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Beer-Lambert law in the time domain
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According to the Beer-Lambert law, the spectral density of weak electromagnetic radiation is attenuated expo-
nentially, with the characteristic length depending on atomic density and the frequency-dependent photoabsorption
cross section of the target. We discuss an analog of the Beer-Lambert law in the time domain, showing that the
temporal profile of the initial light pulse enters explicitly into each term of expansion of the exponential function
as a multiconvolution with the corresponding temporal response of an atom. The form invokes a description of
pulse propagation in terms of the temporal base functions, which may be precalculated for a chosen initial pulse
shape, allowing us to obtain the attenuated profile at a given target depth simply by summing up a sufficient
number of weighted base functions. The variant with a 100-fs initial Gaussian pulse is worked out in detail, with
the atomic response exhibiting either pure exponential or mixed prompt-exponential decay, characteristic of a
photoexcited bound state or a Fano resonance. The method is shown to be valid for an arbitrary temporal profile
of the initial electric field and is illustrated for pulses resonantly tuned to the low-lying doubly excited states of
the He atom.
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I. INTRODUCTION

Experiments with synchrotron light are an important tool to
unravel the structure and relaxation dynamics of various mate-
rials. In this regard, photoabsorption is one of the most common
and useful techniques [1]. It relies on the Beer-Lambert(-
Bouguer) (BL) law [2–4] which, in modern language, relates
the photoabsorption cross section σ (ω) to attenuation of light
with the frequency component ω. Denoting the target thickness
by z and the atomic target density by N , the spectral density at
the target exit is given by

I (z,ω) = I (0,ω)e−σ (ω)Nz, (1)

where I (0,ω) is spectral density of light at the target entrance.
The exponential law stems from a very general assumption,
according to which the reduction of light intensity in target
thickness dz is proportional to the light intensity of the same
color that hits the target layer. Suppose that the incident light
has a Gaussian spectrum Iω0 (0,ω), centered at ω0. If there are
no atomic resonances in the vicinity of ω0 and the spectral
width of the incident light is reasonably small, σ (ω) ≈ σ (ω0)
and spectral density Iω0 (0,ω)e−σ (ω0)Nz at the target exit is an
attenuated replica of the entrance spectrum. This is a typical
situation encountered at synchrotron light sources when the
photon energy is set above the lowest threshold and away from
any higher ionization threshold of the target.

Next we consider the Gaussian light pulse to be resonant
with a single isolated bound state at energy ωi above the target
ground state. According to (1), the spectrum of the transmitted
pulse is

I (z,ω) = Iωi
(0,ω)e−σi (ω)Nz, (2)

where σi(ω) = (σi�i/2π )/[(ω − ωi)2 + �2
i /4] is a prod-

uct of the energy-integrated photoabsorption cross section

σi = 4π2αωi |d0i |2 [5] and a (normalized) Lorentzian [6],
d0i = d∗

i0 is a length-form dipole matrix element for the
transition from the ground (0) to the excited state (i) of
the target atom, and �i is the total probability decay rate
of the excited state. Equation (2) obviously implies a change
of the entrance spectrum: If the target thickness and/or target
density are large enough, the spectrum of the transmitted light
acquires a “hole in the center” due to enhanced photoabsorption
at resonance energy ωi . The total intensity of light at target
depth z is

I (z) =
∫ ∞

0
I (z,ω)dω. (3)

Obviously, the BL law applies for weak light only. In the
present context, weak light is to be understood as light whose
intensity is low enough so that |Fd0i t0| � 1, where t0 denotes
the pulse duration, Fd0i is the Rabi frequency of the 0 ↔ i

transition, and F is the magnitude of the electric field making
up the pulse (I ∝ |F |2) [7].

Apart from its spectrum, the temporal profile of the transmit-
ted pulse is a measurable quantity too. Photoabsorption studies
in the time domain offer complementary insight because the
light pulse is not completely defined by its spectrum. While the
Fourier transform F[F (ω)](t), acting on the field, translates
between the temporal and spectral representations of the
problem [F (ω) ↔ F (t)], according to the Wiener-Khinchin
theorem [8], the Fourier transform of the spectrum proportional
to |F (ω)|2 is proportional only to the field autocorrelation
function γ (�), defined by∫ ∞

−∞
F (t)F ∗(t + �)dt ∝ F[|F (ω)|2](�). (4)

The information missing in the spectrum is knowledge about
the relative phases of the electric field for each frequency
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component of the pulse which may affect the outcome of the
absorption process. In fact, light pulses with equal spectra
but different degrees of coherence (different extent of phase
alignment) result in the same field autocorrelation function
(4) but have different temporal intensity profiles (and vice
versa). While γ (�) can be readily measured by a Michelson
interferometer and is just another type of spectroscopy [9], a
direct measurement of the intensity in the time domain requires
a temporal resolution better than the pulse duration. Soon after
the discovery of the laser, the capability to produce short pulses
surpassed the ability to directly measure their duration and until
today the situation has not changed. Still, from its invention
[10], streak camera technology has advanced from the initial
nanosecond regime to the recently achieved 100-fs resolution
[11], steadily improving the possibility of performing direct
temporal imaging of short light pulses in different wavelength
regions.

Below we discuss an analog of Eq. (1) in the time domain.
We start by solving the Maxwell-Bloch equations for the case
of near-resonant weak-light propagation in an atomic medium.
The solution is written in the form of a series and is shown
to apply for an arbitrary initial temporal dependence of the
electric field by comparison with a direct numerical solution of
the field propagation equation. A case with a coherent incident
Gaussian pulse is worked out in detail and the corresponding
solution for electric field is converted to the spectral domain to
show that it fully complies with the BL law. The phenomenon
of free-induction decay (FID) [12,13], leading to delayed
fluorescence, is shown to depend crucially on the degree of
coherence for pulses with the same temporal intensity profile.
Finally, the same framework is employed to study propagation
of weak pulses tuned to a Fano resonance [14]. The correspond-
ing time-dependent solution is shown to result in the same
attenuation of total pulse intensity as a direct application of
BL law with the well-known Fano photoabsorption profile. The
results are illustrated by calculating attenuation of 100-fs-long
pulses with photon frequency tuned to the selected He doubly
excited states featuring lifetimes on different scales with
respect to the initial pulse duration.

II. SINGLE BOUND STATE

A. Time domain

We examine attenuation of a resonant light pulse in the
time domain, assuming incident intensity to be so low that

the majority of atoms along the incident beam remain in the
initial ground state. However, the light itself may be absorbed
strongly while passing a given length z in the target. The pulse
is set to travel along the positive z direction and we may think
of it as starting up as a Gaussian

I (z,t) ∝ |F (z,t)|2 ∝ e−[t−(z+Z0)/c]2/2t2
0 , (5)

which at time t = 0 is centered at z = −Z0, i.e., outside the
target. In the weak-light approximation, the evolution of the
electric field in the target is governed by two coupled Maxwell-
Bloch (MB) equations that relate the field amplitude F (z,t) to
the coherence ρ0i between the lower and upper atomic states:

1

c

∂F

∂t
+ ∂F

∂z
= 2πiωidi0N

c
ρ0i , (6)

ρ̇0i = −�i

2
ρ0i + id0iF. (7)

The above form follows from the MB equations describing a
two-level system (see Ref. [7], p. 185) by taking into account
that the ground-state and excited-state populations ρ00 ≈ 1
and ρii � 1, respectively, at all times. The excited state is
considered to be a single bound state with a finite lifetime
�−1

i . The speed of light is defined as c = 1/α, where α is the
fine-structure constant. Atomic units are used throughout the
paper.

We proceed by formally solving Eq. (7),

ρ0i(z,t) = id0i

∫ t

0
F (z,t ′)e−�i (t−t ′)/2dt ′, (8)

where we have taken into account that ρ0i(z,0) = 0. The
coherence at a given location builds up due to the presence of
the field prior to the time t which is “forgotten” exponentially
with characteristic time (�i/2)−1. Inserting the solution (8) into
Eq. (6) and removing the time retardation by switching to the
local time τ = t − z/c − Z0/c, the field amplitude obeys the
equation

∂F (z,τ )

∂z
= −βi

2

∫ τ

−∞
F (z,τ ′)e−�i (τ−τ ′)/2dτ ′. (9)

Evolution of the amplitude is thus determined by its initial
temporal profile F (0,τ ), by decay rate �i , and by the parameter
βi = 4παωi |d0i |2N . The solution of the above partial integro-
differential equation may be constructed by following a general
iterative variational scheme,

F (n+1)(z,τ ) = F (n)(z,τ ) −
∫ z

0

[
∂F (n)(ξ,τ )

∂ξ
+ βi

2

∫ τ

−∞
F (n)(z,τ ′)e−�i (τ−τ ′)/2dτ ′

]
dξ,

discussed by Hussain et al. [15]. One starts with the initial pulse shape F (0) = F0(τ ) to generate

F (1)(z,τ ) = F0(τ ) − βiz

2

∫ τ

−∞
F0(τ ′)e−�i (τ−τ ′)/2dτ ′.

The second iteration gives

F (2)(z,τ ) = F (1)(z,τ ) −
∫ z

0

[
∂F (1)(ξ,τ )

∂ξ
+ βi

2

∫ τ

−∞
F (1)(z,τ ′)e−�i (τ−τ ′)/2dτ ′

]
dξ

= F0(τ ) − βiz

2

∫ τ

−∞
F0(τ ′)e−�i (τ−τ ′)/2dτ ′ −

∫ z

0

[
− βi

2

∫ τ

−∞
F0(τ ′)e−�i (τ−τ ′)/2dτ ′
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+βi

2

∫ τ

−∞

{
F0(τ ′) − βiz

2

∫ τ ′

−∞
F0(τ ′′)e−�i (τ ′−τ ′′)/2dτ ′′

}
e−�i (τ−τ ′)/2dτ ′

]
dξ

= F0(τ ) − βiz

2

∫ τ

−∞
F0(τ ′)e−�i (τ−τ ′)/2dτ ′ + β2

i z
2

8

∫ τ

−∞
e−�i (τ−τ ′)/2

∫ τ ′

−∞
F0(τ ′′)e−�i (τ ′−τ ′′)/2dτ ′′dτ ′.

One can readily show that the solution of Eq. (9) is given by the series expansion

F (z,τ ) = F0(τ ) − βiz

�i

[E ∗ F0](τ ) + β2
i z

2

2�2
i

[E ∗ E ∗ F0](τ ) + · · ·

=
∞∑

n=0

(−1)n
βn

i zn

n!�n
i

Fn(τ ), (10)

where Fn(τ ) denotes the n-fold convolution of the initial pulse
with the exponential decay function E(τ ) = (�i/2)e−�iτ/2.
The temporal profile of the field amplitude at the target exit
is thus given by the expansion of e−βizF0(τ )/�i , where the nth
term is proportional to the n-fold convolution Fn(τ ) of the
initial pulse field F0(τ ) and not to the field F0(τ ) to the nth
power. When βiz/�i � 1, i.e., whenever the dipole coupling,
target length, target density, and/or resonance lifetime are
small, a few terms of (10), if not one, may be enough to
calculate the pulse shape at a given target depth from the
known temporal profile of the initial pulse. Pulse attenuation
is always associated with a change of its temporal profile.
Namely, in the �i → ∞ limit, Fn → F0 for all n and conse-
qently F (z,τ ) = F0(τ )e−σi (ωi )Nz/2. However, such an instant
decay limit corresponds to the absorption by an “infinitely
broad” bound state and leads to zero attenuation, the same
as absorption of a flat, nonresonant photoabsorption contin-
uum with the vanishing cross section σi(ωi) = 2σi/π�i =
2βi/N�i .

In the expression (10), the spatial and temporal dependence
are clearly separated in each term of the series. Let us refer toFn

as temporal base field profiles. These profiles are characteristic
of a given initial pulse profile and resonance type. When
known, they enable a straightforward calculation of the exit
pulse for any target depth. In fact, to construct Fn for given
n, only a single convolution with the initial pulse is required.
To see this, first the n-fold self-convolution of the exponential
function is performed by applying the convolution theorem for
Fourier transform F , namely,

E ∗ E ∗ · · · ∗ E = F−1[F[E]F[E] · · ·F[E]]. (11)

The right-hand side of (11) can be easily calculated and the
desired expression is obtained by a single convolution of the
above result with the initial pulse,

Fn(τ ) = (�i/2)n

(n − 1)!

∫ τ

−∞
(τ − τ ′)n−1e−�i (τ−τ ′)/2F0(τ ′)dτ ′.

(12)
When the initial pulse intensity follows a Gaussian (5),

the corresponding amplitude of the coherent field is F0(τ ) =
(2t0

√
π )−1e−τ 2/4t2

0 . By introducing a new variable x = (τ −
τ ′)/2t0, Eq. (12) becomes

FG
n (τ ) = �n

i t
n−1
0

2
√

π (n − 1)!
e−τ 2/4t2

0

×
∫ ∞

0
xn−1e−x2−x(�i t0−τ/t0)dx. (13)

The solution of the above integral is known (see Ref. [16], Sec.
3.462):

FG
n (τ ) = �n

i t
n−1
0 F0(τ )

2(n − 1)!

[
t0�i

(
n

2

)
1F1

(
n

2
,
1

2
;

(
τ − �it

2
0

)2

4t2
0

)

+ (
τ − �it

2
0

)
�i

(
n + 1

2

)

× 1F1

(
n + 1

2
,
3

2
;

(
τ − �it

2
0

)2

4t2
0

)]
. (14)

The confluent hypergeometric function has been denoted by
1F1(a,b; x) [17].

Explicit expressions for 1 � n � 4 are given by

FG
1 = �it0

2
eT 2√

π [1 + erf(T )]F0(τ ),

FG
2 = (�it0)2

2

{
1 + eT 2√

πT [1 + erf(T )]
}
F0(τ ),

FG
3 = (�it0)3

8

{
2T + eT 2√

π (1 + 2T 2)[1 + erf(T )]
}
F0(τ ),

FG
4 = (�it0)4

24

{
2(1 + T 2)

+ eT 2√
πT (3 + 2T 2)[1 + erf(T )]

}
F0(τ ). (15)

For convenience, the variable T = (τ − �it
2
0 )/2t0 has been in-

troduced above. As an example, the base temporal field profiles
for a Gaussian initial pulse are presented in Fig. 1 for three
fictitious bound states, denoted by na∗, because their resonant
energies and decay widths were chosen to match those of the
corresponding na 1P1 doubly excited states below the N = 2
ionization threshold of He. At the chosen target conditions, the
attenuated pulse shows damped field oscillations for the fastest
decaying 2a∗ state. This is emphasized for the 3a∗ state that
has the lifetime comparable to the initial pulse duration. For the
long-lived 7a∗ state the outgoing field acquires a long tail and
an extra phase difference π that decays with the characteristic
time 2/�i . These temporal profiles bear clear signatures of
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τ (a.u.)

Γi
-1

= 17 fs

|d0i|
2
= 9.0 x10

-4
 a.u.

ωi = 2.207 a.u.

τ (a.u.)

Γi
-1

= 80 fs

|d0i|
2
= 1.6 x10

-4
 a.u.

ωi = 2.336 a.u.

τ (a.u.)

Γi
-1

= 1016 fs

|d0i|
2
= 0.12 x10

-4
 a.u.

ωi = 2.389 a.u.

FIG. 1. Initial 100
√

2-fs FWHM Gaussian pulse of electric field
amplitude F0(τ ) (red curve) together with temporal base field func-
tions Fn(τ ) (blue curves) for 1 � n � 10. At given target depth z

the pulse is obtained by a linear combination of the temporal base
field functions weighted by (βiz/�i)n/n!. Black thick curves show
the attenuated electric field amplitude after passing the z0 = 2 cm
distance in He gas at 1000 Pa. The initial pulse is tuned to (a) the
2a∗ state (βiz0/�i = 1.84), (b) the 3a∗ state (βiz0/�i = 1.56), and
(c) the 7a∗ state (βiz0/�i = 1.51). The white curve shows the
numerical solution of the full two-level MB equations not constrained
by the weak-light approximation. Excitation energies ωi and decay
widths �i of bound states are taken from [18].

a free-induction decay where the energy, accumulated in the
atomic coherence ρ0i , is either released steadily after the main
pulse has gone [Fig. 1(c)] or exchanged several times with the
main pulse if the lifetime of the bound state is shorter than the
pulse duration [Figs. 1(a) and 1(b)].

Turning back to the general case (10), we note that the
convolution with an area normalized function preserves the
integral of the original pulse. This implies that∫ ∞

−∞
F (z,τ )dτ = e−βiz/�i

∫ ∞

−∞
F0(τ )dτ, (16)

i.e., the integral over time of the field amplitude decays
exponentially with z. The above equation holds for an arbitrary
temporal profile of the initial pulse until the light intensity is
weak.

The BL law, however, deals with attenuation of light
intensity. The integral of the modulus square of the electric
field amplitude over time is proportional to the total number of
photons passing a given target position in the corresponding
time interval. Using Eq. (10), the required integral is expressed
by∫ ∞

−∞
|F (z,τ )|2dτ =

( ∫ ∞

−∞
|F0(τ )|2dτ

) ∞∑
p=0

(−2βiz)pgp

�
p

i p!
.

(17)

Each term in the expansion is weighted by an absorption factor
gp = ∫ ∞

−∞ Gp(τ )dτ/
∫ ∞
−∞ |F0(τ )|2dτ , where the correspond-

ing temporal base intensity function

Gp(τ ) = 2−p

p∑
q=0

(
p

q

)
Fq(τ )F ∗

p−q(τ ) (18)

depends on multiple temporal base field functions (12). Ob-
viously, g0 = 1 for any pulse shape, and keeping only this
term in Eq. (17) corresponds to pulse propagation without any
absorption. The first nontrivial absorption factor is given by

g1 =
∫ ∞
−∞ F0(τ )F ∗

1 (τ )dτ∫ ∞
−∞ |F0(τ )|2dτ

. (19)

Using Eq. (15), one easily obtains the first absorption factor
for the initial Gaussian pulse

gG
1 (t0,�) = �it0√

2
e�2

i t
2
0 /2

∫ ∞

−∞
e−(T +�i t0/2)2

[1 + erf(T )]dT ,

=
√

π

2
�it0e

�2
i t

2
0 /2erfc

(
�it0√

2

)
. (20)

Evidently, the factor depends only on a product �it0/
√

2 = κ .
It turns out later that such a kind of dependence is charac-

teristic of Gaussian absorption factors of all orders p. Using
(15), we cannot express the higher-order absorption factors in
the closed form. However, the required convolutions can be
calculated numerically for any initial pulse shape. Later we
show that by transferring the problem to the spectral domain,
the closed-form expression for the gG

p factor is obtained for
any p.
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κ

κ2a*κ3a*κ7a*

FIG. 2. Gaussian absorption factors gG
p (κ) for p � 1000. For

p �= 1 numerical calculation is avoided by using the analytical
formula (32), which is derived later on. The dashed vertical lines
denote κ values for an initial Gaussian pulse with a 100-fs FWHM
intensity profile tuned to the 2a∗ (κ2a∗ = 1.71), 3a∗ (κ3a∗ = 0.37),
and 7a∗ (κ7a∗ = 0.03) states in He.

The Gaussian absorption factors gG
p (κ) are reported in

Fig. 2 for κ � 5. One notes that for all p, limκ→∞ gG
p = 1,

in agreement with the corresponding limit of the closed-form
expression (32). Again, when the initial pulse duration is much
longer than the resonance lifetime, the dependence of the pulse
intensity on the target depth becomes I (z) = I (0)e−2βiz/�i ,
exactly in agreement with the BL law (3) in the �i → ∞ limit.
Independent of the κ value, when 2βiz/�i � 1, the first term
of the expansion (17) is usually enough to describe pulse at-
tenuation, giving approximately I (z) ≈ I (0)(1 − 2βizg1/�i).
When 2βiz/�i is increased, higher-order terms start to con-
tribute and the total intensity at the target exit (17) is obtained
by summing their contributions

I (z) = I (0)

[
1 − 2βiz

�i

g1

1!
+

(
2βiz

�i

)2
g2

2!

−
(

2βiz

�i

)3
g3

3!
+ · · ·

]
. (21)

Note that for a given target parameter 2βiz/�i = p0, the
absorption factors with p ≈ p0 contribute most importantly to
Eq. (21). Figure 3 shows the dependence of the total transmitted
intensity on target thickness for a Gaussian pulse tuned to three
bound states featuring lifetime much shorter (2a∗) than, about
equal (3a∗) to, and much longer (7a∗) than the initial pulse
duration.

B. Spectral domain

Excited states with longer lifetimes have narrower spectral
widths and the increasingly larger number of photons from the
pulse just cannot be absorbed due to the energy conservation.

FIG. 3. Intensity attenuation for the 100-fs initial Gaussian pulse
tuned to the 2a∗, 3a∗, and 7a∗ resonances as a function of target
thickness at a He pressure of 1000 Pa. Reported are the exponential
attenuation profile e−2βi z/�i (red thick curve), the one-term approxi-
mation (dashed black curve), and the 100-term approximation to (17)
(thick black curve). Vertical dashed lines denote a target thickness
z0 = 2 cm, corresponding to data presented in Fig. 1.

This simple fact explains weaker photoabsorption in the case of
a narrow 7a∗ bound state (Fig. 3). The Fourier transform allows
us to attribute to each correction Fn(τ ) the corresponding
spectral representationF[Fn(τ )] = Sn(ω). Since the transform
is linear, the spectral representation of the field amplitude is
easily obtained from Eq. (10). After applying the convolution
theorem, the equalities

F[F (z,τ )] = F[F0] − βiz

�i

F[E]F[F0]

+ β2
i z

2

2�2
i

F[E]2F[F0] + · · · ,

S(z,ω) =
∞∑

n=0

(−1)n
βn

i zn

n!�n
i

Sn(ω)

(22)

are obtained, where Sn(ω) = F[F0](F[E])n ≡ S0sn. Similar
to Eq. (17), the spectrum of the pulse is given by

|S(z,ω)|2 = |S0(ω)|2
∞∑

p=0

(−1)p
β

p

i (2z)pCp(ω)

p!�p

i

, (23)

where

Cp(ω) = 2−p

p∑
q=0

(
p

q

)
Re[sq(ω)s∗

p−q(ω)]. (24)

Again, C0 = 1 for all the pulse shapes and

sn = (�i/2)n

(�i/2 − iω)n
, (25)

Re[sq(sp−q)∗] = �
p

i cos[(2q − p) arctan(2ω/�i)](
ω2 + �2

i /4
)p/2 , (26)

Cp(ω) = (�i/2)2p(
ω2 + �2

i /4
)p . (27)
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ω (a.u.)

ω (a.u.)

ω (a.u.)

FIG. 4. Spectrum of the 100-fs Gaussian pulse tuned to the
(a) 2a∗, (b) 3a∗, and (c) 7a∗ resonances. The entrance spectrum [thick
red (gray) curve] and the exit spectrum after passing 1 cm of He
gas at 2000 Pa (thick black curve) are given. Thin curves denote the
lowest ten spectral base intensity functions |S0(ω)|2Cp(ω). They are
normalized to the same amplitude and denoted by order 1 � p � 10.
In this specific example the converged final spectrum is built up from
25 base functions, weighted according to Eq. (23). The black dotted
curve denotes the Lorentzian profile of the corresponding resonance.

In analogy with the time domain [Eq. (18)], the pth spectral
base intensity function |S0(ω)|2Cp(ω) is given by the product
of the initial spectral intensity and a Lorentzian to the pth
power. This is completely in agreement with the BL law for a
single bound state, as can be seen by expanding the exponential
factor in Eq. (2). In Fig. 4 the spectral base intensity functions
are presented for the three bound states in He, as well as
the pulse spectrum after traveling through the same target
thickness as presented in Fig. 1. In general, the higher p is, the
narrower and smaller the corresponding spectral base function
is, resembling more a Gaussian. When 2βiz/�i � 1, the
spectral base intensity function with p = 1 most importantly
modifies the initial profile, so

|S(z,ω)|2 ≈ |S0(ω)|2
(

1 − 2βizC1(ω)

�i

)
. (28)

For an initial Gaussian pulse |SG
0 (ω)|2 = (2π )−1e−2t2

0 ω2
, the

modified profile is given by

|S(z,ω)|2 ≈ e−2t2
0 ω2

2π

(
1 − βi�iz

2
(
ω2 + �2

i /4
))

. (29)

There is an important difference between the temporal
and spectral descriptions of the problem. While the initial
pulse shape is encoded in each temporal base field function
Fn(τ ) by means of multiple convolutions with the exponen-
tial decay function, in the spectral domain, the initial pulse
profile is present only as a multiplicative factor in every
base function. Consequently, the attenuated spectral profile is
a product of the initial pulse profile and exponential factor
exp[−2βiC1(ω)z/�i], resulting in the BL law (2). Contrary to
the frequency component of the pulse, attenuation of a given
temporal component is related not only to its initial intensity,
but also to the pulse intensity at previous times, via a buildup
of exponentially decaying atomic coherence. The BL law in
the time domain may then be written as

I (z,τ ) = |F0(τ )|2 − (1 − e−σi (ωi )NzĜ)F0(τ ), (30)

where ĜpF0(τ ) ≡ Gp(τ ). Note that the set of temporal base
intensity functions Gp(τ ) [Eq. (18)] is different for different
initial pulse profiles F0(τ ), which makes the application of
Eq. (30) less practical than its spectral version [Eq. (2)].

The integral of spectral intensity is proportional to the total
photon intensity, so∫ ∞

−∞
|S(z,ω)|2dω =

∫ ∞

−∞
|F (z,τ )|2dτ

must hold for each z. In other words, the spectral represen-
tation must result in exactly the same target depth intensity
dependence as given by the representation in the time domain
[Eq. (21)]. Consequently, for a Gaussian case, the following
equality must hold for each p:

(�i/2)2p

2π

∫ ∞

−∞

e−2t2
0 ω2(

ω2 + �2
i /4

)p dω = gG
p (t0,�i)

2t0
√

2π
. (31)

Indeed, by inserting (20) and integrating, Eq. (31) is seen to
hold exactly for p = 1. For low values of p, the validity of
(31) was checked numerically. Since the integral on the left-
hand side can be given in the closed form (see Ref. [16], Sec.
3.383/4), one may use the above equality to calculate Gaussian
absorption factors

gG
p (κ) = κp−1/2eκ2/2W1/4−p/2,1/4−p/2(κ2). (32)

Above, Wα,β (z) is the Whittaker function (see [17], p. 505).
For p = 1 the function is related to the error function through

W−1/4,−1/4(x > 0) = ex/2erfc(
√

x)
√

π
√

x. (33)

The Whittaker functions for p � 2 are calculated recursively
using

Wλ−1/2,λ−1/2(x) = [λ − (1 − x)/2]Wλ,λ(x) + xW ′
λ,λ(x)

2
√

x(λ − 1/4)
,

(34)
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τ (a.u.)

FIG. 5. Dependence of electric field amplitude on I0, the initial
pulse intensity, after passing 1 cm of He gas at 400 Pa (black curves).
The initial Gaussian pulse (red curve) is resonant with the 0 → 2a∗

transition.

starting with (33) and its derivative

W ′
−1/4,−1/4(x) = −e−x/2

x1/4

+√
πex/2

(
1

4x3/2
+ x1/4

2

)
erfc(

√
x). (35)

The lowest Gaussian absorption factors are seen to be

gG
1 (κ) = κ

√
πeκ2

erfc(κ),

gG
2 (κ) = κ2 − √

πeκ2

(
κ3 − κ

2

)
erfc(κ),

gG
3 (κ) = −κ4

2
+ 3κ2

4
+ √

πeκ2

(
κ5

2
− κ3

2
+ 3κ

8

)
erfc(κ),

gG
4 (κ) = κ6

6
− κ4

3
+ 5κ2

8

− √
πeκ2

(
κ7

6
− κ5

4
+ 3κ3

8
− 5κ

16

)
erfc(κ).

The spectral and temporal profiles of the attenuated pulse
relative to the incident pulse do not depend on the initial
light intensity, as long as the weak-light assumption holds. We
have calculated the temporal profile of the attenuated pulse
by solving numerically the complete set of MB equations for
the two-level system (see [7]), taking into account nonlinear
processes such as stimulated emission, as appropriate for high
incident light intensity. The result in Fig. 5 shows that under
the chosen conditions, a light intensity as high as 1012 W/cm2

may be considered weak.

C. Input pulse with an arbitrary phase distribution

To check the validity of Eq. (10) numerically for weak-light
pulses with arbitrary distribution of phases, we have generated
eight different sets of pulses by a partial-coherence method
[19]. The method was shown to generate short pulses corre-
sponding to those at the output of the real free-electron-laser

(FEL) facility with the self-amplified spontaneous emission
source. Briefly, pulse generation for a given set starts by
assigning the pulse field in the spectral space: The amplitude
was selected according to the Gaussian of a given width and
the phase was randomly selected. The field was then converted
to the time domain by means of a Fourier transform. Finally,
the field amplitude was filtered by a Gaussian with the width
corresponding to duration of the FEL pulse.

On average, each of the sets gives a smooth Gaussian
spectrum and all the sets on average display the same 100-fs
broad Gaussian temporal intensity profile. Figure 6(a)
presents an absolute square of the normalized autocorrelation
function (4),

γn(�) = γ (�)∫ ∞
−∞ dt

√
|F (t)F (t + �)|2

, (36)

averaged over 300 pulses for each set. The sets are ordered from
the least coherent one, denoted by set 1, to the fully coherent set
8. Although all the pulse sets have the same average temporal
intensity profile (marked by 0), one can see in Fig. 6(b) that
an average attenuation level and the outgoing temporal profile
are sensitive to the degree of coherence of the initial pulse. For
fully coherent pulses, the strongest delayed contribution due to
the FID is observed in the tail of the pulse. Note that the result
for set 8 corresponds to the result in Fig. 1(b), upon squaring
the field amplitude. For an almost incoherent set of pulses, the
FID contribution practically disappears because the coherence
ρ0i cannot build up in the presence of an electric field with
a randomly varying phase. The observation of the attenuated
temporal profile therefore allows us to estimate the degree of
temporal coherence of the initial pulse.

Finally, one of the generated initial pulses, a member of
pulse set 3, was propagated by means of Eq. (10) to reconstruct
its temporal intensity profile at the target exit. According to
Eq. (18), the base intensity profiles Gp, corresponding to the
selected initial pulse, were constructed first [Fig. 7(a)]. In
contrast to the previously studied case presented in Fig. 1,
a more general situation considered here leads to the sign-
changing base pulses for small values of the expansion index
p. The temporal base intensity profiles were inserted in the
nonintegrated version of Eq. (17) [see also Eq. (48) below]
to obtain the temporal dependence of the corresponding exit
pulse for the chosen target conditions. As shown in Fig. 7(b), a
substantial redistribution of the pulse intensity in time occurs
upon passing the target: Although the total intensity at the target
exit is smaller than the total initial intensity, the exit intensity at
particular times τ may be higher than the initial intensity. Note
that pulse intensity at the target exit is positive at all times only
when the number of terms included in the expansion (49) is
large enough. The convergence to the final pulse profile is the
slowest at large times τ where weak higher-order contributions
dominate [Fig. 7(a)].

III. FANO RESONANCE

The previous examples deal with bound states exhibiting
excitation energies and decay widths of 1P1 doubly excited
states 2a, 3a, and 7a below the N = 2 ionization threshold in
He. However, these strongly autoionizing states are in fact Fano
resonances displaying an asymmetric photoabsorption cross
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FIG. 6. (a) Absolute square of the autocorrelation function for a
variety of input light pulses marked from 1 (almost incoherent) to 8
(fully time coherent). In all the cases the initial intensity profile of the
pulse is a Gaussian with a 100-fs FWHM. (b) Comparison of intensity
profiles of the initial (0) and the outgoing pulses (1–8) after passing
a 2-cm-long target. The target is filled with 1000 Pa of He and the
average initial pulse is tuned to the 3a∗ resonance. For each set, the
presented outgoing profile is an average of 300 pulses. The incident
profile is an average of all 2400 pulses.

section σf = σc(qi + ε)2/(ε2 + 1) rather than a Lorentzian
[14]. The Fano parameter qi determines asymmetry of the
profile, ε = 2(ω − ωi)/�i is the reduced energy, and σc =
4π2αωi |d0c|2 represents a smooth continuum photoabsorption
cross section close to the resonance energy ωi , which is
perturbed by an admixture of a discrete state. Knowing the
photoabsorption profile, one can immediately write down the

τ)
|2  (

ar
b.

 u
ni

ts
)

τ (a.u.)
τ)

|2  (
ar

b.
 u

ni
ts

)

τ (a.u.)

FIG. 7. (a) Lowest 11 temporal base intensity functions G(τ )
of a single partially coherent entrance pulse G0, randomly selected
from the set 3 in Fig. 6. (b) “Evolution” of the pulse profile from
its initial form to the exit form by adding up the temporal base
intensity functions, each weighted by (−2βiz)p/p!�p

i . Under the
same target conditions as in Fig. 6, the sum of (p) terms converges to
the numerically propagated exit pulse (thick black line) after summing
up to p = 10.

spectral profile of the attenuated pulse by using the BL law (2),

I (z,ω) = Iωi
(0,ω)

∞∑
n=0

[−σcNz
(
ω − ωi + �iqi

2

)2]n

n!
[
(ω − ωi)2 + �2

i

4

]n
, (37)

as well as the total pulse intensity at the target exit (3),

I (z) =
∞∑

n=0

(−σcNz)n

n!

∫ ∞

0
dω

Iωi
(ω,0)

(
ω − ωi + �iqi

2

)2n

[
(ω − ωi)2 + �2

i

4

]n
. (38)

The exit spectrum of the pulse tuned to the 3a 1P1 resonance
in Fig. 8(a) can be readily understood. A comparison with the
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FIG. 8. Intensity of the 100-fs Gaussian pulse tuned to the 3a 1P1

resonance in He after passing z0 = 2 cm of gas at 1000 Pa. The pulse
at the entrance (red thick curve) is compared to the exit pulse (black
thick curve) in (a) the spectral domain, where thin (multicolored)
lines denote spectral base intensity functions for the selected initial
pulse, extracted from (37) and denoted by the summation index n, and
(b) the time domain, where thin (multicolored) lines denote temporal
base intensity functions G̃p(τ ) (50) for 1 � p � 14, needed to obtain
the convergent exit pulse. The dash-dotted line is the exit pulse profile
due to absorption by an “equivalent” pure bound-state resonance 3a∗.

result for the (assumed) Lorentzian profile (the middle graph
in Fig. 4) shows that the maximum absorption point has shifted
by �i/2qi . The pulse profile is asymmetric with no attenuation
at ω − ωi = −�iqi/2, where the Fano profile falls to zero.

Next we construct the intensity profile of the attenuated
pulse tuned to the Fano resonance in the time domain. The
field equation (6) is cast in the form

1

c

∂F

∂t
+ ∂F

∂z
= 2πiωi

c

∫ ∞

−∞
χ (t ′)F (z,t − t ′)dt ′, (39)

where the linear susceptibility χ (t) depends only on properties
of the atomic medium (see Ref. [7], p. 181). For a resonant
transition to a single bound state (9), the susceptibility is
therefore given by an exponential decay function

χ (t) = iNρ00|d0i |2e−�i t/2�(t), (40)

where �(t) denotes the Heaviside step function. The Fourier
transform F[χ (t)] of (40) gives the corresponding spectral
form

χ (ω) ∝ − (ω − ωi)
�i

2

(ω − ωi)2 + �2
i

4

+ i

�2
i

4

(ω − ωi)2 + �2
i

4

. (41)

The real and imaginary parts of (41) describe field dispersion
and absorption, respectively, the latter giving the well-known
Lorentzian line profile.

The time-dependent susceptibility for an isolated Fano
resonance is calculated starting from the imaginary part of the
corresponding spectral form, the Fano absorption profile σf .
Following the treatment of Ref. [20], the real part of spectral
susceptibility is generated by the Kramers-Kronig relation to
recover its full (complex) form

χf (ω) ∝ (ω − ωi)
(
1 − q2

i

)
�i

2 + qi�
2
i

2

(ω − ωi)2 + �2
i

4

+ i

(
q2

i − 1
)�2

i

4 + (ω − ωi)qi�i

(ω − ωi)2 + �2
i

4

(42)

+ lim
μ→∞

(
− (ω − ωi)

μ

2

(ω − ωi)2 + μ2

4

+ i

μ2

4

(ω − ωi)2 + μ2

4

)
.

Note that the contribution of the nonresonant continuum σc

to the Fano cross section σf was formally replaced by the
contribution of a broad discrete state (μ → ∞), which results
in terms of the same form as in Eq. (41). The Fourier transform
of Eq. (42) leads to

χf (t) ∝ i

(
(qi − i)2 �i

2
e−�i t/2 + lim

μ→∞

[
μ

2
e−μt/2

])
�(t).

(43)
Taking the limit and comparing the result to Eqs. (39) and (40),
the temporal response of the Fano resonance in the weak-field
regime is given by

χf (t) = iN |d̃0i |2
q2

i

(
(qi − i)2e−�i t/2 + 2

�i

δ(t)

)
�(t). (44)

The continuum dipole matrix element in σc was expressed with
the dipole matrix element d̃0i between the ground and the mod-
ified discrete state using the relation |d0c|2 = 2|d̃0i |2/πq2

i �

[14]. The resonant field impulse excitation therefore triggers
a twofold temporal response of an isolated Fano state: a
prompt one and an exponentially decaying one, the latter being
determined by the autoionization decay width �i . For a Fano
resonance, the analog of Eq. (9) is therefore

∂F

∂z
= − β̃i

2

∫ τ

−∞
F (z,τ ′)

×
[

2δ(τ − τ ′)
�iq

2
i

+
(

1 − i

qi

)2

e−�i (τ−τ ′)/2

]
dτ ′, (45)
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where β̃i = 4πωi |d̃0i |2N = σcN�iq
2
i /2. Equation (45) re-

duces properly in both limiting cases: When qi → ∞, the
result coincides with the result (9) for a pure bound state
because |d̃0i |2 = |d0i |2q2

i /(q2
i − 1) [14]; in the limit qi → 0,

Eq. (45) becomes

∂F

∂z
= −σcN

2

(
F (z,τ ) − �i

2

∫ τ

−∞
e−�i (τ−τ ′)/2F (z,τ ′)dτ ′

)
.

(46)
This is the expected behavior of the “window resonance” in
the spectral domain, composed of a flat continuum where the
absorption is locally annihilated by an upside-down Lorentzian
profile. Indeed, when the profile is very broad (�i → ∞), the
integral on the right-hand side of Eq. (46) evaluates to F (z,τ )
and the absorption reduces to zero.

Similar to Eq. (10), the solution of Eq. (45) is given by

F (z,τ ) = F0(τ ) − β̃iz

�i

[Ẽ ∗ F0](τ ) + β̃2
i z

2

2�2
i

× [Ẽ ∗ Ẽ ∗ F0](τ ) + · · ·

=
∞∑

n=0

(−1)n
β̃n

i zn

n!�n
i

F̃n(τ ), (47)

where F̃n denotes the convolution of the n-fold convolution of

Ẽ(τ ) = δ(τ )

q2
i

+
(

1 − i

qi

)2
�i

2
e−�iτ/2

with the initial pulse F0(τ ). In fact, by inspecting the form of
the solution (8), one can express F̃n as a linear combination
of convolutions Fn [see Eq. (12)], describing the solution for
a pure bound state

F̃n(τ ) = q−2n
i

n∑
n′=0

(
n

n′

)
(qi − i)2n′

Fn′(τ ). (48)

We proceed by calculating the temporal profile of the field
intensity

|F (z,τ )|2 =
∞∑

p=0

(−2β̃iz)p

�
p

i p!
G̃p(τ ) (49)

in the same way as before, inserting F̃n instead of Fn into
Eq. (18). Using Eq. (48), the temporal base intensity functions
G̃p for a Fano resonance can be expressed by a linear combi-
nation of temporal base field functions (12) for a Lorentzian:

G̃p(τ ) = 2−p

p∑
p′=0

(
p

p′

)
F̃p′(τ )F̃ ∗

p−p′ (τ )

= q−2p

[p/2]∑
r=0

p−r∑
r ′�r

[
2−(r+r ′)(2 − δrr ′ )

(
p

r

)(
p − r

r ′

)

×Re[(q − i)2r (q + i)2r ′
Fr (τ )F ∗

r ′(τ )]

]
. (50)

Upper summation limit of the outer summation in Eq. (50)
equals the greatest integer less than or equal to p/2. We note
that in order to compose G̃p, one needs to precalculate Fn(τ )
for 0 � n � p, which is needed anyway to take into account
the terms up to p in the expansion.

In Fig. 8(b), the temporal intensity profile of the pulse is
presented at a target depth z0, assuming now that the state is
an autoionizing resonance and the initial pulse has a Gaussian
shape. This is to be compared to case 8 in Fig. 6(b), showing
the exit pulse profile for the same initial pulse, resonantly
tuned to a bound state. Besides the coherence properties of the
initial pulse, the attenuated temporal profile obviously depends
also on the nature of the excited state. Namely, for the Fano
resonance featuring the same d0i and �i as the bound state, the
delayed secondary maximum is less pronounced.

Finally, we note that the same result as (45) is obtained by
replacing in MB equations (6) and (7) the dipole matrix element
d0i by d̃0i(1 − i/qi) and adding an extra term −σcNF/2
to the left-hand side of Eq. (6). These modifications are
consistent with the previous time-dependent studies dealing
with autoionizing states [21–27].

IV. CONCLUSION

In this paper, an analog of the well-known Beer-Lambert
law was discussed in the time domain. It was shown that
the temporal profile of the attenuated light pulse can be
obtained by weighted summation of multiple convolutions
of the temporal profile of the incident pulse with the atomic
response function. Instead of numerically solving the two-level
system of partial differential equations describing propagation
of weak light in an atomic medium, the temporal dependence
of the pulse intensity at a given target depth is constructed by
summing up the characteristic base functions, each weighted
by the corresponding factor in the expansion of the exponential
function. Assuming weak light, the method is applicable for an
arbitrary atomic response and is presented here for the incident
light pulses in resonance with a single bound-bound and bound-
Fano state transition, respectively. The case with the coherent
100-fs incident Gaussian pulse was treated in detail and
illustrated by transitions from the ground to the selected doubly
excited states in the He atom featuring different lifetimes with
respect to the incident pulse duration. A general applicability of
the method was demonstrated by working out the attenuation
of an arbitrary incident pulse using both a direct numerical
integration of differential equations and construction of the
pulse profile from the corresponding set of temporal base in-
tensity functions. The latter approach offers additional insight
into the pulse transformation process: By increasing the target
thickness, the higher-order base functions in the expansion are
gradually “switched on,” causing characteristic modifications
of the pulse profile. The relation and the complementarity of
the method to the spectral domain approach was briefly dis-
cussed. Current applications may include analysis of captured
intensity profiles of attenuated pulses with initial duration in
the nanosecond to picosecond range, possibly reaching the
femtosecond timescale with future development of instrumen-
tation. The method may also be useful in the analysis of pump-
probe experiments where it is important to follow changes in
the initial pulse temporal profile with the target depth.
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