. Furthermore, the quantization of the winding number
W� is topologically protected, since W� cannot change its
value under continuous deformations of the trajectory of n� on
the x−y plane. The topological property of winding numbers
(W0,Wπ ) are then carried over from winding numbers W1 and
W2 through Eq. (14).

B. Topological phase diagram

If the trajectory of vector n� on the x−y plane happens
to pass through the origin of z axis at some critical value
θ = θc, the quasienergy bands ±|E(θ )| will become gapless.
This situation indicates the breakdown of the winding number
definition (20) and the existence of a possible topological phase
transition specified by its corresponding kicking strengths
(K1c,K2c). The collection of all these transition points on the
plane of parameter space (K1,K2) forms the boundary between
different Floquet topological phases of the ORDKRS.

To locate these phase boundaries, we note that being a
phase factor defined modulus 2π , the quasienergy spectrum
has in general two gaps at both quasienergies 0 and π ,
respectively. The closure of a spectrum gap in E(θ ) then
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corresponds to either E(θ ) = 0 or E(θ ) = π , which means that
cos(K1) cos(K2) = ±1 in Eq. (15), respectively. This condition
can be met if and only if K1 cos θ = μπ and K2 sin θ =
νπ , where ν,μ are both integers. The combination of these
conditions yields the following equation for the topological
phase boundaries of ÛR:

μ2

K2
1

+ ν2

K2
2

= 1

π2
, μ,ν ∈ Z. (21)

Following their experimental definitions, we focus on the
regime of positive kicking strengths K1,K2 > 0. In this regime,
the phase boundaries can be classified into three groups based
on the value of integers (μ,ν).

(i) μ = 0. In this case, the phase boundaries K2 = νπ

(ν = 0,1,2, . . .) are straight lines in parallel with the K1 axis
on the K1−K2 plane. Furthermore, when ν is an odd (even)
integer, the Floquet spectrum gap will close at quasienergy π

(zero). The corresponding topological phase transition is only
accompanied by the change of winding number Wπ (W0).

(ii) ν = 0. In this case, the phase boundaries K1 = μπ

(μ = 0,1,2, . . .) are straight lines in parallel with the K2 axis
on the K1−K2 plane. Furthermore, when μ is an odd (even)
integer, the Floquet spectrum gap will close at quasienergy π

(zero). The corresponding topological phase transition is only
accompanied by the change of winding number Wπ (W0).

(iii) μ,ν �= 0. In this case, the phase boundary curves

are described by the equation K2
π

= ν(1 − μ2

K2
1 /π2 )

−1/2
, with

positive solutions only for K1 > μπ . Furthermore, when μ,ν

have the opposite (same) parities, the Floquet spectrum gap
will close at quasienergy π (zero) along the phase boundary
curve. The corresponding topological phase transition is only
accompanied by the change of winding number Wπ (W0).

Combining points (i)–(iii) together with winding numbers
calculated from Eq. (14), we are able to achieve a full
topological classification of the ORDKRS as described by the
Floquet operator ÛR in Eq. (10). A topological phase diagram
of the system up to K1 = K2 = 5π is shown in Fig. 1. On the
phase diagram, each closed patch is characterized by a pair of
winding numbers (W0,Wπ ).

In Ref. [21], a phase diagram with similar phase boundaries
is found in a spinless DKR model under a different
on-resonance condition. Notably, the topological phase
in each patch of that phase diagram is characterized by
different winding numbers from that of the ORDKRS studied
here. This difference comes from distinct winding behaviors
of the vector n� in the two models, even though they share the
same Floquet spectrum.

Furthermore, in the region (K1,K2) ∈ (0,π ) × (0,∞)
[(K1,K2) ∈ (0,∞) × (0,π )], the winding numbers W0 and Wπ

both tend to grow linearly along the direction of K2 (K1)
axis without bound (see Appendix B for an illustration). This
result mimics the change of quantum Hall resistance (here
the winding number) with the increase of a magnetic field
(here the kicking strength) in quantum Hall effects [6,66].
A similar pattern is also observed in the phase diagram of
the spinless DKR studied in Ref. [21]. The possibility of
accessing phases with arbitrarily large winding numbers in
the ORDKRS makes it a good candidate to explore Floquet
states and phase transitions in the regime of large topological

invariants, which is usually absent in other experimentally
realized one-dimensional Floquet systems like the split step
quantum walk [64].

In the next subsection, we will explore the relation between
the winding numbers of ÛR and the number of its topological
edge states in a finite-size momentum space lattice.

C. Bulk-boundary correspondence

The Floquet operator ÛR = e−iK2 sin(x̂)σy e−iK1 cos(x̂)σx can be
written in momentum representation [21] as

ÛR = e−iK2
∑

n
1
2i

(|n〉〈n+1|−H.c.)σy e−iK1
∑

n
1
2 (|n〉〈n+1|+H.c.)σx , (22)

where the momentum basis {|n〉|n ∈ Z} satisfies the eigenvalue
equation n̂|n〉 = n|n〉, with n̂ being the dimensionless momen-
tum operator as discussed in Sec. I. This result can be obtained,
e.g., by first writing K1 cos(x̂)σx in position representation
as K1

∑
θ

eiθ +e−iθ

2 |θ〉〈θ |σx , and then performing a Fourier
transform from position to momentum representation as |θ〉 =

1√
N

∑ N
2 −1

n=− N
2

einθ |n〉 under the periodic boundary condition

|n〉 = |n + N〉. Expressed in the form of Eq. (22), ÛR admits
an interpretation of two consecutive kicks by momentum
space tight-binding lattices on a spin-1/2 particle. If an open
boundary condition can be introduced into this momentum
space lattice, there will be topological edge states localized
around its boundaries if the kicking strengths (K1,K2) reside
in a topologically nontrivial patch of the phase diagram.
This is guaranteed by the bulk-boundary correspondence of
chiral symmetric Floquet systems [48]. More precisely, the
absolute value of winding number W0 (Wπ ) gives the number
of degenerate edge state pairs at quasienergy zero (π ) in the
momentum space lattice.

An illustration of this bulk-boundary relation is given in
Fig. 2. The panel (a) of Fig. 2 shows the spectrum of ÛR at a
fixed value of the first kicking strength K1 = 0.5π under open
boundary conditions. With the change of the second kicking
strength K2, the system undergoes two topological phase
transitions, with quasienergy gap closing at π (zero) for K2 =
π (K2 = 2π ). These transitions separate the system in the
considered range of parameters into three different topological
phases, characterized by winding numbers (W0,Wπ ) = (1,0),
(1,2), and (3,2) (see also Fig. 1). These numbers correctly pre-
dict the number of zero- and π -quasienergy edge state pairs in
these three topological phases, as exemplified by panels (b) to
(d) of Fig. 2. On the other hand, by counting the number of zero
and π edge state pairs in Figs. 2(b)–2(d), we can also obtain
the winding numbers (W0,Wπ ) for each topological phase. This
concludes the verification of bulk boundary correspondence in
the chiral symmetric ORDKRS system.

As a notable feature of Fig. 2(a), there are regions in which
the zero and π quasienergy edge states coexist at the same
system parameters [see Fig. 2(c) or 2(d) as an example]. In a
recent study [67], it was shown that a superposition of zero
and π edge states form a new type of symmetry protected
discrete time crystal phase, which is further used to propose
a new approach to non-Abelian braiding and topological
quantum computing in a superconducting Floquet system. The
unbounded growth of winding numbers in the phase diagram
Fig. 1 then implies the possibility of finding an arbitrarily
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FIG. 2. Bulk-boundary correspondence of the ORDKRS. Panel
(a): Floquet spectrum E of ÛR versus K2 at K1 = 0.5π , for a
momentum space lattice of N = 20 unit cells under open bound-
ary conditions. Three topological phases with winding numbers
(W0,Wπ ) = (1,0), (1,2), and (3,2), as denoted on the figure, are
separated by two transitions at K2 = π,2π (dashed lines). Panel
(b): Floquet spectrum E at K2 = 0.5π . There is a pair of zero-
quasienergy edge states, corresponding to W0 = 1. Panel (c): Floquet
spectrum E at K2 = 1.5π . There is a pair of zero- and two pairs of
π -quasienergy edge states, corresponding to W0 = 1 and Wπ = 2.
Panel (d): Floquet spectrum E at K2 = 2.5π . There are three pairs of
zero- and two pairs of π -quasienergy edge states, corresponding to
W0 = 3 and Wπ = 2.

large number of zero and π quasienergy edge states at the
same parameter of the ORDKRS, and therefore the potential
of engineering many different Floquet time crystal phases [68]
in this system by superposing these edge states.

Experimentally, Floquet edge states between systems with
different bulk topological properties have been observed in
photonic quantum walks [54]. However, for the ORDKRS
defined in a momentum lattice as Eq. (22), it may not be easy
to engineer a boundary between different momentum space
regions. However, we stress again that our model as depicted
by Eq. (22) may also be interpreted as a tight-binding lattice
quenched two times in a driving period. In this case, the site
index n in Eq. (22) becomes a discrete lattice coordinate in
position space, and σx,y still denote internal degrees of freedom
like spins or sublattices. The ORDKRS described by Eq. (22)
may then be realized in photonic or cold atom systems, where
direct imaging of its topological edge states is possible [54,69].

In the next section, we discuss an alternative way of detect-
ing topological winding numbers of the ORDKRS by directly
imaging the momentum distribution of a wave packet [61],
which is available in kicked BEC experimental setups [58].

IV. PROBING BULK TOPOLOGICAL PROPERTIES
OF THE ORDKRS

The topological winding numbers of a one-dimensional
chiral symmetric system can be detected by measuring the
mean chiral displacement (MCD) of a wave packet [60,61].

Formally, it is the expectation value of chiral displacement
operator Ĉ(t) = Û †(t)n̂Û (t) at some time t of the system’s
unitary evolution Û (t). For the ORDKRS, n̂ and  = σz repre-
sent the quantized momentum and chiral symmetry operators,
respectively. Therefore, the MCD of ORDKRS is just a signed
momentum distribution, with the extra sign originating from
the chiral symmetry. For the system of 87Rb BECs prepared in
the state |ψ0〉 = |n = 0,52S1/2F = 1〉 or |n = 0,52S1/2F = 2〉
of the (n = 0)-momentum sector at time t = 0, the MCD after
t driving periods reads

C�(t) = 〈ψ0|Û−t
� (n̂ ⊗ σz)Û

t
� |ψ0〉, (23)

where the Floquet operators Û� (� = 1,2) are given by Eqs. (11)
and (12). Further calculations lead to (see Appendix C for
details)

C�(t) = W�

2
−

∫ π

−π

dθ

2π

cos[E(θ )t]

2
(n� × ∂θn�)z, � = 1,2.

(24)

Here W� is the winding number of Û� given by Eq. (20). E(θ )
is given by Eq. (15) and the components of unit vector n� are
given by Eqs. (16)–(19). As can be seen, C�(t) contains a time-
independent topological part W�

2 and an extra time-dependent
oscillating term. For a not-too-flat E(θ ), the oscillating term
will tend to vanish for large t under the integral over θ . A bit
more rigorously, the C�(t) averaged over t driving periods, i.e.,

C�(t) ≡ 1

t

t∑
t ′=1

C�(t ′)

= W�

2
− 1

t

t∑
t ′=1

∫ π

−π

dθ

2π

cos[E(θ )t]

2
(n� × ∂θn�)z, (25)

will gradually converge to half of the winding number W� with
the increase of t . Once W1

2 and W2
2 are obtained from the time-

averaged MCD, the winding numbers (W0,Wπ ) characterizing
topological phases of the ORDKRS can be calculated by
Eq. (14).

In Fig. 3, we present numerical results of C�(t) along two
different trajectories in the K1−K2 parameter space, together
with theoretical values of half winding numbers W1/2 and
W2/2. The numerical results at each set of kicking strengths
(K1,K2) are obtained by directly evolving a wave packet,
prepared at initial state |n = 0,F = 1〉 or |n = 0,F = 2〉,
with propagators Û t

1 and Û t
2 in momentum space to find

C1(t) and C2(t), respectively, and then averaging over the
number of driving periods t . Up to t = 20, we find already
very nice convergence of C�(t) (� = 1,2) to its corresponding
half winding number W�

2 , with the error accounted for by
the time-dependent term in Eq. (25). In the setup of 87Rb
BEC, an implementation of up to 50 kicks is mentioned to
be experimentally available [58]. This corresponds to t = 25
driving periods in our double kicked rotor, more than the
number needed to see a nice convergence in our numerical
simulations.

Recently, the measurements of MCD have been achieved in
both photonic [60] and cold atom [61] systems. In Ref. [60],
the MCD is extracted from a quantum walk of twisted pho-
tons over seven steps, and the measured results are robust
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FIG. 3. Time averaged MCDs. Numerical values of C1(t) and
C2(t), both averaged over t = 20 driving periods, are shown by blue
stars and black circles. Theoretical values of half winding numbers
W1
2 and W2

2 are shown by red solid and green dashed lines. In panel
(a), the kicking strength K1 = 0.5π and the three topological phases,
separated by two transitions at K2 = π,2π , have winding numbers
(W0,Wπ ) = ( W1+W2

2 ,W1−W2
2 ) = (1,0), (1,2), and (3,2), as denoted in

the figure. In panel (b), the two topological phases separated by a
transition at K1 = K2 = √

2π have winding numbers (W0,Wπ ) =
( W1+W2

2 ,W1−W2
2 ) = (1,0) and (−3,0), as denoted in the figure.

to dynamical disorder. In Ref. [61], 87Rb condensates are
illuminated by a pair of off-resonant lasers to realize a synthetic
lattice in momentum space. The coupling between adjacent
momentum sites in this setup is controlled by two-photon
Bragg transitions and can be periodically quenched in time. In
the high-frequency driving regime, the effective tight-binding
Hamiltonian of the system falls into AIII or BDI topological
class [65]. Disorder-induced topological phase transitions are
then detected by meansing the MCD. Based on these facts,
we believe that the realization of ORDKRS and measurements
of its topological winding numbers are readily doable under
current experimental conditions.

For an interacting Floquet system with many quasienergy
levels, heating might affect the detection of its topological
features. However, since the phenomenon we studied is in
the single-particle regime and the measurement of MCD is
performed in a relatively short time scale (tens of kicks),
we expect heating to be an unimportant issue here. Another
experimental issue is the actual finite duration of the kicking
pulses in the kicked-rotor context, which would in general
introduce certain deviations from the quantization of MCD
predicted by our theory. We have carried out careful numerical
studies of the impact of finite-pulse width of the kicking field.
It is found that in order to observe clear quantization of MCD,
the pulse width should be around the order of 10−4 as compared
with the kicking period. This pulse width requirement is more
demanding than what was conventionally done in previous
kicked-rotor experiments (due to the on-resonance condition

needed in the model), but we do not anticipate any technical
difficulty to engineer such relatively short pulses.

V. CONCLUSIONS

In this work, we proposed a spin-1/2 on-resonance double
kicked rotor model, which is realizable in BECs of 87Rb
subjected to pairs of periodic pulses by an optical lattice. The
system owns many intriguing Floquet topological phases, each
characterized by a pair of winding numbers and protected
by the chiral symmetry of the Floquet operator. Using these
winding numbers, a full topological phase diagram of the
system was established. Under open boundary conditions,
this pair of winding numbers could also predict the number
of topologically protected edge state pairs at zero and π

quasienergies of the Floquet spectrum. Finally, we proposed
to detect these topological winding numbers by measuring
the mean chiral displacement of a wave packet, initially
localized at the center of the momentum space. The numerical
values of mean chiral displacement, averaged over 20 kicking
periods, tend to converge to the theoretical prediction of bulk
winding numbers of the ORDKRS. Recently, the experimental
measurements of mean chiral displacements have also been
achieved in other model systems [60,61].

Our choice of the on-resonance condition, i.e., h̄τ = 4π

with τ = T/2, makes the free evolution part of the Floquet
operator become an identity. Under more general resonance
conditions, the free evolution part can also contribute to the
dynamics. The resulting Floquet operators could then possess
more then two Floquet bands and different types of topological
phases, as already indicated in a previous study of the spinless
quantum DKR [21]. Exploring the impact of an extra spin
degree of freedom on the topological phases of the DKR under
general resonance conditions is an interesting topic for future
study.

Due to experimental constraints on the detection window of
momentum states, only small to intermediate values of kicking
strength are considered in our numerical simulations. When
the kicking strength is large, the dynamics of the spin-1/2
double kicked rotor will in general become chaotic in its
classical limit. Exploring quantum dynamics and its possible
topological signatures in this classically chaotic regime is
certainly an intriguing topic. A recent study found that, up to
large enough kicking strengths, the winding numbers W of a
periodically quenched chiral symmetric Floquet system satisfy
a Gaussian distribution around W = 0 [70]. Initial numerical
calculations in our system suggest a similar pattern along the
line K2 = λK1 on the phase diagram for any |λ| ∈ (0,∞).
However, for trajectories parallel to K1 or K2 axis on the phase
diagram and constrained within K2 ∈ (0,π ) or K1 ∈ (0,π )
regions, respectively, the winding numbers W change mono-
tonically with the kicking strength and satisfy instead a uniform
distribution. The qualitative difference between these two
types of winding number distributions, the transition between
them, and its possible connection to the quantum-to-classical
transitions in ORDKRS also deserve further explorations.

Finally, the effect of disorder on Floquet topological phases
is of great theoretical and experimental interest [32,43,60,61].
In a chiral symmetric system realized by quantum walk of
twisted photons, the Floquet topological phases have been
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demonstrated to be robust to weak temporal disorder [60].
Furthermore, disorder induced transitions from topological
Anderson insulator to normal insulator phases, and even the
reverse, have also been observed quite recently in the momen-
tum space of laser driven ultracold atoms [61]. One limitation
of the models explored in these experiments is that their
winding numbers cannot be larger then one. On the contrary,
the spin-1/2 double kicked rotor proposed in this work allows
topological phases with arbitrarily large winding numbers to
appear. The realization of ORDKRS should then open the
door for experimental explorations of the interplay between
disorder and Floquet topological phases in large topological
invariant regimes, resulting in potentially more fruitful patterns
of Floquet topological Anderson transitions.
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APPENDIX A: EXPRESSION OF Û� IN POSITION
REPRESENTATION

In this appendix, we expand a bit more on the derivation
of Û� (� = 1,2) in the two symmetric time frames used in the
main text. In position representation, the Floquet operator Û�

in symmetric time frame � is written as Û� = ∑
θ |θ〉〈θ |U�(θ ),

with

U1(θ ) = e−i
K1
2 σx e−iK2σy e−i

K1
2 σx , (A1)

U2(θ ) = e−i
K2
2 σy e−iK1σx e−i

K2
2 σy , (A2)

whereK1 = K1 cos θ andK2 = K2 sin θ as defined in the main
text. Using the formula e−iγ n·σ = cos(γ ) − i sin(γ )n · σ , with
σ = (σx,σy,σz) and n being a unit vector, we can reorganize
U1(θ ) and U2(θ ) as

U1(θ ) = cos(K1) cos(K2)

− i[sin(K1) cos(K2)σx + sin(K2)σy], (A3)

U2(θ ) = cos(K1) cos(K2)

− i[sin(K1)σx + sin(K2) cos(K1)σy]. (A4)

With the identifications

cos(E) = cos(K1) cos(K2), (A5)

sin(E) =
√

sin2(K1) cos2(K2) + sin2(K2)

=
√

sin2(K1) + sin2(K2) cos2(K1), (A6)

with ±|E| being the quasienergy bands, and

n1x = sin(K1) cos(K2)

sin(E)
, n1y = sin(K2)

sin(E)
, (A7)

n2x = sin(K1)

sin(E)
, n2y = sin(K2) cos(K1)

sin(E)
, (A8)
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FIG. 4. Linear growth of winding numbers (W0,Wπ ) versus kick-
ing strength K1 at a fixed kicking strength K2 = 0.5π .

we can further express U1(θ ) and U2(θ ) as

U�(θ ) = cos(E) − i sin(E)(n�xσx + n�yσy)

= e−iE(θ)(n�xσx+n�yσy ), � = 1,2. (A9)

Finally, identifying the unit vector n� = (n�x,n�y) for � = 1,2,
we arrive at the expression Û� = ∑

θ |θ〉〈θ |e−iE(θ)n�·σ used in
the main text.

APPENDIX B: LINEAR GROWTH OF WINDING NUMBERS

In this appendix, we give an illustration for the change
of winding numbers (W0,Wπ ) along a trajectory in parallel
with the K1 axis at a fixed K2 ∈ (0,π ) in the phase diagram
Fig. 1. From Eq. (20), the winding numbers W1,W2 of Floquet
operators Û1,Û2 defined in Eqs. (11) and (12) are given by

W1 =
∫ π

−π

dθ

2π

sin(K1)∂θK2−sin(K2) cos(K1) cos(K2)∂θK1

sin2(E)
,

(B1)

W2 =
∫ π

−π

dθ

2π

sin(K1) cos(K1) cos(K2)∂θK2−sin(K2)∂θK1

sin2(E)
,

(B2)

where E = arccos[cos(K1) cos(K2)], K1 = K1 cos θ , and
K2 = K2 sin θ .

In our calculation example, we fix K2 at 0.5π

and scan K1 from 0.1π to 1000π . The results of
(W0 = W1+W2

2 ,Wπ = W1−W2
2 ) are presented in Fig. 4. It is

clearly seen that both winding numbers (W0,Wπ ) grow linearly
with the increase of kicking strength K1.

APPENDIX C: CALCULATION OF THE MEAN
CHIRAL DISPLACEMENT

In this appendix, we present derivation details of the mean
chiral displacement given by Eq. (24) of the main text (see also
Refs. [60,61]). For the ORDKRS, a time-frame independent
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expression of the mean chiral displacement is given by

C(t) = 〈0| ⊗ 〈F |Û−t (n̂ ⊗ σz)Û
t |0〉 ⊗ |F 〉, (C1)

where |0〉 denotes the zero-momentum eigenvector and |F 〉
(F = 1,2) denotes the eigenvector of hyperfine level F . Note
that for our choice of initial state, C(t = 0) = 0 and C(t) in-
deed represents a displacement over t driving periods. Writing
n̂ in momentum representation as n̂ = ∑

n n|n〉〈n|, we have

C(t) =
∑

n

n〈0| ⊗ 〈F |Û−t |n〉〈n| ⊗ σzÛ
t |0〉 ⊗ |F 〉. (C2)

Expanding Û t in position representation as Û t =∑
θ |θ〉〈θ |Ut (θ ), we further obtain

C(t) =
∑
θ,θ ′

∑
n

n〈0|θ〉〈θ ′|0〉〈θ |n〉〈n|θ ′〉

× 〈F |U−t (θ )σzU
t (θ ′)|F 〉. (C3)

Under periodic boundary conditions, we have the following
Fourier transforms between position and momentum basis:

|θ〉 = 1√
N

∑
n

eiθn|n〉, |n〉 = 1√
N

∑
θ

e−iθn|θ〉,

〈n|θ〉 = 1√
N

eiθn, (C4)

where n = −N
2 , − N

2 + 1, . . . ,N
2 − 1 with |n〉 = |n + N〉 and

θ = −Nπ
N

,−(N−1)π
N

, . . . , (N−1)π
N

with |θ〉 = |θ + 2π〉. Using
these relations, we can write C(t) as

C(t) = 1

N

∑
θ,θ ′

1

N

∑
n

n ei(θ ′−θ)n〈F |U−t (θ )σzU
t (θ ′)|F 〉.

(C5)

Noting that

1

N

∑
n

n ei(θ ′−θ)n = i∂θ

[
1

N

∑
n

ei(θ ′−θ)n

]
= i∂θ δθθ ′ , (C6)

the expression of C(t) reduces to

C(t) = 1

N

∑
θ,θ ′

i∂θ δθθ ′ 〈F |U−t (θ )σzU
t (θ ′)|F 〉. (C7)

To proceed, we need to transform the summation over
θ,θ ′ to integrals by taking the number of unit cells N →
∞. In this limit, we have δθθ ′ → 2π

N
δ(θ − θ ′),

∑
θ,θ ′ →

N2
∫ π

−π
dθ
2π

∫ π

−π
dθ ′
2π

, and therefore

C(t) =
∫ π

−π

dθ

2π

∫ π

−π

〈F |U−t (θ )σzU
t (θ ′)|F 〉[i∂θ δ(θ − θ ′)]dθ ′.

(C8)

Sending i∂θ → −i∂θ ′ , performing an integration by parts over
θ ′, and then integrating out θ ′, we are left with

C(t) =
∫ π

−π

dθ

2π
〈F |U−t (θ )σzi∂θU

t (θ )|F 〉. (C9)

According to our discussion in Appendix A, Ut (θ ) can be
expressed as

Ut (θ ) = e−iE(θ)tn(θ)·σ

= cos(Et) − i sin(Et)n · σ = [U−t (θ )]†, (C10)

where n = (nx,ny) represents the unit vector in any chiral
symmetric time frame and σ = (σx,σy). Using this expression
of Ut (θ ), the operator U−t (θ )σzi∂θU

t (θ ) yields

U−t (θ )σzi∂θU
t (θ )

= it cos(2Et)(∂θE)(nxσy − nyσx)

+ i sin(Et) cos(Et)∂θ (nxσy − nyσx)

− it[∂θ sin2(Et)]σz

+ sin2(Et)(nx∂θny − ny∂θnx). (C11)

Next, we note that the hyperfine basis |F = 1,2〉 has the
following vector expressions:

|F = 1〉 =
(

1
0

)
, |F = 2〉 =

(
0
1

)
. (C12)

This means that under the average 〈F | · · · |F 〉, only diagonal
elements of the matrix U−t (θ )σzi∂θU

t (θ ) could survive. Fur-
thermore, the term ∂θ sin2(Et) vanishes after integrating over
θ due to the periodicity of E in θ . So we are only left with the
last term of Eq. (C11) under the θ integral, i.e.,

C(t) =
∫ π

−π

dθ

2π
sin2(Et)(nx∂θny − ny∂θnx). (C13)

Notably, this result is independent of the initial choice of
hyperfine level |F 〉. Finally, with sin2(Et) = 1−cos(2Et)

2 , we
arrive at

C(t) = W

2
−

∫ π

−π

dθ

2π

cos(2Et)

2
(nx∂θny − ny∂θnx), (C14)

where W is the winding number in any chiral symmetric time
frame, as given by Eq. (20) of the main text. More specifically,
for the ORDKRS studied in this work, we have

C1(t) = W1

2
−

∫ π

−π

dθ

2π

cos(2Et)

2 sin2(E)

× [sin(K1)∂θK2 − sin(K2) cos(K1) cos(K2)∂θK1],

(C15)

C2(t) = W2

2
−

∫ π

−π

dθ

2π

cos(2Et)

2 sin2(E)

× [sin(K1) cos(K1) cos(K2)∂θK2 − sin(K2)∂θK1],

(C16)

where E = arccos[cos(K1) cos(K2)], K1 = K1 cos θ , and
K2 = K2 sin θ .
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