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Arrays of covalently bound organic molecules possess potential for light-harvesting and energy transfer
applications due to the strong coherent dipole-dipole coupling between the transition dipole moments of the
molecules involved. Here, we show that such molecular systems, based on perylene molecules, can be considered
as arrays of qubits that are amenable for laser-driven quantum coherent control. The perylene monomers exhibit
dephasing times four orders of magnitude longer than a typical gating time, thus allowing for the execution of a
large number of gate operations on the subpicosecond timescale. Specifically, we demonstrate quantum logic gates
and entanglement in bipartite (dimer) and tripartite (trimer) systems of perylene-based arrays. In dimers, naturally
entangled states with a tailored degree of entanglement can be produced. The nonlocality of the molecular trimer
entanglement is demonstrated by testing Mermin’s (Bell-like) inequality violation.
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I. INTRODUCTION

Quantum coherence has been identified as an emergent
resource [1–7] for biological and chemical functionality [2,6].
Understanding and, particularly, exploiting these features on a
molecular level has become feasible in recent years through the
progress in spectroscopy and quantum control of single molec-
ular systems [8–12]. Recent evidence points out that quantum
coherence can be robust and survive even at ambient condi-
tions [1,2,4–7,13–15], a fact that can be harnessed for engi-
neering and transferring quantum information in a wide variety
of organic nanosystems: multichromophoric and biomolecular
structures for light harvesting [5–7,13–17], as well as complex
chemical structures for organic photovoltaics with relevance
to sustainable renewable energy production [2,4,13,18]. An
important advantage of organic systems is that these materials
can be easily scaled up by chemical synthesis [1,4,18], and do
not require complex settings like high-vacuum traps for their
implementation [4,13,18].

Here, we show that, thanks to the recent advances in
single-molecule spectroscopy, we are able to manipulate and
to individually control molecular dynamics on the picosecond
and subpicosecond time scales, i.e., we can generate a condi-
tional coherent quantum dynamics and robust entanglement in
perylene-bisimide (PBI) based arrays immersed in an organic
matrix. We specifically focus on such polycyclic aromatic
hydrocarbon based molecules because they can be easily
synthesized and can be externally driven with a high degree
of control [9,12,17,19,20].
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This paper is organized as follows: In Sec. II, we briefly
introduce the physical properties of the PBI dimer and trimer
according to spectroscopy data. Section III describes the theory
behind the temporal evolution of dimer and trimer states. The
dimer structure for implementing quantum logic gates and
entanglement is shown in Sec. IV. We describe entanglement
generation and quantum nonlocality in trimers in Sec. V.
Finally, a summary of our findings and experimental remarks
for a physical implementation are discussed in Sec. VI.

II. SPECTROSCOPY OF MOLECULAR DIMERS AND
TRIMERS: DEFINING MOLECULAR QUBIT REGISTERS

As building blocks for quantum information processing
units, we consider here a molecular array consisting of two
(three) PBI molecules that are covalently linked by a rigid
calix[4]arene bridge [17,21]. In the following those arrays will
be referred to as dimers (trimers). We specifically focus on
those PBI systems because we characterized their photophysics
extensively by single-molecule techniques [17,19–21]; more-
over, PBIs are very bright and photostable. Considering for
each PBI molecule only the lowest-energy optical transition,
i.e., the transition between the electronic singlet ground state
(|g〉) and the vibrationless lowest-energy singlet excited state
(|e〉), each PBI in a dimer (trimer) represents a two-state
(qubit) system, with basis states |gi〉 ≡ |0i〉 and |ei〉 ≡ |1i〉.
Thus, in what follows, {|0i〉,|1i〉} denotes the computational
basis associated to qubit i. We note that this “two-level”
approximation is very well satisfied for polycyclic aromatic
hydrocarbon based molecules [12], because highly excited
singlet levels are at very high energy and are thus far off-
resonant. Transitions into triplet states possess very small
rates [19], such that these states are essentially not populated.
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FIG. 1. Schematics of the mutual orientations of the transition
dipole moments (double-headed arrows) of covalently bound PBI
molecules in trimer (black-solid box) and dimer arrangement (blue-
dashed box). μi corresponds to the transition dipole moment of the
ith PBI molecule. θ is the angle between subunits 1 and 2 (also 2 and
3). Subunits 1 and 3 are parallel to each other. The separation vectors
between PBI molecules are |r12| = |r23| = |r13|/2.

Moreover, transitions into vibrational levels that couple to the
electronic transitions carry only little transition dipole moment
at low temperatures relevant here (see below and Refs. [22,23])
and can thus be neglected as well.

The transition dipole moment μi (i = 1,2,3) for this lowest-
energy transition is oriented along the long axis of PBI.
Owing to the rigid bridge, the zig-zag-type arrangement for the
transition dipole moments shown in Fig. 1 results for a dimer
(trimer), with a center-to-center distance of |r12| = |r23| =
2.2 nm and an opening angle θ = 2π/3.

For the specific quantum control experiments proposed
here we consider dimers and trimers embedded in a well-
defined, crystalline matrix at cryogenic temperature (1.5 K).
Under these conditions we found that the lowest-energy optical
transition in PBI molecules occurs at a photon frequency of
νi ∼ 522 THz, corresponding to a wavelength of λi = 575
nm [19,20]. Moreover, in this situation all processes that
contribute to pure electronic dephasing, such as low frequency
matrix phonons and molecular librations coupling to the elec-
tronic transitions, are frozen out. Independent measurements of
the homogeneous line width γh = 1/(2πT1) + 1/(πT ∗

2 ) ∼ 27
MHz and of the excited state lifetime T1 = 5.8 ns of single PBI
molecules [19] indeed show that T ∗

2 → ∞.
A further fundamental physical parameter for our dimer

and trimer systems is the nearest-neighbor electronic cou-
pling Vij (i �= j ) between the transition dipole moments of
the individual PBI molecules. Given the magnitude of the
transition dipole moment |μi | = 10 D [19,21] and the rela-
tively small center-to-center distance, an electronic coupling
of ∼1356 GHz (or 45 cm−1) between adjacent PBIs can be
calculated (see Appendix A).

An important figure of merit for performing quantum gates
on a dimer (trimer) is the ratio between the nearest-neighbor
electronic coupling Vij and the molecular detuning, which is
defined as �ij := νi − νj . Previously, we considered a ratio of
Vij /�ij ∼ 0.1 as typical for performing dimeric conditional
quantum dynamics [24]. However, we found experimentally
that the difference in transition frequencies �ij can assume
any value between 0 and 570 cm−1 (17 THz) depending on the
specific local environment for each PBI molecule in a dimer
(trimer) [17,20], even if embedded in a well-defined matrix at
low temperatures. This means that the ratio Vij /�ij can run
from very large (	1) to small (
1), depending on the specific
dimer (trimer) under investigation. As we cannot control this

detuning experimentally, we perform initial calculations for
some exemplary values in the entire range (	1 to 
1). Then
we will proceed to identify which effects are to be expected
and what to look for in the experiments. Since both Vij and
�ij are much smaller than the transition frequencies of the
PBI molecules, the rotating wave approximation (RWA) is
well suited for describing the dimers’ and trimers’ quantum
dynamics [24,25].

III. DIMER AND TRIMER DISSIPATIVE
QUANTUM DYNAMICS

For the mathematical description of the quantum dynamics
of PBI dimers and trimers we follow the description given
in [24–29]. For the dimer, the effective Hamiltonian after
making the standard Born-Markov approximation on the
system-environment interaction [25,28,29], can be written as
(h = 1)

Hdimer = HQ + H12, (1)

where HQ = − 1
2 (ν1σ

(1)
z + ν2σ

(2)
z ) and H12 = 1

2V12(σ (1)
x ⊗

σ (2)
x + σ (1)

y ⊗ σ (2)
y ).

The matrix representation of Hdimer in the computational
basis of product states |i1〉 ⊗ |j2〉 (i,j = 0,1) reads

Hdimer =

⎛
⎜⎜⎝

−ν0 0 0 0
0 −�−

2 V12 0
0 V12

�−
2 0

0 0 0 ν0

⎞
⎟⎟⎠, (2)

where the molecular detuning is �− := �12 = ν1 − ν2, and
2ν0 = ν1 + ν2.

An external control can be included in the dynamics by
means of the light-matter Hamiltonian HL = 	i/2(σ (i)

− eiωLt +
σ

(i)
+ e−iωLt ) [24,25,28], ωL = 2πνL, where νL denotes the

laser frequency and 	i = −μi · Ei gives the Rabi frequency
induced by the interaction between the ith transition dipole mo-
ment μi and the coherently driving electric field Ei acting on
qubit i located at position r i . σ

(i)
+ = |1i〉〈0i | and σ

(i)
− = |0i〉〈1i |

stand for the raising and lowering operators, respectively. Due
to the short separation between qubits compared to the optical
diffraction limit, we consider that the laser affects both qubits in
the same way. Hence, in our simulations we fix 	1 = 	2 = 	.

Since we consider here cryogenic temperatures, we can
assume a zero-temperature environment. Within the weak
light-matter interaction (Born-Markov) approximation, the
time evolution of the density matrix operator associated with
the qubit-qubit system can then be approached by means of the
quantum master equation [24,29]

ρ̇ = −i[H̃dimer,ρ]

− 1

2

2∑
i,j=1

�ij (ρσ
(i)
+ σ

(j )
− + σ

(i)
+ σ

(j )
− ρ − 2σ

(j )
− ρσ

(i)
+ ), (3)

where H̃dimer = Hdimer + HL. The density matrix elements are
denoted by ρij,kl , with i,j,k,l = 0,1. �ii ≡ � are the sponta-
neous emission rates, and �ij ,i �= j, represent cross-damping
rates, for which the explicit forms are given in Appendix A.
Given the PBI excited state lifetime of T1 ∼ 5.8 ns, we get

063422-2



CONDITIONAL QUANTUM DYNAMICS AND NONLOCAL … PHYSICAL REVIEW A 97, 063422 (2018)

�i = 1/T1 ∼ 172 MHz. Based on Eq. (A1) we estimate the
cross-damping rate to be �12 ∼ −86 MHz.

For the trimer we are able to derive analytical expressions
for the three-qubit eigensystem by considering that qubit 1 and
qubit 3 (the “outer” PBI molecules; see Fig. 1) have the same
transition frequency ν. Hence, the only molecular detuning
reads �− := ν2 − ν (�21 = �23), where ν2 is the transition
frequency of the “middle” qubit. Here, for the ease of notation,
the same symbol �− as for the dimer case is used, but we
should be aware that its definition is different. Due to the spatial
symmetry of the trimer shown in Fig. 1, we also have V12 =
V23 ≡ V and V > V13. Under this consideration, and without
loss of generality, the effective three-qubit bare Hamiltonian
can now be written as

Htrimer

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 3ν0
2 0 0 0 0 0 0

0 − ν2
2 V 0 V13 0 0 0

0 V − ν−�−
2 0 V 0 0 0

0 0 0 ν2
2 0 V V13 0

0 V13 V 0 − ν2
2 0 0 0

0 0 0 V 0 ν−�−
2 V 0

0 0 0 V13 0 V ν2
2 0

0 0 0 0 0 0 0 3ν0
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(4)

where ν0 = (ν1 + ν2 + ν3)/3 = (2ν + ν2)/3 and �− = ν2 −
ν 
 ν. The dynamics of the trimer system is described by a
master equation similar to that of Eq. (3), but replacing H̃dimer

by Htrimer (the total trimer Hamiltonian with the laser action
is given in Appendix B), and by extending the incoherent sum
term over indexes i,j from 1 to 3.

IV. PBI DIMER QUANTUM COHERENCE
AND LOGIC GATING

For the dimer we next illustrate how one- and two-qubit
logic gates, and hence entanglement and nonlocal correlations
generation, are achieved. The dynamics of the dimer (two-
qubit) system is described by means of the master equation (3),
from which we obtain the density matrix and are able to
simulate the physical realization of logic gates as well as the
generation of entanglement.

According to our description in the previous sections, the
spontaneous emission rate (∼200 MHz) of PBI is up to five
orders of magnitude smaller than the electronic coupling V12

and the molecular detuning �− (103 and 104 GHz, respec-
tively). Since emission is the only dissipation channel, the
dimer is a highly coherent quantum system. As we will show
below, this means that coherent oscillations in the system’s
dynamics are about 1000 times faster than the spontaneous
emission. We simulate several scenarios of coherent oscillation
dynamics and show some striking results regarding the phys-
ical implementation of local as well as nonlocal gates useful
for small-scale quantum computing based on the dimers.

A. Swap gate and natural entanglement

The dimer can “naturally” generate the swap gate, which
flips the two intermediate states of the four-dimensional basis:
|01〉 → |10〉, and vice versa. The matrix representation of the
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FIG. 2. Natural swap gate dynamics. (a) Populations ρ01,01 (solid
purple) and ρ10,10 (thin-solid green). ρ00,00 and ρ11,11 are exactly zero.
The inset shows Re [ρ01,10] (dashed gray) and Im [ρ01,10] (solid gray)
of the relevant coherence. (b) Main: Fidelity of the swap gate; the time
of the gate is tswap = π/2V12. Inset: evolution of the EoF in the swap-
gate process. V12 = 1356 GHz, �− = 14.3 GHz, � = 172 MHz, and
�12 = −86 MHz. The time is given in units of V −1

12 .

swap gate reads

Uswap =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠. (5)

Figure 2 shows the pure generation of the swap gate for the
situation V12/�− = 95 	 1; see the caption for the detailed
parameters. Note that the time axis has been plotted in V −1

12
units. From the ground |00〉 state, if we computationally flip
qubit 2 to its excited state, the dimer is driven to the |01〉 state.
Then, under the action of the electronic coupling V12, after
a time tswap = π/(2V12) ∼ 1.2 ps the dimer reaches the |10〉
state, as shown in the main graph of Fig. 2(a) where we plot
the populations of this evolution, as well as the dynamics of the
coherence ρ01,10 (inset). Figure 2(b) gives the corresponding
fidelity F(ρ,σ ) = Tr[

√√
σρ

√
σ ], where σ is taken to be the

expected state at the end of the gate and ρ is the evolving state
of the dissipative dynamics. We find that the swap gate step
has been carried out within ∼1.2 ps with F = 1. We remark
that the swap gate operation continues (its dynamics exhibits
coherent oscillations) for times up to two orders of magnitude
longer than tswap. Intriguingly, the coherent oscillations lose
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FIG. 3. Natural generation of the maximally entangled Bell state
|
−〉 = 1√

2
(|01〉 − |10〉), from the initial |01〉 state. (a) Populations,

(b) coherence Re [ρ01,10] (dashed) and Im [ρ01,10] (solid), (c) fidelity
with respect to the ideal Bell state, and (d) populations for 50t
− .
�− = 190 × 14.3 GHz (see Fig. 2). Remaining parameters are as in
Fig. 2.

only 5% of the maximum fidelity after around t = 250tswap,
i.e., for t ≈ 290 ps (not shown).

One important byproduct of this conditional dynamics
arises: By looking at the inset of Fig. 2(b), it is clear
that the swap gate can be tailored to generate entanglement
in the dimer. The entanglement is quantified by the en-
tanglement of formation (EoF). For two-qubit systems, the

EoF is analytically computed as EoF(ρ) = h(
1+

√
1−C2(ρ)
2 ),

where h(x) = −x log2 x − (1 − x) log2(1 − x) is the binary
entropy and C(ρ) = max{0,λ1 − λ2 − λ3 − λ4} is the so-
called concurrence. λi’s are the eigenvalues of the matrix√

ρ(σy ⊗ σy)ρ̄(σy ⊗ σy), where ρ̄ is the elementwise complex
conjugate of ρ [30]. The maximal value of entanglement is
reached at the time tswap/2. This simple scenario clearly shows
the versatility of the dimer to generate single- as well as
two-qubit quantum gates.

We next focus on the naturally generated entanglement
by means of the swap gate. In Fig. 3 we explicitly show
the kind of entangled state that has been created for a ratio
V12/�− = 0.5. It is possible to generate the antisymmetric
Bell state |
−〉 = 1√

2
(|01〉 − |10〉) as shown by the populations

[Fig. 3(a)] and coherences [Fig. 3(b)]. The time required to
obtain this entangled state, with a high fidelity [Fig. 3(c)],
is t
− = π/2

√
�2−/4+V 2

12∼819 fs, i.e., it is determined by the
interplay between the molecular detuning and the electronic

coupling. Such an entangled state is naturally robust to dissi-
pation effects arising from the matrix host of the system and
can be reached with fidelities around 95% for times longer
than 1000t
− . Figure 3(d) shows the population oscillations
for a time 50t
− . It is worth noting that this entanglement
dynamics is carried out with a molecular detuning two orders
of magnitude higher than that used in Fig. 2, showing the large
range with respect to the ratioV12/�− for which the PBI dimers
are able to implement a conditional quantum dynamics and
entanglement generation.

We emphasize that the swap gate cannot be implemented
experimentally following the procedure outlined above. Owing
to the optical diffraction limit of λi/2 ∼ 250 nm, we cannot
address single qubits within a dimer using an external laser.
Only the entangled symmetric and antisymmetric Bell states
|
±〉 = 1√

2
(|01〉 ± |10〉), two of the eigenstates of the dimer’s

Hamiltonian in Eq. (2), are optically accessible by a single-
photon transition. Moreover, the doubly excited state |11〉
can be excited by a two-photon process [26]. Since these
transitions into Bell states appear at different frequencies, the
state to be excited can be selected by appropriately tuning
the laser frequency. Alternatively, it can be easily shown
from the molecular geometry (Fig. 1) that the symmetric
and antisymmetric Bell states possess a mutually orthogonal
transition dipole moment, i.e., selection is also possible using
the laser polarization. To generate an excitation localized on
a single qubit of the dimer, and thus to realize the swap gate,
a suitable coherent superposition of the Bell states |
±〉 is
required, which can be achieved by an appropriate choice
of the frequency bandwidth and/or polarization of the laser.
The subsequent dynamics within the system will then occur
as outlined above. This indirect local action of the laser
(or computational flipping) can be mathematically included
in the model of Eq. (3) by assuming a local action of the
laser Hamiltonian HL. Finally, we note that in the molecular
spectroscopy community the Bell states |
±〉 are known as
Frenkel (or molecular) exciton states.

B. Generation of the full entangled Bell basis

We have shown that the PBI dimer can naturally generate the
Bell states |
±〉 by means of their strongly coherent electronic
coupling. As these two states are part of a complete four-state
orthonormal basis, the so-called Bell basis, they can be trans-
formed, by computationally performing local operations, to the
other two Bell states |�±〉 := 1√

2
(|00〉 ± |11〉). Appendix C

shows an alternative scenario of dimer entanglement.
As shown in Fig. 4, the initial state |
+〉 is driven to the state

|�′〉 := α|00〉 + β|11〉, with α � 0.70 and β � 0.57 + 0.42i.
This can be done by computationally flipping qubit 2. The
remaining matrix elements are at least two orders of magnitude
smaller. A similar result is obtained if we start from the state
|
−〉, in which case we arrive at |�∗〉 := −β∗|00〉 + α|11〉
which in turn is orthogonal to the former one. This particular
scenario has used the ideal |
±〉 states as our initial states: these
can be prepared by following the recipe in Fig. 3 to entangle
the monomers using the swap gate and then flipping the state
of qubit 2. An alternative approach is illustrated in Fig. 8.

The set of required quantum operations to generate, for ex-
ample, the |�∗〉 state (up to a global phase) can be concatenated
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FIG. 4. (a) Populations and (b) coherences ρ01,10 (gray) ρ00,11

(red) in the generation of α|00〉 + β|11〉 states from the Bell |
+〉
state. Solid (dashed) stands for imaginary (real) part. The local action
corresponds to flipping the state of qubit 2. Parameters as in Fig. 3.

as |�∗〉 � 1 ⊗ σx Uswap 1 ⊗ σx |00〉. Although this three-gate
circuit can be seen to be equivalent to the application of a
local rotation on qubit 2 followed by a controlled-NOT (U 12

CNOT)
operation, we point out that the dimer reported here is not able
to directly simulate a controlled-NOT gate. This said, we have
shown that these PBI dimers allow us to naturally simulate the
nonlocal swap gate, which, in conjunction with single qubit
operations, implements a universal gate set.

We have already mentioned above that the Bell states |
±〉
can be experimentally generated by laser excitation. The other
two Bell states |�±〉 represent a superposition between the
ground state and the two-photon accessible doubly excited
state, which can also be induced by an external laser field.

V. PBI TRIMER ENTANGLEMENT
AND NONLOCAL STATES

We quantify the dynamics of the zig-zag-type trimer system
(see Fig. 1) by expanding the previous Hilbert space into the 23

dimensional space spanned by the computational basis states
|i〉 ⊗ |j 〉 ⊗ |k〉 (i,j,k = 0,1), taking into account all the cross-
damping rates �ij , and the coherent electronic couplings Vij ,
which can be directly computed from Eqs. (A1) and (A2), by
moving the subscripts i,j = 1,2,3, and following a procedure
similar to that for the dimer system.

In Eq. (4) we give the bare Hamiltonian (no laser) and in
the Appendix B the full (laser-driven) Hamiltonian for the PBI
trimer, as well as the distance dependence of the collective
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FIG. 5. Expectation values for the transition |E1〉 ↔ |E3〉 under
the action of a coherent (continuous) laser 	 = 1 GHz. (a) Pop-
ulations and (b) coherences [real (solid) and imaginary (dashed)
part] with �− = 12 000 GHz and νL = E3 − E1 = 700 THz.
(c) Populations and (d) coherences, �− = 1200 GHz and νL = E3 −
E1 = 699 THz. Real and imaginary curves for coherences ρ000,001

(black) and ρ000,100 (red) always take the same values, respectively.
The inset shows the same populations as in (a) but with a laser
amplitude 	 = 120 GHz. Other used parameters are V = 1200 GHz,
V13 = −120 GHz, � = 172 MHz, γ12 = γ23 = −86 MHz, and γ13 =
172 MHz.

effects. Diagonalization of the Hamiltonian (4) leads to the
identification of three classes of eigenstates: (i) two product
states, (ii) two purely pairwise entangled states, and (iii) four
possible tripartite entangled states; see Eq. (D1). An example
of the latter class is the state

|E3〉 = 2V√
2�−(�− + V13 − �−)

(|001〉 + |100〉)

−
√

�− + V13 − �−
2�− |010〉, (6)

with eigenenergy E3 = − 1
2 (ν − V13 + �−), where �± =√

8V 2 + (V13 ± �−)2. |E3〉 is a pairwise entangled state if
V/�− 
 1, but it exhibits genuine tripartite entanglement
otherwise. The exact form of the eight eigenstates and their
respective PBI trimer eigenergies are left to the Appendix D.

We can excite different transitions between the eigenstates
by applying an external coherent field. We begin by driving the
transition |E1〉 ↔ |E3〉 with a weak laser (	 = 1 GHz), and
assume as initial state |E1〉 ≡ |000〉. We first assume as specific
case a ratio V/�− = 0.1. Then the eigenstates are made up of
pairwise entangled states and there are no tripartite entangled
eigenstates. For instance, from Eq. (6) [see the numerics in
Eq. (D2)], it is clear that the intermediate eigenstate |E3〉 has
only 1.9% of its population in the state |010〉, and almost all
its population is in the superposition 0.70(|001〉 + |100〉). This
means that the three PBI monomers are not entangled at the
same time, but just two of them exhibit entanglement and their
state is separable with respect to the other monomer. Under
these conditions the transition |E1〉 ↔ |E3〉 occurs coherently
as shown by the time evolution of the expectation values
〈E1|ρ(t)|E1〉 (blue) and 〈E3|ρ(t)|E3〉 (brown) in Figs. 5(a)
and 5(c). The stationary state is a statistical mixture of the two
involved states. A similar result is obtained when exciting the
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transition with a stronger laser amplitude 	 = 120 GHz [inset
of Fig. 5(b)].

The situation differs when assuming a ratio V/�− = 1
[Eq. (D3)]. In this case, the four intermediate eigenstates
are reasonable superpositions of three orthonormal states
and they exhibit tripartite entanglement (in fact, they all
are W-like states). Such tripartite entanglement is present in
the stationary regime being mixed with the ground state of
the trimer [Fig. 5(c)] for the particular transition |E1〉 ↔ |E3〉.
The presence of some coherences at the end of the dynamics
[more explicitly in Fig. 5(d)] implies that the stationary state is
not completely classically correlated (a mixture of diagonal
states) but still has quantum correlations assisted by the
continuous action of the laser field.

A. Natural entanglement dynamics

Pairwise as well as W-like tripartite entangled states [31–33]
are naturally generated as shown in Fig. 6 if we initiate the
trimer computationally in the |010〉 state, i.e., the sandwiched
monomer (qubit 2) is in the excited state and the other two in
their ground state. Note that in an experiment this state can
only be excited by creating a suitable coherent superposition
of eigenstates (see Appendix D). After leaving the trimer to
evolve exclusively by means of the electronic couplings, the
system arrives to an almost perfect pairwise entangled state
1/

√
2(|100〉 + |001〉) ≡ |
+〉13 ⊗ |0〉2 (see vertical green

line in Fig. 6). This corresponds to a maximally entangled state
between qubits 1 and 3. Hence, the trimer state is separable
with respect to the second qubit. This state is created after
a time tpw = π/

√
8V 2 + (V13 − �−)2 ≈ π/2

√
2 V , and such

behavior is expected according to the swapping effect due to
V and the experimental criteria V 	 V13 � �−. The ρ100,100

and ρ001,001 curves superpose each other, as seen in Fig. 6(a),
and the inset shows the coherent dynamics of populations for
a time frame two orders of magnitude larger than that in the
main plot.

Interestingly, this ultrafast dynamics allows the generation
of tripartite entangled states as the so-called W-like states.
Indeed, it is easy to show that under this evolution the
only states propagating different from zero are those in the
mixture ρW (t) = p1(t)|000〉〈000| + p2(t)|W ∗(t)〉〈W ∗(t)|,
where |W ∗(t)〉 = a1(t)|100〉 + a2(t)|010〉 + a3(t)|001〉,
|a1(t)|2 + |a2(t)|2 + |a3(t)|2 = 1, and a2(0) = 1, are W-like
states. Given the fact that p1(t) 
 p2(t) for times shorter
than the excited state lifetime, it follows that the states
ρW (t) → |W ∗(t)〉〈W ∗(t)| are basically the only ones present
during the dynamics in this time frame.

The entanglement of this evolution has been quantified via
the negativity [34] due to its operational interpretation and
easiness of computation. To do so, let us introduce {i|jk} as
a partition of the trimer system, where i,j,k = 1,2,3 stand
for qubits 1,2,3 respectively. Hence, negativity is computed
on the three partitions {1|23}, {2|13}, and {3|12} as plotted in
Fig. 6(b). As expected, the negativities for {1|23} and {3|12}
have the same behavior due to the entanglement between qubits
1 and 3.

It is clear that the representative |W 〉 = 1√
3
(|001〉 + |010〉 +

|100〉) state belongs to the family of generated entangled ρW (t)
states. In Fig. 6(a) such a state occurs at the intersection of the
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FIG. 6. Generation of pairwise (bipartite) entangled and tripartite
W-like states via the monomers dipole-dipole couplings. (a) Main:
Populations ρ000,000 (black), ρ010,010 (red), ρ100,100 (blue) and ρ001,001

(green). Inset: Same populations for tV ∈ [780-800]. This is two
orders of magnitude larger than the time in the main plot and one
order of magnitude shorter than the relaxation time. The green vertical
line at tpw indicates the generation of a pairwise entangled state, and
the brown line at tW = 3tpw/2 highlights the generation of the |W〉
state (see main text for full description). (b) Negativity with respect to
the partitions {1|23} (solid), {2|13} (dashed), and {3|12} (dotted). Pa-
rameters: V = 1356 GHz, V13 = −122 GHz (|V13| ∼ 0.09 V ), �12 =
�23 = −86 MHz,�13 = 172 MHz, and �− = 10 GHz (∼0.007 V ),
no laser. ν2 > ν1 = ν3 (similar results are obtained for different choice
of frequencies—not shown).

three corresponding populations. Another scenario explores a
nontrivial behavior of the negativity for the partition {2|13}: At
its maximum value, marked by the brown line at tW = (3/2)tpw

in Fig. 6, the trimer reaches the state

|W〉 = 1
2 (|100〉 +

√
2e−i0.489π |010〉 + |001〉). (7)

This particular state is of great interest as it belongs to a
subclass of W-like states that have been proven to be useful for
teleportation and superdense coding [35].

B. PBI trimer nonlocal states

So far we have discussed (Secs. IV and V A) the imple-
mentation of dimers and trimers based on PBI molecules as
a valuable physical resource for quantum computing and in-
formation processing. We have also demonstrated conditional
quantum dynamics and entanglement generation in dimers and
trimers.
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In this section, our concern is whether the entangled states
are also nonlocal states. Nonlocality [31–33,36] is a fundamen-
tal feature of quantum states that is not always equivalent to
entanglement [31] and has been demonstrated to be useful for
some tasks in information theory [32]. Nonlocality in bipartite
states has been intensely studied and there are several different
metrics for defining the nonlocality of quantum states, e.g.,
CHSH inequality, activation, and superactivation of nonlocal-
ity, just to name a few [32,37,38]. For more than two qubits,
however, the nonlocality formalism extends to 46 classes of
inequalities; each of them gives a classical limit that could be
exceeded by nonlocal quantum states [39]. Recently, analytical
conditions to estimate the maximal violation of Mermin’s in-
equality for three qubits were proposed [40,41]. Furthermore,
an interesting development on multipartite nonlocality with
operational (experimental) interpretation and implementation,
in terms of inequalities that just involve one- and two-body
expectation values (up to two parties correlations), has been
reported [42].

Some of the eigenstates of the trimer’s Hamiltonian support
entanglement. They can be directly excited by a coherent laser
and exhibit a robust dynamics against the slow dissipation
due to spontaneous emission. The degree of entanglement,
here caught by the negativity [see Fig. 6(b)], depends on the
interplay among the physical parameters; in particular, that
between the molecular detuning and the effective electronic
coupling.

In the context of quantum nonlocality, a nonlocal state is an
entangled one [43], but the opposite does not always hold, and
there are plenty of entangled but local states. As to the physical
implementation of tripartite states, one question arises: Are
those trimer entangled states nonlocal? Here, we consider a
Bell-like inequality and test it for some trimer entangled states:
if such an inequality is violated then the corresponding state is
said to be nonlocal.

We numerically test Mermin’s inequality [44] by consider-
ing that two dichotomic observables act on each PBI monomer,
hence the inequality can be written as

ϒ ≡ |〈A1B2B3〉 + 〈B1A2B3〉
+ 〈B1B2A3〉 − 〈A1A2A3〉| � 2, (8)

which is the so-called (3,2,2) scenario: three parties, two
observables per party, and two outcomes per observable
(dichotomic observables), and 〈O〉 = Tr(ρO) stands for the
expectation value of the observable O. In our description of
the PBI monomers as qubits, we write their associated observ-
ables in terms of the Pauli matrices Ai = cos θiσz + sin θiσx

and Bi = cos φiσz + sin φiσx , i = 1,2,3. Other observables
in terms of combinations with σy can also be defined [45].
However, as the states explored in this section have a matrix
structure with their antidiagonal elements identically zero,
observables in terms of σx plus σy do not exhibit any violation.
Hence, the inequality (8) is evaluated in terms of the different
angles θi, φi ∈ [−π,π ], on the eigenstates supported by the
trimer, and we search for at least one scenario in which
Mermin’s inequality (8) is violated.

The eigenstate |E3〉 see [Eq. (6)] transforms into the
W-like state 1/

√
3(|001〉 − |010〉 + |100〉) for the partic-

ular configuration V = 1200 GHz, V13 = −120 GHz, and

�− = 1080 GHz. According to Mermin’s inequality (8) this
state is of course nonlocal, with a maximum violation numer-
ically found to be ϒ ∼ 3.05.

We now look into the nonlocality of some of the states
generated in the bare dynamics shown in Fig. 6. At t = 0,
the initial (product) state |010〉 is of course local. However,
at a later time, the pairwise entangled state reached at tpw ≈
π/2

√
2V (green vertical line in Fig. 6) exhibits a maximum

value ϒ ∼ 2.8. In a similar way, the W-like state Eq. (7)
reached at tW ≈ 3π/4

√
2V (brown vertical line in Fig. 6)

also violates Mermin’s inequality as the function ϒ attains
a maximum of ∼2.2. We then conclude that these two states
naturally generated by the trimer are both nonlocal states in the
sense of the (3,2,2) scenario. It is worth noting that the above
two states are not pure at all because, in both cases, there exists
a contribution due to the ground |000〉 state, as expected. Then,
they both can be written as (1 − p)|000〉〈000| + p|
pw〉〈
pw|
and (1 − p)|000〉〈000| + p|W〉〈W|, respectively. We have
identified |
pw〉 ≡ |
+〉13 ⊗ |0〉2. Despite this fact, and thanks
to the slow spontaneous emission of the trimer, the contribution
of the ground state is up to three orders of magnitude smaller
than the contribution of the relevant states. As a consequence,
the maximum values obtained for the violation of Mermin’s in-
equality agree with the maximal violation of the corresponding
pure state (p = 1 in both cases). This behavior persists up to
hundreds of picoseconds, as shown for the bare dynamics in
the inset of Fig. 6(a).

VI. SUMMARY

For the implementation of quantum logic gating, entan-
glement, and nonlocality in nanostructures based on organic
molecules, we have considered here, without loss of generality,
the particular arrangement shown in Fig. 1. The transition
dipole moments of the PBI molecules in the dimer and trimer
span one plane and possess an opening angle θ = 120◦.
However, as mentioned above, the separation between the
molecules (i.e., transition dipole moments) as well as their mu-
tual orientation can be tailored by chemical synthesis. Hence,
the values for the collective damping (A1) and electronic
couplings between transition dipole moments (A2) can be
tuned in this way. For instance, the molecules could be arranged
such that their transition dipole moments are parallel to each
other; this would result in a smaller nearest-neighbor distance,
thus in a stronger electronic coupling and as a consequence in
a higher degree of entanglement between them.

For the dimer, we have shown how to drive a conditional
quantum dynamics to achieve one-qubit (one-PBI-monomer)
and two-qubit gates. We also demonstrated that all the entan-
gled Bell basis states can be experimentally implemented in
the dimer.

In the trimer analysis we have additionally tested the
nonlocality of the naturally generated entangled states. We
have numerically shown that a W-like state can be exactly
obtained for specific combinations of the coherent electronic
couplings and the molecular detuning. Furthermore, we also
computed the corresponding locality violation for the dynami-
cally generated pairwise (|
pw〉) and W-like (|W〉) states (see
Fig. 6).
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Our results on entanglement generation in both dimers and
trimers reveal that the dynamics in these systems is highly
coherent on the subpicosecond and picosecond timescales; the
relaxation time of their excited states lies in the nanosecond
scale. This means that quantum gate operations with a high
fidelity (coherent operations) are carried out in the subpicosec-
onds scale (104–105 times faster than their lifetime).

Although the concept of nonlocality may be questioned
to be meaningful here due to the short distance between
the dimers and trimers qubits under investigation, organic
molecules can be easily synthesized to form micrometer-
long self-assembled fibrillar structures containing up to 104

molecules [1]. The very dense packing of molecules in such
systems results in strong electronic coupling between their
transition dipole moments and thus should allow for the
formation of entangled states on a macroscopic scale, at which
nonlocality aspects become important. This said, it is worth
recalling that a crucial point in the understanding of the
structure of quantum states is their classification in terms of
quantum correlations. Thus, quantum states can be ranked
as nonlocal, steerable, entangled, or quantum (discord-like)
correlated (see, e.g., [3,46]), from which nonlocal states define
the more restrictive set (see, e.g., [46]).
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APPENDIX A: GENERAL EXPRESSIONS FOR THE PBI
COLLECTIVE DAMPING AND THE DIPOLE-DIPOLE

COUPLING

The coherent coupling Vij , and the cross-damping rate �ij

for a sample of N qubits are computed, respectively, as [29]

�ij = 3

2

√
�i�j

{
[μ̂i · μ̂j − (μ̂i · r̂ij )(μ̂j · r̂ij )]

sin zij

zij

+ [μ̂i · μ̂j − 3(μ̂i · r̂ij )(μ̂j · r̂ij )]

(
cos zij

z2
ij

− sin zij

z3
ij

)}
,

(A1)

Vij = 3

4

√
�i�j

{
[(μ̂i · r̂ij )(μ̂j · r̂ij ) − μ̂i · μ̂j ]

cos zij

zij

+ [μ̂i · μ̂j − 3(μ̂i · r̂ij )(μ̂j · r̂ij )]

(
cos zij

z3
ij

+ sin zij

z2
ij

)}
,

(A2)

where zij = nkij rij , n denotes the matrix refractive index,
kij = ωij /c, and ωij = π (νi + νj ). μi is the dipole transition
moment and r ij is the separation vector between the centers of
the two monomers i and j ; i,j = 1, . . . ,N . Under the rotating
wave approximation-RWA, we can simplify the notation to
ωij → 2πν0 as the inequality |νi − νj | 
 ν0 holds for all pairs
of subscripts ij .

APPENDIX B: PBI TRIMER HAMILTONIAN

The driven Hamiltonian for the three-qubit system is
straightforwardly extended from Eq. (2). Considering the fixed
coplanar configuration shown in Fig. 1 for the trimer, the
Hamiltonian reads

H̃trimer

= 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−δ1 	 	 0 	 0 0 0
	 −δ2 2V23 	 2V13 	 0 0
	 2V23 −δ3 	 2V12 0 	 0
0 	 	 δ2 0 2V12 2V13 	

	 2V13 2V12 0 −δ2 	 	 0
0 	 0 2V12 	 δ3 2V23 	

0 0 	 2V13 	 2V23 δ2 	

0 0 0 	 0 	 	 δ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B1)

where δ1 = 3(ν0 − νL), δ2 = ν2 − νL, δ3 = ν − �− − νL.
Given the planar structure of the trimer (see Fig. 1), we
estimate the following values for the collective parameters:
V12 = V23 ≈ 1356 GHz, �12 = �23 ≈ −86 MHz (the separa-
tion between monomers 1-2 and 2-3 is 2.2 nm). For monomers
1 and 3 we haveV13 ≈ −122 GHz and�13 ≈ 172 MHz as their
separation is 4.4 nm. For the specific computation of these
values from the general expressions Eqs. (A1) and (A2), we
have considered the dipole moments associated with qubits 1
and 3 to be parallel to each other, thus the closer dimers exhibit
a repulsive interaction and the farthest ones an attractive one.

Figure 7 shows the general behavior of the collective
parameters in the trimer system: (a) shows the behavior of
V12 (solid curve) and V13 (dashed curve) as functions of
the mutual separation r from 70 nm to 1000 nm. The inset
shows a zoom of such separation in the region 2–5 nm. The
intermonomer separation for which the above numerical values
were computed is represented by the two black dots in the inset
of (a). The corresponding behavior of �12 and �13 is shown in
(b).

The time evolution of the trimer density matrix elements are
numerically computed by extending the master equation (3) to
the new Hamiltonian (B1), and by adding �3 and �13 terms to
the Lindblad operator.

APPENDIX C: LASER-INDUCED ENTANGLEMENT
THROUGH THE DOUBLY EXCITED STATE

As an alternative of the natural entanglement generation
shown in Sec. IV A, in this Appendix we give another scenario
in which the entangled |
±〉 states can be excited by means
of a two-photon process. The dimer is driven to the doubly
excited |11〉 state within a time π/	 (	 ≈ 27116 GHz), as
shown in Fig. 8(a). This strong laser strength (	/2 = 10V12)
is required as the energy difference between these two states
is ν1 + ν2. This transition occurs with high fidelity in ∼116 fs
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[Fig. 8(c)]. After this step, the Bell state |
+〉 can be excited
by setting the coherent laser to 	/2 = 0.1V12 (	 ≈ 271 GHz),
and applying it for a time t
+ � 7π/10	 or, equivalently, for
t
+ � 7π/2V12. This time roughly corresponds to t
+ ∼ 8.1 ps
[Fig. 8(b)], and the total process time is ∼8.2 ps. Figure 8(d)
shows the EoF for the second step.

In spite of the fact that the identical-molecule scenario
(�− = 0) would be a desired one, we have tested the more
realistic case of detuned molecules. In doing so, we con-
sidered �− = 0.01V12 (13.6 GHz) in Fig. 8; however, we
point out that this entanglement generation also works for
�− = 0.1V12, and even for �− = V12 (1356 GHz): in this
latter case the maximum value for the EoF is ∼0.85. The
interplay between the molecular detuning and the electronic
interaction is also evident as the laser detuning must satisfy
�+ = 2

√
(�−/2)2+V 2

12 for this population transition to occur.
If instead we excite with a perfect resonance (�+ = 0), the
ground state will increase quickly and an entangled state
like that shown in Fig. 8(b) will never appear. In addition
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FIG. 8. Entanglement from the doubly excited state. (a) Tran-
sition from the ground |00〉 (dashed blue) to the doubly ex-
cited |11〉 (thin-dashed brown) state. �+ = 0 and 	 = 27116 GHz.
(b) Driven dynamics from the |11〉 state to the maximally entangled
|
+〉 state. 	/2 = 135.6 GHz, and �+ = 2

√
(�−/2)2 + V 2

12. (c)
Fidelity evolution of the |00〉 → |11〉 transition. (d) EoF generated
during this process. �, �12, and V12 as in Fig. 2, and the molecular
detuning �− = 0.01V (13.6 GHz).

to this resonance condition, a tradeoff between the laser and
the electronic interaction strengths is also a crucial factor for
producing the entanglement evolution of Fig. 8(b), as they must
satisfy 	 < V12. For laser strengths of the same order of or
higher than V12, the entangling effect is washed away.

We emphasise that the PBI coherent dynamics persists
up to hundreds of picoseconds. For the case of Fig. 8(b),
the total mixed state is (1 − p(t))|11〉〈11| + p(t)|
+〉〈
+|,
where the time evolution might be captured in the parameter
p(t), with p(0) = 0, and hence for tm = mt
+ ≡ m(7π/2V12),
m = 1,2,3, . . . we havep(tm) = 1 and thus the entangled |
+〉
state.

APPENDIX D: PBI TRIMER EIGENSYSTEM

The eight eigenstates of the bare trimer Hamiltonian (4) with
their respective eigenenergies can be analytically computed:

E1 = −3

2
ν0, |E1〉 = |000〉, E2 = −(ν2/2 + V13), |E2〉 = 1√

2
(−|001〉 + |100〉),

E3 = −1

2
(ν − V13 + �−), |E3〉 = 2V√

2�−(�− + V13 − �−)
(|001〉 + |100〉) −

√
�− + V13 − �−

2�− |010〉,
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E4 = −1

2
(ν − V13 − �−), |E4〉 = 2V√

2�−(�− − V13 + �−)
(|001〉 + |100〉) +

√
�− − V13 + �−

2�− |010〉,

E5 = 1

2
(ν + V13 − �+), |E5〉 = 2V√

2�+(�+ + V13 + �−)
(|011〉 + |110〉) −

√
�+ + V13 + �−

2�+ |101〉,

E6 = 1

2
(ν + V13 + �+), |E6〉 = 2V√

2�+(�+ − V13 − �−)
(|011〉 + |110〉) +

√
�+ − V13 − �−

2�+ |101〉,

E7 = ν2/2 − V13, |E7〉 = 1√
2

(−|011〉 + |110〉), E8 = 3

2
ν0, |E8〉 = |111〉, (D1)

where �± =
√

8V 2 + (V13 ± �−)2. To estimate the magnitudes of the eigenenergies’ and the eigenstates’ coefficients, we choose
the following parameters: V/�− = 0.1, V = 1200 GHz, V13 = −120 GHz, �− = 12000 GHz, ν = 700 THz, and ν2 = 712 THz
(�−/ν0 � 0.02). Thus, the eigensystem now reads

E1 = −1056 THz, |E1〉 = |000〉, E2 = −355.9 THz, |E2〉 = 1√
2

(−|001〉 + |100〉),

E3 = −356.3 THz, |E3〉 = 0.7005(|001〉 + |100〉) − 0.1361|010〉,
E4 = −343.8 THz, |E4〉 = 0.0962(|001〉 + |100〉) + 0.9907|010〉,
E5 = 343.8 THz, |E5〉 = 0.0981(|011〉 + |110〉) − 0.9903|101〉,
E6 = 356.1 THz, |E6〉 = 0.7003(|011〉 + |110〉) + 0.1387|101〉,

E7 = 356.1 THz, |E7〉 = 1√
2

(−|011〉 + |110〉), E8 = 1056 THz, |E8〉 = |111〉. (D2)

For a smaller molecular detuning such that V/�− = 1, �− = 1200 GHz and ν2 = 701 THz, the eigensystem becomes

E1 = −1050.6 THz, |E1〉 = |000〉, E2 = −350.5 THz, |E2〉 = 1√
2

(−|001〉 + |100〉),

E3 = −351.9 THz, |E3〉 = 0.5836(|001〉 + |100〉) − 0.5646|010〉,
E4 = −348.2 THz, |E4〉 = 0.3992(|001〉 + |100〉) + 0.8254|010〉,
E5 = 348.2 THz, |E5〉 = 0.4174(|011〉 + |110〉) − 0.8072|101〉,
E6 = 351.7 THz, |E6〉 = 0.5708(|011〉 + |110〉) + 0.5902|101〉,

E7 = 350.7 THz, |E7〉 = 1√
2

(−|011〉 + |110〉), E8 = 1050.6 THz, |E8〉 = |111〉. (D3)

As explained in the main text, the scenario given by Eq. (D2) clearly shows that nontripartite entangled states are generated.
Hence, only pairwise and product states build up the eigensystem. On the other hand, in the second scenario we can see that
the states from |E3〉 to |E6〉 are superpositions with significant contributions around the three compounding states, thus being
genuine tripartite entangled states.
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