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Bogoliubov-Cherenkov radiation in an atom laser
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We develop a simple yet powerful technique to study Bogoliubov-Cherenkov radiation by producing a
pulsed atom laser from a strongly confined Bose-Einstein condensate. Such radiation results when the atom
laser pulse falls past a Bose-Einstein condensate at high-hypersonic speeds, modifying the spatial profile to
display a characteristic twin jet structure and a complicated interference pattern. The experimental observations
are in excellent agreement with mean-field numerical simulations and an analytic theory. Due to the highly
hypersonic regime reached in our experiment, this system offers a highly controllable platform for future studies
of condensed-matter analogs of quantum electrodynamics at ultrarelativistic speeds.
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I. INTRODUCTION

Superfluidity is an important concept that was first rigor-
ously defined by Landau [1]. Under this definition, a weak
repulsive potential (impurity) can travel through a superfluid
without experiencing a friction force, so long as its motion
remains below some critical velocity. Above the critical ve-
locity it becomes energetically favorable for the motion of the
impurity to cause perturbations in the fluid and superfluidity is
lost. The resulting friction force felt by the moving impurity
is due to the emission of elementary excitations in the fluid,
which correspond to the quantum fluid analog of Cherenkov
radiation.

Many physical systems demonstrate Cherenkov emis-
sion, for example, a charged particle traveling relativistically
through a dielectric medium [2] or an object moving through
a fluid at supersonic speed. The details of the radiated field
that is observed, however, depend on the excitation spectrum
of the specific medium. For a superfluid, which is described by
Bogoliubov excitations, one expects to observe Bogoliubov-
Cherenkov radiation (BCR) for supersonic motion, which has
previously been shown to give rise to standing wave patterns
and a Cherenkov cone [3].

Due to its macroscopic quantum properties [4] a gaseous
Bose-Einstein condensate (BEC) can be considered a quantum
fluid. As such, motion of objects through a BEC provides an
ideal platform to study the superfluid behavior of a quantum
fluid. To date, a number of experiments have probed super-
fluidity by using an optical potential as a moving object,
and studying the disturbances produced in the expanded
BEC cloud. In these experiments, the critical velocity of a
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condensate has been investigated using calorimetry [5] as well
as by measuring vortex production [6,7]. The drag force an
object experiences has been investigated theoretically [8,9].
Dispersive shock waves (DSW) have also been experimentally
observed [10–12] and theoretically modeled [10,13]. These
and related phenomena are also accessible in polaritonic
condensates [14].

In this paper we show, surprisingly, that BCR is present
when atoms are simply outcoupled from a condensate in the
form of an atom laser [15–17]. Unlike the only previous
observation of BCR in a quantum fluid [18], which involved
the motion of a constant velocity laser beam (impurity) through
a condensate, in our experiment the impurity (condensate)
effectively accelerates during its passage through the quantum
fluid. As such the radiation pattern is distinctly different than
that previously observed, and allows us to detect a Cherenkov
bubble as the impurity exits the quantum fluid. We develop a
comprehensive analytic theory of the effect and demonstrate
remarkable agreement of the experiment with mean-field
numerical simulations, thus providing complete quantitative
description of the BCR dynamics. The size of the impurity and
the speed of sound in this system can be well controlled by the
outcoupling process, thus enabling us to test a wide range of
flow speeds, including the high-hypersonic range. This feature,
together with the impurity’s acceleration, makes our system
potentially useful as an analog testbed for a variety of exotic
effects predicted to occur at relativistic and ultrarelativistic
speeds in different physical systems.

In our experiment, we demonstrate excitation of BCR in a
dilute atom laser comprising metastable helium (He*) atoms.
When only a small fraction of atoms are outcoupled, the
repulsive mean-field potential from the trapped condensate
causes the atom laser to expand rapidly. The expanded atom
laser forms a dilute, inhomogeneous, and anisotropic fluid,
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which then falls under gravity past the trapped condensate.
This scenario is equivalent, via the Galilean transformation, to
an accelerating impurity (the BEC) passing through a quantum
fluid (the atom laser), in the rest frame of the atom laser.
Previous studies of atom laser beams have revealed caustics
[19], interference fringes [20], four-wave mixing artifacts
[21,22], and Heisenberg limited performance [23] in the spatial
profile. The phenomena detailed here has not been observed
in the multitude of atom laser experiments as it requires high
confinement of the initial BEC and the summation of many
experimental realizations.

Here, we show that BCR modifies the wave function of a
pulsed atom laser in a striking manner in both momentum and
real space. BCR occurs in our system because the relative ve-
locity of the condensate passing through the atom laser exceeds
the local speed of sound. As a result a standing wave forms in
the atom laser beam, due to the reflection of incoming waves
off the BEC, reminiscent of a bow wave that forms in front of
a ship. Since the atom laser has an inhomogeneous density
profile, the local speed of sound is temporally dependent,
resulting in bow waves of different wavelengths and thus an
atom laser beam with a complicated cross hatching pattern
(see Fig. 1). We explain the observed pattern qualitatively
using analytic scattering theory, while a two-dimensional (2D)
simulation using the Gross-Pitaevskii (GP) equation yields an
excellent agreement with the experimental observations.

II. EXPERIMENTAL SETUP

The atom laser beam in our experiments is produced by
illuminating a magnetically trapped BEC of metastable helium
(He*) atoms, in the long-lived 2 3S1 state [24], with a pulse of
radio frequency (RF) radiation. The RF pulse, resonant with the
Zeeman splitting between the mJ = + 1 (trapped) and mJ = 0
(untrapped) internal states at ∼700 kHz, transfers atoms from
the cigar-shaped trap, {ωr,ωx} ≈ 2π × {550,50} Hz, into the
atom laser beam. The short pulse duration (∼10 µs) leads to
a large broadening in the frequency spectrum, resulting in a

nearly uniform outcoupling into the atom laser beam despite
the inhomogeneous magnetic field of the trap. Atoms then
expand under the (cigar-shaped) repulsive mean field potential
of the trapped condensate to form a thin disk with a (far
field) spatial ratio of approximately ten to one. The subsequent
passage of the trapped BEC through the atom laser can thus be
treated as a 2D problem.

The atom laser then falls under gravity a distance of
∼850 mm (time of flight ∼416 ms) where the atoms are imaged
in the far field with full three-dimensional resolution using an
80-mm diameter multichannel plate and delay line detector
(DLD) [25]. The large internal energy of the 2 3S1 state of He*
(∼20 eV) allows the DLD to reconstruct individual atoms at a
spatial resolution of ∼120 µm, a temporal resolution of ∼3 µs
(see Appendix B) and a quantum efficiency of ∼10%.

III. THEORY

A. Overview

The dynamics of the atom laser outcoupling process are
most clearly illustrated using the simulations of our experiment
by means of the 2D mean-field Gross-Pitaevskii (GP) model.
Figure 1 shows a time series of the simulation that demonstrates
this process in the near field for the early stages of dynamics,
which cannot be probed directly in our experiment. The
outcoupling pulse is applied at t = 0 ms, and the magnetically
insensitive mJ = 0 atoms undergo a rapid expansion due to
the repulsive mean-field potential from the trapped BEC [see
Fig. 1(a)].

The expansion dynamics of the atom laser is therefore
analogous to the DSW experiment reported in [10] where
a hard-wall optical potential is introduced nonadiabatically
into a quantum fluid. Here it is rather the magnetic potential
balancing the repulsive mean-field potential that is removed for
outcoupled atoms. Thus the trapped BEC serves as the barrier
and the outcoupled atom laser as the quantum fluid.

As a result, we observe density modulations resembling
the DSW from [10] in the early dynamics of the pulsed atom

FIG. 1. (Video available) Numerical simulations showing the formation of BCR in the atom laser beam. An RF pulse uniformly transfers
a small number of trapped BEC atoms into the untrapped state, which then expand rapidly (a) generating a DSW as in [10]. The atoms also
begin to fall under gravity, causing the BEC to pass through them, generating a BCR bow wave in front of BEC as seen in (b). Once the BEC
reaches the edge of the atom laser (c) a complicated interference pattern generated by BCR is observed. Finally the BEC exits the atom laser
yielding a Cherenkov bubble which turns into two characteristic jets in the far field (d). Each image corresponds to a time after RF outcoupling
of (a) 2.0 ms, (b) 4.3 ms, (c) 7.2 ms, and (d) 11.0 ms. The (11 µm) BEC is indicated by the white dot in each image while the scale bar in the
inset indicates 20 µm.
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laser, seen as the circular fringes in Fig. 1(a). The atom laser
falls past the trapped condensate at an accelerating speed that
quickly (t ∼ 1 ms) becomes supersonic. By t = 4.3 ms [see
Fig. 1(b)] a significant portion has already passed the BEC. The
resulting high-hypersonic flow yields a series of wavefronts
and a conical shadow region begins to develop, reminiscent
of BCR [18]. While the relative velocity of the BEC passing
through the atom laser due to gravity is modest, the low density
in the atom laser means that the passage of the barrier is in the
high-hypersonic regime, with a Mach number of M ∼ 10–100
(see Sec. IV). By t = 7.2 ms [Fig. 1(c)], when the BEC is almost
at the edge of the atom laser, several bow waves have been
generated with differing wavelengths due to the time varying
local speed of sound and flow velocity, and the characteristic
cross-hatching pattern is formed. As the BEC exits the atom
laser [t = 11 ms, Fig. 1(d)], the bow waves separate from the
atom laser completely forming a Cherenkov bubble in the near
field that appear as two characteristic trailing “jets” in the far
field on our detector.

B. 2D Gross-Pitaeveski simulations

The experimental process for generating BCR in an atom
laser beam is well described by the following coupled Gross-
Pitaeveski (GP) equations:

ih̄
∂

∂t
�c(r,t) =

[
− h̄2

2m
� + Vtrap(r) + Ucc|�c|2

+ Uac|�a|2
]
ψc + h̄��a, (1)

ih̄
∂

∂t
�a(r,t) =

[
− h̄2

2m
� + mgz + Uaa|�a|2

+ Uac|�c|2
]
ψa + h̄��c, (2)

where �c(a) is the condensate (atom laser) wave function,
Vtrap(r) = 1

2m(ω2
xx

2 + ω2
yy

2 + ω2
zz

2) is the harmonic trap po-
tential with the trapping frequencies ωz, ωy , and ωz, Ucc,
Uaa , and Uac are the interaction strengths between conden-
sate atoms, atoms in the atom laser, and between atoms in
the condensate and atoms in the atom laser, respectively.
� is the Rabi frequency of the RF coupling, and g is the
acceleration due to gravity along the −z direction. The ex-
perimental trapping frequencies are ωx = 2π × 50 Hz, ωy =
ωz = ωr = 2π × 550 Hz, and the interaction strengths are
Ucc = Uac = 4πh̄2a1/m, Uaa = 4πh̄2a0/m with the s-wave
scattering lengths a1 = 7.51 nm [26] and a0 = 5.56 nm [27].

The experiment can be separated into two stages, namely the
rapid RF outcoupling stage followed by a stage during which
the condensate wave function can be considered constant. The
first stage is very quick and lasts for hundreds of microseconds
to milliseconds, while the second one lasts for up to a half
second. In the first-order approximation, at the end of the first
stage, the atom laser wave function equals the ground-state
wave function of the condensate in the trap. The latter can be
found numerically by solving Eq. (1) without the RF coupling
term (using, e.g., the imaginary-time evolution method). After
that, the two atomic clouds, i.e., the trapped BEC and the
atom laser, evolve separately, with each one providing an

effective potential for the other. However, in the experiment,
the outcoupled atoms constitute only a few percent of the
condensate, therefore the back action of the atom laser on the
condensate can be safely ignored. This feature has also been
confirmed numerically.

Based on the above discussion, after turning off the RF
coupling, the condensate wave function can be treated as
a constant, �c(r,t) � √

NBEC/N0�g(r), where �g(r) is the
ground-state wave function of the condensate in the trap and
NBEC/N0 is the fraction of atoms that remain in the condensate
after the atom laser (NBEC = N0 − NAL). The evolution of
the atom laser can then be described by a one-component GP
model:

ih̄
∂�

∂t
=

(
− h̄2

2m
� + mgz + Uaa|�|2 + Uac

∣∣�g

∣∣2
)
�, (3)

where the index a has been omitted for simplicity. Thus,
the dynamics of the atom laser is determined by the gravity
and the potential barrier provided by the condensate. The
initial condition is �(r,t = 0) = √

NAL/N0�g(r)eiφ , where
NAL and N0 is the number of atoms in the atom laser and
initial (before atom laser) condensate, respectively. Since the
RF outcoupling process is fast and coherent, we can take the
global phase as φ = 0.

To solve Eq. (3) numerically, we transform it into a dimen-
sionless form. To this end, we introduce the following scalings:

t̃ = ωrt, r̃ = r/lr , lr =
√

h̄

mωr

,

�̃ = l
3/2
r√
NAL

�, �̃g = l
3/2
r√
NBEC

�g.

Then Eq. (3) can be rewritten in the following dimensionless
form:

i
∂�

∂t
=

(
−1

2
� − geffz + U eff

aa |�|2 + U eff
ac |�g|2

)
�, (4)

where

geff = g

lrω2
r

, U eff
aa = 4πNALa0

lr
, U eff

ac = 4πNBECa1

lr
.

In the above equation we have dropped the tildes from the
relevant variables.

Furthermore, since the longitudinal trap frequency (ωx) is
much smaller than the transverse ones (ωr ), the atom laser
expands much slower in the longitudinal direction. We can
therefore ignore the expansion in the longitudinal direction and
integrate it out. This can be done by separating the variables
and factorizing the wave function as follows:

�(r,t) = ψ(y,z,t)φ(x) exp (−iλt/2), (5)

where φ(x) = (λ/π )1/4 exp(−λx2/2), and λ = ωx/ωr . The
density of the condensate can be approximated by the Thomas-
Fermi (TF) profile, that is, |�g|2 = n0(1 − x2

R2
x

− y2+z2

R2
r

), where
n0 is the peak density, and the TF radius is Rx and Rr

in the transverse and longitudinal directions, respectively.
Substituting Eq. (5) into (4), multiplying both sides by φ(x),
and integrating over x, we obtain the 2D evolution equation
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for the atom laser wave function:

i
∂ψ(y,z,t)

∂t
=

[
−1

2

(
∂2

∂y2
+ ∂2

∂z2

)
+ geffz

+ U eff
aa√

2π/λ
|ψ |2 + U eff

ac |ψg|2
]
ψ(y,z,t), (6)

where we have dropped a constant term.
The interaction between atoms in the atom laser is much

weaker than that within the condensate. This is due to a
combination of effects. First of all, as the scattering length
is of the same order, the interaction strength is proportional to
the atom number, U eff

aa /U eff
ac ∼ NAL/NBEC. In our experiments,

this ratio is about 1%–4%. Secondly, the interaction strength in
the atom laser is further reduced by a factor of

√
2π/λ, which

is about 8 for the experimental value of λ = 1/11. These two
effects reduce the interaction strength between the atoms in
the atom laser by at least two orders of magnitude compared
to that within the condensate.

Equation (6) is readily solved numerically [28–30] by the
so-called time-splitting spectral method [28] with the FFTW

package [31]. The results are shown in Fig. 1. The simulation
also predicts the formation of vortices (see Appendix C).

C. Analytic model

An analytical model can be used to describe the underly-
ing standing-wave patterns and the trailing jets of the atom
laser scattering off the BEC. In constructing this theoretical
description, we have used the following considerations. (i) The
experimental dynamics are sufficiently well described by the
2D one-component GP equation. (ii) Since the characteristic
transverse size of the condensate is significantly smaller than
the typical value of the local healing length in the atom laser,
one may neglect atom-atom interactions between atoms in the
atom laser cloud. (iii) We approximate the potential barrier
(caused by the BEC) by an impenetrable obstacle of cylindrical
shape, since the density of the BEC is much larger than that
of the atom laser, nBEC � nAL. Within these assumptions, we
derive an equation for the curve near which the instantaneous
maxima of the particle density in the scattered component of
the atom laser wave function should be located. Agreement
between our experiment and this analytic model confirms the
experimental features in the atom laser beam can be interpreted
as the result of interference of incident and scattered waves
from a hard-wall potential barrier.

As discussed above, by virtue of the configuration features
of the initial BEC cloud, the expansion of the wave function
�a(r,t) of the outcoupled atoms in the y, z plane is much
more rapid than that along the x coordinate. Moreover, if the
number of atoms in the atom laser, NAL, is much smaller
than the initial number of particles in the system N0, then
the atom laser does not affect the behavior of the trapped
condensate, which plays the role of a potential barrier for
�a(r,t). According to the previous section, the dynamics of the
atom laser beam is well described by a 2D one-component GP
equation. In this equation, one can, in principle, get rid of the
gravitational potential term proportional to gz by introducing
a coordinate system moving in the negative direction of the
z axis with constant acceleration g. Thus, the problem of

the atom laser flow past an obstacle, can be interpreted as
generation of excitations by a uniformly accelerated object
in an inhomogeneous ultracold degenerate Bose gas. The
mechanism for the formation of a cross-hatching pattern in the
upper part of the atom laser beam therefore has the character
of Cherenkov radiation of density waves with the Bogoliubov
spectrum (e.g., see [18,32–35]).

Experimental measurements and estimates show that the
relative velocity of the effective potential barrier greatly ex-
ceeds the local speed of sound in the atom laser cloud. In turn,
the size of the obstacle and the characteristic spatial scale of
the observed wave pattern are much smaller than the typical
healing length. In addition, as seen both in experiment and in
the numerical simulations, the density of the atom laser cloud
in the region of interest decreases with time, and becomes
strongly rarefied. Hence, it is reasonable to neglect a nonlinear
term in the 2D one-component GP equation.

Thus, for the further analytical description of the processes,
we will use a 2D linear Schrödinger equation, which has the
following dimensionless form similar to (6):

i
∂ψ

∂τ
= −1

2

(
∂2ψ

∂y2
+ ∂2ψ

∂z2

)
+ V (y,z)ψ + gzψ, (7)

where V (y,z) is the effective potential barrier formed by the
stationary density distribution of the trapped BEC. The char-
acteristic transverse scale R of this cigar-shaped cloud does
not exceed a few dimensionless units. Here, for convenience,
we introduced also the time τ = t − δt with the coordinate
origin shifted by a constant value δt . This value δt characterizes
a relatively short time interval, during which the outcoupled
atoms are displaced from the localization area of the trapped
condensate confined by a magnetic field.

The solution to Eq. (7) will be sought in the form of a
superposition of two fields:

ψ(y,z,τ ) = ψi(y,z,τ ) + ψr (y,z,τ ). (8)

The first term, ψi(y,z,τ ), describes the laser beam incident on
an obstacle. The second term, ψr (y,z,τ ), is the wave packet
formed by the atom laser atoms reflected by the effective
potential barrier.

The wave function ψi(y,z,τ ) in Eq. (8) satisfies the equation
for a free atom laser beam in the absence of an obstacle,

i
∂ψi

∂τ
= −1

2

(
∂2ψi

∂y2
+ ∂2ψi

∂z2

)
+ gzψi, (9)

over the entire space. If we assume that for τ = 0, i.e., at the
instant t = δt when the RF outcoupling is completed, the initial
distribution of the atom laser cloud is known,

ψi(y,z,τ = 0) = w(y,z), (10)

then it is easy to find a general solution for Eq. (9). To do
this, we introduce the accelerating coordinate system y, ς =
z + gt2/2:

ψi(y,z,τ ) = φ(y,ς,τ )e−igτz−ig2τ 3/6, (11)

and therefore exclude the gravitational potential term from
Eq. (9). Then for φ(y,ς,τ ) we arrive at an equation similar to
the Schrödinger equation for a free electron. Using the Green’s
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function of this equation,

G(y − ỹ,ς − ς̃ ,τ ) = 1

2iπτ
ei((y−ỹ)2+(ς−ς̃ )2)/2τ , (12)

we find

φ(y,ς,τ )= 1

2iπτ

∫∫
ei((y−ỹ)2+(ς−ς̃ )2)/2τw(ỹ,ς̃ )dỹdς̃ . (13)

We then take into account that the spatial scale of the
distribution w(y,z) is comparable to the transverse size R of
the trapped BEC cloud. Then for τ � 2R2 the formula (13)
can be further simplified, and at a sufficiently long time τ , the
atom laser wave function ψi(y,z,τ ) is well described by the
expression,

ψi(y,z,τ )= 1

iτ
ŵ

(
y

τ
,
z

τ
+ gτ

2

)
ei(y2+z2)/2τ−igτz/2−ig2τ 3/24,

(14)

where ŵ(�1,�2) is the Fourier transform of the initial distribu-
tion ψi(y,z,0) = w(y,z):

ŵ(�1,�2) = 1

2π

∫∫
w(ỹ,ς̃ )e−i�1ỹ−i�2ς̃dỹdς̃ . (15)

Equation (14) clearly shows that, for large τ , the density
|ψi(y,z,τ )|2 of particles in the wave packet ψi(y,z,τ ) incident
on an obstacle is smoothly varied depending on the coordinates
y and z and remains almost constant over the length scales of
the order of R. It also follows directly from Eq. (14) that,
for τ�2R2, the velocity field arising on a cylindrical surface
of radius R, which is the boundary of the effective potential
barrier, is mainly determined by the term −igτz/2 in the phase
of the complex function ψi(y,z,τ ) when the atom laser falls
onto that surface.

As discussed above, N0/NAL�1, and therefore the effective
potential barrier V (x,y) in Eq. (7) can be approximated by a
hard-wall obstacle that is impenetrable to the atom laser and
has the cylindrically symmetric form with the radius R. As
a result, the wave function ψr (y,z,τ ) of the reflected wave
packet in the region

√
y2+z2 >R obeys the following linear

Schrödinger equation:

i
∂ψr

∂τ
= −1

2

(
∂2ψr

∂y2
+ ∂2ψr

∂z2

)
+ gzψr . (16)

By using the Madelung transformation,

ψr (y,z,τ ) = a(y,z,τ ) exp (iϕ(y,z,τ )), (17)

we can write down the equations for the amplitude a(y,z,t)
and phase ϕ(y,z,t) of the reflected wave packet:

∂a2

∂τ
+ div⊥(a2∇⊥ϕ) = 0, (18)

∂ϕ

∂τ
+ 1

2
(∇⊥ϕ)2 + gz = �⊥a

2a
. (19)

Here, we have introduced the notation ∇⊥, div⊥, and �⊥ for the
gradient, divergence, and Laplace operator taken with respect
to the coordinates y and z. In the case of the complete reflection
of the dilute atom laser cloud by the impenetrable cylinder
with the radius R, the boundary conditions on the top (z > 0)

semicircle
√

y2 + z2 = R at each fixed moment of time τ0 can
be set as follows:

ψr (R sin ϑ,R cos ϑ,τ0)=−ψi(R sin ϑ,R cos ϑ,τ0), (20)

∇⊥a(R sin ϑ,R cos ϑ,τ0) = 0, (21)

∇⊥ϕ(R sin ϑ,R cos ϑ,τ0)= gτ0

2
(sin 2ϑ y0+cos 2ϑ z0), (22)

where ϑ is the angle formed with the positive axis z: −π/2 <

ϑ < π/2, and y0, z0 are the unit vectors along the directions y

and z, respectively. We note that the relations (20), (21), and
(22) are written using Eq. (14), which holds for relatively large
values of τ0 (τ0 � R2). This allows us to treat |ψi(y,z,τ )| as
constant across the area of several R in size and to only take into
account the term −igτz/2 in the phase of the complex function
ψi(y,z,τ ) when we calculate the velocity field created on the
surface of the effective potential barrier by the incident wave
packet ψi(y,z,τ ).

The observed cross-hatching structure of spatial density
distribution can be considered as a complex interference
pattern of two wave functions ψi(y,z,τ ) and ψr (y,z,τ ) at the
top part of the atom laser beam. The amplitude |ψi(y,z,τ )|
of the incident wave packet varies smoothly over the spatial
scales comparable to the sizeR of the effective potential barrier.
Hence, it is natural to assume that the amplitude a(y,z,τ ) of the
reflected field is a slowly varying function of the coordinates y

and z. Based on this assumption we can neglect the right-hand
side in Eq. (19) and obtain the so-called eikonal equation:

∂ϕ

∂τ
+ 1

2

(
∂ϕ

∂y

)2

+ 1

2

(
∂ϕ

∂z

)2

+ gz = 0. (23)

This equation belongs to the class of Hamilton-Jacobi first-
order differential equations [36]:

H
(

y,z,τ,
∂ϕ

∂y
,
∂ϕ

∂z
,
∂ϕ

∂τ

)
= 0, (24)

or

H({qj },{pj }) = 0, pj = ∂ϕ

∂qj

, j = 1,2,3. (25)

Here by {qj } and {pj } we denote the set of the generalized
position variables y, z, and τ and the set of the conjugate
momentum variables py , pz, and pτ , respectively.

The relation,

dH =
3∑

j=1

(
∂H
∂qj

dqj + ∂H
∂pj

dpj

)
= 0, (26)

should be satisfied on a hypersurface H({pj },{qj })=0 in the
phase space {pj }, {qj }. This occurs only if the following
equalities are simultaneously satisfied [36]:

dqj

dξ
= ∂H

∂pj

,
dpj

dξ
= − ∂H

∂qj

, j = 1,2,3, (27)

where ξ is an independent variable. The system of equations
(27) expressed in the canonical Hamiltonian form represents
a characteristic system of ordinary differential equations, and
its solutions, {qj (ξ )} and {pj (ξ )}, are the characteristics of the
Hamilton-Jacobi equation (24).
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Let us write down (27) explicitly by taking into account
Eq. (23):

dy

dξ
= py,

dpy

dξ
= 0, (28a)

dz

dξ
= pz,

dpz

dξ
= −g, (28b)

dτ

dξ
= 1,

dpτ

dξ
= 0. (28c)

From these equations, it is obvious that ξ = τ , and

y = y0 + py(τ0)(τ − τ0), (29a)

z = z0 + pz(τ0)(τ − τ0) − g(τ − τ0)2/2. (29b)

Here y0 = R sin ϑ , z0 = R cos ϑ are the coordinates of a
point on a semisphere, and py(τ0) = gτ0 sin 2ϑ/2, pz(τ0) =
gτ0 cos 2ϑ/2, as follows from Eq. (22) and the defini-
tion p(τ ) = ∇⊥ϕ(y(τ ),z(τ ),τ ). Finally, the characteristics of
Eq. (23) are given by the expressions:

y(τ ) = R sin ϑ + gτ0 sin 2ϑ(τ − τ0)/2, (30a)

z(τ ) = R cos ϑ+gτ0 cos 2ϑ(τ −τ0)/2 −g(τ −τ0)2/2. (30b)

Equation (18) takes the form of a continuity equation. It
allows us to determine behavior of the density a2(y(τ ),z(τ ),τ )
of atoms in the reflected wave packet along the characteristics
(30) of the eikonal equation (23). To solve Eq. (18), we consider
this equality on one of the curves y(τ ), z(τ ), py(τ ), pz(τ ) in
the phase space y, z, py , pz and rewrite its left-hand side in the
following form:

∂a2

∂τ
+ ∇⊥ϕ∇⊥a2 + a2div⊥∇⊥ϕ =

(
∂a2

∂τ
+ p(τ )∇⊥a2

)

+ a2div⊥(p(τ )) = da2

dτ
+ a2div⊥(p(τ )).

As a result, we obtain [36]

d

dτ
ln(a2(τ )) = − div⊥(p(τ )). (31)

According to the Liouville theorem [36],

div⊥(p(τ )) = d

dt
ln(J (τ,τ0,ϑ)), (32)

where J (τ,τ0,ϑ) is the Jacobian for the transformation be-
tween the ray coordinates τ0, ϑ , and the Cartesian coordinates
y, z:

J (τ,τ0,ϑ) =

∣∣∣∣∣∣∣
∂y(τ0,ϑ)

∂τ0
,

∂y(τ0,ϑ)

∂ϑ
∂z(τ0,ϑ)

∂τ0
,

∂z(τ0,ϑ)

∂ϑ

∣∣∣∣∣∣∣
= Rg cos ϑ(4τ0−3τ )/2+g2(1+ cos 2ϑ)τ 2

0 (τ−τ0)

− g2(1 + 2 cos 2ϑ)τ0τ (τ − τ0)/2. (33)

This yields the expression for the change of density
a2(y(τ ),z(τ ),τ ) along the characteristics (30) of the eikonal

equation (23):

a2(y(τ ),z(τ ),τ ) = a2(y0,z0,τ0)
J (τ0,τ0,ϑ)

J (τ,τ0,ϑ)
, (34)

where J (τ0,τ0,ϑ)=Rgτ0 cos ϑ/2. The zeros of J (τ,τ0,ϑ)
define the position of a spatiotemporal caustic, where two
or more rays coalesce [36]. The position of the caustics at
any given time τ is defined by the expressions (30), with τ0

determined by the solutions of the following equation:

Rg cos ϑ(4τ0 − 3τ )/ + g2(1 + cos 2ϑ)τ 2
0 (τ − τ0)

− g2(1 + 2 cos 2ϑ)τ0τ (τ − τ0)/2 = 0. (35)

This equation is cubic with respect to τ0 and its solution looks
cumbersome. However, we note that our theoretical approach
works well enough under the condition gτ 2

0 �R. Therefore,
one can neglect the first term in the left-hand side of Eq. (35)
and find that τ0 and τ are connected approximately in a linear
way,

τ0 = (1 + 2 cos 2ϑ)

2(1 + cos 2ϑ)
τ. (36)

The value τ0 should be positive from its physical meaning.
Hence, only the values ϑ from the interval −π/3�ϑ �π/3
should be used for constructing the spatiotemporal caustics.
We note also that the value δt is much smaller than t at a final
stage of the discussed process. Hence, it can be considered that
τ ≈ t without any loss of accuracy. As a result, the form of the
caustics in the plane y, z at an arbitrary time moment t � R2

is determined by the expressions,

y(ϑ,t) = sin 2ϑ(1 + 2 cos 2ϑ)

8(1 + cos 2ϑ)2 gt2, (37a)

z(ϑ,t) = (cos 2ϑ + cos 4ϑ)

8(1 + cos 2ϑ)2 gt2. (37b)

Using these equations, it is possible to calculate the caus-
tic curve corresponding to the maximum of the density
a2(y(τ ),z(τ ),τ ) of atoms in the reflected atom laser wave
packet by knowing only the minimal number of the experi-
mental parameters.

The maximum density curve calculated using our analytical
theory (37) is shown in Fig. 2. It is clearly seen that, at
longer evolution times, this curve defines the spatial position
of the characteristic twin jets in the wake of the atom laser
beam observed in the experiment [Fig. 2(a)] and numerical
simulations using the 2D GP mean-field model.

IV. EXPERIMENTAL RESULTS

The experimental results for a BEC with an initial (before
atom laser) atom number of N0 = 7.0(3) × 105 and an outcou-
pling fraction of NAL/N0 = 3.5(3)% are shown in Fig. 3(a) and
agree well with the corresponding numerical simulation [see
Fig. 3(d)]. In both cases the jets resulting from the BEC exiting
the atom laser are clearly visible. The simulations also predict
the characteristic cross-hatching pattern caused by the BCR
which results from the transit of the BEC through the atom
laser beam.

When the number of atoms in the initial BEC is significantly
reduced [see Fig. 3(b)], the fringe pattern remains essentially
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FIG. 2. (a) Theoretical position of the caustics calculated using Eq. (37) for different moments of time: ωrt = 10 : 5 : 40 (in dimensional
variables). (b) and (c) Atom laser density profiles at the times ωrt = 25 and ωrt = 38, respectively. Spatial distributions of the density
were obtained by direct numerical simulation performed immediately within the framework of the one-component 2D GP equation. The
solid red curves show the corresponding spatiotemporal caustic lines, which were calculated using Eq. (37). Here, ωr = 2π × 550 Hz and
g = g/ωr lr = 0.383. The analytic model provides good qualitative comparison with the typical numerical simulations of the experimentally
observed effect.

the same, although the atom laser is significantly smaller.
However, if the outcoupling fraction is greatly increased to
NAL/N0 = 67(2)%, the fringes wash out [see Fig. 3(c)].

To compare our experimental results to simulation and
define the Mach numbers present in our system we note that
the near-field spatial profile can be approximated by taking the
velocity of atoms in the far field from the measured spatial
profile and dividing by the time-of-flight expansion time.
From this estimated near-field density profile n, it is possible
to find the speed of sound c for the appropriate regions in
the atom laser at the time of interaction with the BEC. The
speed of sound in a weakly interacting Bose gas is given
by c =√

Uaan/m, where Uaa = 4πh̄2a0/m is the mean-field

interaction strength for atoms in the atom laser, for which we
use the particle s-wave scattering length a0 = 5.56 nm [27]
as all atoms are in the mJ = 0 state. We estimate the relative
velocity of the BEC with respect to the atom laser as ∼13–41
mm/s, which greatly exceeds the local speed of sound of
∼0.1–0.5 mm/s.

Figure 4 shows the approximate evolution of this Mach
number in our experiments of a freely falling atom laser
beam. Indeed, most of the interaction between the atom laser
and the trapped BEC happens in the high-hypersonic regime
(Mach number greater than 10), while a significant portion
in the trailing tail of the atom laser for some experimental
configurations are higher still (Mach number �80).

FIG. 3. Experimental observation of BCR resulting from the transit of a BEC through an atom laser. (a) For high condensate number
(N0 = 7.0(3) × 105), tight magnetic trap ({ωr,ωx} ≈ 2π{550,50} Hz), and weak outcoupling (NAL/N0 = 3.5(3)%), the remnants of a bow
wave is visible as twin jets extending above the atom laser, while strong interference fringing is visible in the main body. White box shows
region integrated for comparison of fringe spacing with theoretical model in Fig. 5. (b) With lower atom number (N0 = 3.7(2) × 105) the
results are qualitatively the same, albeit with a smaller spatial extent due to the reduced mean-field repulsion. (c) Upon dramatically increasing
the outcoupling fraction (N0 = 1.7(3) × 105, NAL/N0 = 67(2)%) the fringes and jets become washed out, a faint ring is visible indicating the
DSW survives to the far field and the atom laser profile is distorted. (d) The results of a two-dimensional numerical simulation of (a) extended
to the detector position shows strong qualitative agreement with (a). For an experimental atom laser profile at low confinement see Fig. 6. All
experimental subfigures are the summation of thousands of experimental realizations integrated along the weak (x) axis of the trap. The density
in each image is normalized to the maximum pixel value.
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FIG. 4. Development of hypersonic flow of the atom laser
around the trapped BEC. t = 0 indicates the time when the RF
outcoupling pulse is applied. The dynamics of the Mach number
at the BEC are illustrated for two different experimental configu-
rations: N0 = 7.0(3) × 105 and NAL/N0 = 3.5(3)% (dashed line),
and N0 = 4.0(4) × 105 and NAL/N0 = 23(2)% (dot-dashed line).
The local Mach numbers are shown at times between the forma-
tion of the atom laser and the exit of the BEC thereof. Subse-
quent pulses of the atom laser are shown with increasing dash
frequency.

Increasing the number of atoms in the BEC increases
the maximum flow velocity, while increasing the number of
atoms in the atom laser increases the local speed of sound,
and vice versa, which produces opposite effects on the Mach
number. In practice, the Mach regime is experimentally con-
trollable by adjusting the population of the initial condensate
and the RF-outcoupled fraction in opposite directions (see
Fig. 4).

The characteristic disklike profile of the RF atom laser is
well explained by considering only the mean-field interaction
between the outcoupled atoms and the trapped BEC (see
Appendix A). Here we present a quantitative analysis of the
anomalous interference pattern observed in the far-field profile
of the atom laser in light of the numerical simulation and
analytic theory and show that the peculiar fringe spacings are
well explained by BCR theory.

Figure 5(a) shows a line profile of the density in the far field
of the atom laser taken along the characteristic jet. According
to BCR theory, the periodicity of the density peaks in the
early dynamics are directly related to the flow velocity and the
speed of sound in the atom laser [18]. The nonequal spacing
between between two adjacent wavefronts demonstrates the
impurity’s (effective) acceleration. More specifically, BCR is
characterized by a fan-shaped series of conical wavefronts
with a density oscillation at a wave number given by kBCR =
2π/λ = 2mh̄−1(v2 − c2)1/2, measured directly upstream of
the flow.

According to the GP simulations of our experiment, a
fan-shaped series of parabolic wavefronts in the upstream of
the condensate detach from the bulk shortly after they are

FIG. 5. (a) Density modulation in the atom laser. The solid line
is the 1D density profile along the right jet of the atom laser shown
in Fig. 3(a) with a band-pass filter applied to remove the slow change
in density due to the atom laser bulk shape and reduce shot noise.
Dashed vertical lines mark the series of peaks along the profile.
(b) Fringe spacing in BCR. Markers are the experimental data: Colors
index adjacent pair of fringes from the series of emanating wavefronts;
shapes distinguish experimental configurations (N0,NAL/N0). The
dashed line is the approximate prediction from BCR theory, for
which the spacing between wavefronts are taken along the jet angle,
consistent with the analysis of the experimental data. Inset shows
the region [Fig. 3(a)] integrated (along the short axis) to produce (a);
dashed lines indicate fringe positions. Fringe alignment with the short
axis of the region is apparent.

generated [see Figs. 1(b) and 1(c)]. Therefore, a simple uniform
scaling will transform the density oscillations measured along
the jets in far field into the relevant near-field counterpart. Thus
we estimate the physically relevant parameters at the early
dynamics, such as the local flow velocity (v), speed of sound
(c), and period of density modulation (λθ , where θ specifies
angle relative to upstream), using the far-field profile measured
at the detector (see Fig. 3).

Figure 5(b) shows the calculated density modulation at
the early dynamics and the prediction from the BCR theory
approximated at the jet angle (∼60◦ with respect to the
upstream direction). The quantitative agreement between the
experimental result and the theory offers a strong evidence
for BCR as the mechanism for the originator of the bright
interference pattern.

To provide an intermediate case between the complex
spatial profiles seen in our main experiments and the far simpler
bean-shaped profiles observed elsewhere [15,37], we repeat the
experiment with lower trapping frequencies. A profile of an
atom laser formed from a {ωx,ωy,ωz} ≈ 2π{57,227,234} Hz
trap is shown in Fig. 6. Here the lower confinement (and in
turn mean field) causes atoms to be directed downwards, rather
than expand in all directions [20]. This leads to fainter BCR
signatures, e.g., the fringing and jets are much less visible in
the profile.
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FIG. 6. For weaker trap frequencies ({ωx,ωy,ωz} =
2π ({57,227,234}) Hz) and high atom number (N0 = 1.0(3) × 106,
NAL/N0 = 8(3)%) the outcoupling mostly occurs in the downward
direction due to the decreased mean-field potential.

V. CONCLUSIONS

In conclusion, we have demonstrated a simple but powerful
system for studying BCR using an atom laser. The BCR results
from the high-hypersonic motion of the BEC through the atom
laser, analogous to the motion of a barrier through a quantum
fluid.

Our results are in excellent agreement with mean-field nu-
merical simulations, as well as with a comprehensive analytic
theory. This work has strong implications from the viewpoint
of using atom lasers for interferometry since the BCR acts to
degrade the beam quality of the atom laser and thus potentially
limit its ultimate sensitivity in interference measurements.

These experiments could be further extended by using a
Feshbach resonance to tune the interactions in an atom laser
beam and investigate the effect of BEC barrier height and size
on the resulting dynamics. In such case one should be able to
study nonlinear dynamics such as shock waves, soliton trains,
and vortices [3].

Furthermore, due to the accelerating high-hypersonic
regime demonstrated in our experiments this system may
be used to study condensed matter analogs of relativistic
electrodynamic effects, such as the dynamic Casimir force,
quantum friction [38], and the Unruh effect [39–41] along with
analog gravity effects, such as Hawking radiation [42,43].
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APPENDIX A: ATOM LASER SIZE

The bulk size and shape of the pulsed atom lasers in the
far field is due to the initial mean-field repulsion from the
trapped BEC and the subsequent ballistic expansion, with
minimal effects from interactions within the atom laser, where
the density is low. As expected from the simple conversion
of the mean-field chemical potential (μ ∝ N

2/5
0 ) into velocity

(v ∝ μ1/2), the sizes of the atom lasers (Rff ∝ v) in the far-field
scale according to Rff ≈ √

μ ∝ N
1/5
0 (see Fig. 7).

APPENDIX B: DETECTOR TEMPORAL RESOLUTION

Although the ultimate timing resolution for an MCP-DLD
system is of order nanoseconds, this resolution is only realized
in the case of fast moving particles. In the case of slow moving
particles, the time delay between a particle striking the top of
the MCP angled pore and a particle striking deep in the pore
becomes the limiting temporal effect.

In the worst case this delay will be tmax = 2rpore/ sin (θ )v
where θ is the pore angle to vertical, rpore is the pore radius,
and v is the incident speed to the detector. For our system with
rpore = 5 µm, θ = 12◦, and v ∼ 4 m/s this gives tmax = 12 µs.

Assuming a uniform flux at the surface and the propagation
time along the pore for electrons produced from a He* impact is

FIG. 7. Characteristic size scaling of the pulsed atom lasers in
the far field. The bulk size of the atom lasers are characterized by
the profile’s half width at half maximum (Rff). Circles and triangles
represent the sizes measured along the radial (perpendicular) and
axial dimensions of the cigar trap, respectively. The dashed lines are
the scaling law fits to data given by Rff ∝ N

1/5
0 , which is derived

from assuming the kinetic energy of outcoupling atoms in the atom
laser being proportional to the condensate chemical potential. The
data shown is an average of approximately 4000 experimental runs
of 20 consecutive pulsed atom lasers at NAL/N0 = 3.5(3)%, with
initial BEC containing N0 = 7.5(3) × 105. The reader should note
the logarithmically spaced axes.
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FIG. 8. Comparison of relevant (nondimensionalized) velocities
in the experiment as a function of time. vCOM is the velocity of the
center of mass of the atom laser. vRMS is the root-mean-squared width
of the atom laser field. vs is local speed of sound.

negligible, the probability distribution function of of the delay
tdelay relative to the top of the pore can be found from simple
geometric arguments to be

f (tdelay) =
4
√

t2
max − t2

delay

πt2
max

, (B1)

which has a standard deviation of

σdelay = tmax

√
9π2 − 64

6π
≈ 0.26tmax. (B2)

For our system this yields a spread of σdelay ≈ 3.1 µs, which is
an estimate of our temporal resolution.

APPENDIX C: 2D GROSS-PITAEVSKII SIMULATIONS:
VORTEX SHEDDING

The dynamics of the atom laser after the outcoupling RF
pulse is switched off can be divided into three stages. At the
initial stage, the center-of-mass (c.m.) velocity of the atom laser
remains small, the atom laser and the BEC strongly overlap,
and the displacement between their c.m. positions is small. The
cloud of outcoupled atoms rapidly expands due to the strong
repulsive interaction with the condensate. At the end of this
stage, it forms a concentric shape as shown in Fig. 1(a).

The velocity that determines the BCR is the overall velocity
of the atom laser atoms upstream from the condensate. It
can be approximated by the sum of the c.m. velocity which
is directed downstream and the expansion velocity which is
directed upstream for the upper part of the atom laser. The latter
can be estimated by the changing rate of the root-mean-squared
width of the atom laser field. Figure 8 shows a comparison of
the velocity difference and the sound velocity as a function of
time. At the end of the first stage of the evolution, these two
velocities add up to zero. The duration of this stage (∼1–2 ms)
depends on the initial atom number in the condensate, which
determines the strength of the repulsive barrier, and hence the
expansion velocity. After that, the upper part of the atom laser
starts to flow downwards and the dynamics enters the second
stage, during which the interaction between the atom laser and
the repulsive barrier results in very rich dynamics.

FIG. 9. The phase of the wave function (a) and quiver plot of velocity (b) showing vortices in the vicinity of the repulsive barrier at ωrt = 9.
The colored lines show contours of the (nondimensionalized) density.
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One of the most interesting processes in the beginning of
the second stage is the emergence of vortices in the vicinity
of the barrier. In the free falling reference frame, the potential
barrier accelerates upward in the field of the atom laser. Once
local relative velocity exceeds the sound velocity in the atom
laser cloud (at ωrt � 9 in Fig. 8), the perturbation caused by the
barrier cannot expand across the whole field in time, and the
density near the barrier fluctuates heavily over a small length
scale. To reduce this extra generated kinetic energy, vortex
pairs of opposite sign are nucleated and drift downstream. This
can be seen from the phase dislocations in the phase plot of
the wave function as well as in the quiver plot of the atom
laser velocity field in Fig. 9 with the logarithm contour of
the density. The density at the positions of vortices is zero.
While the vortex pairs are also generated at later times, the
ones generated initially do not disappear but flow downstream
to form the so-called “vortex street.” In contrast to previous

results [35,44–47] here the vortex pairs are not equally spaced
due to the acceleration under gravity.

These vorticies are unlikely to be observed experimentally
for two reasons: First the spatial extent of the density disruption
around the vortex is localized to a vanishingly small region in
the far field, well below the detector resolution. Second as
the experimental profiles are the summation of many thousand
experimental realizations small changes in the experimental
conditions may lead to a blurring that destroys such a feature.

The process described above lasts until the barrier passes
through the upper part of the atom laser field, as seen in
Fig. 1(d). After this, the atom laser beam can be treated as
free falling since it is now far away from the barrier and is
dilute enough to ignore the interaction between the atoms.
The density distribution at long expansion times coincides
with the instantaneous momentum distribution, as shown in
Fig. 2(d).
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