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Lattice-induced photon scattering in an optical lattice clock
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We investigate scattering of lattice laser radiation in a strontium optical lattice clock and its implications
for operating clocks at interrogation times up to several tens of seconds. Rayleigh scattering does not cause
significant decoherence of the atomic superposition state near a magic wavelength. Among the Raman scattering
processes, lattice-induced decay of the excited state (5s5p) 3P0 to the ground state (5s2) 1S0 via the state (5s5p) 3P1

is particularly relevant, as it reduces the effective lifetime of the excited state and gives rise to quantum projection
noise in spectroscopy. We observe this process in our experiment and find a decay rate of 556(15) × 10−6 s−1 per
photon recoil energy Er of effective lattice depth, which agrees well with the rate we predict from atomic data. We
also derive a natural lifetime τ = 330(140) s of the excited state 3P0 from our observations. Lattice-induced decay
thus exceeds spontaneous decay at typical lattice depths used by present clocks. It eventually limits interrogation
times in clocks restricted to high-intensity lattices but can be largely avoided, e.g., by operating them with shallow
lattice potentials.
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I. INTRODUCTION

Atomic clocks based on optical transitions keep advancing
the field of frequency metrology. Accuracy of few parts in
1018 [1–4] as well as fractional frequency instability below
10−16/

√
τ [5] have been demonstrated, where τ is the in-

tegration time in seconds. Present optical clocks are based
either on single trapped ions or on large numbers of neutral
atoms confined to optical lattice potentials, as has first been
proposed in Ref. [6]. Both types of clocks lend themselves
to a variety of new applications, which range from testing
fundamental physics with laboratory experiments, such as
searching for variations of fundamental constants [7,8], testing
special relativity [9], or the proposed search for dark matter
[10], to the measurement of geopotentials [11–13].

The Allan deviation, σy(τ ), which can be achieved in a given
integration time τ for an ensemble of N uncorrelated absorbers
is fundamentally limited by quantum projection noise (QPN)
to [14]

σy(τ ) = 1

K

1

Q

1√
N

√
Tc

τ
, (1)

where Q is the quality factor of the observed resonance, Tc is
the measurement cycle duration, and K is a line shape factor on
the order of one, which depends on the interrogation sequence.
Optical lattice clocks benefit from inherently low QPN due to
the large number of particles being probed simultaneously.
In fact, they are often limited by the Dick effect [15–17]
instead, which results from the aliasing of noise due to the non-
continuous observation of the interrogation laser’s frequency.
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This effect can be overcome by dead time–free interrogation
using two atomics packages [5], for instance.

Generally, the performance of optical clocks benefits
strongly from increasing interrogation time and thus the quality
factor. Ramsey spectroscopy with free evolution times up to
15 s has been demonstrated in a three-dimensional optical
lattice clock [18]. Ultrastable lasers achieving fractional fre-
quency instability down to 4 × 10−17 and coherence times
of several tens of seconds have been reported recently [19];
such laser systems will allow even longer interrogation times.
However, new potential sources of atomic decoherence or
frequency shifts will become relevant at these timescales.

In this article, we investigate off-resonant scattering of
lattice laser radiation by 87Sr atoms in the two states 1S0 and
3P0 and its effect on clock operation. As in other strontium
clocks, our one-dimensional lattice operates near the magic
wavelength at 813 nm, where the atomic polarizabilities of
these two states are equal. Typical potential depths are between
50 Er and 200 Er supporting four to nine longitudinally bound
states, where Er = h2/(2mλ2) is the photon recoil energy at
the lattice wavelength λ for an atom of mass m. Some aspects
of photon scattering have previously been studied theoretically
[20], but, to the best of our knowledge, these processes have not
been investigated experimentally yet. Potential effects on clock
operation include decoherence of the atomic superposition
state during interrogation, degradation of the signal-to-noise
ratio and frequency stability, and systematic frequency shifts.
Especially for short excitation pulses, atoms interact near-
resonantly with the interrogation laser after specific state-
changing scattering events. Observation of a resulting loss of
contrast at long interrogation times has recently been reported
for Ramsey spectroscopy [18].

Figure 1 schematically illustrates the different types of
photon scattering processes at the lattice wavelength, all of
which are off-resonant. In the following, we refer to inelastic
scattering events that change the internal state of the atom as
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FIG. 1. Schematic summary of photon scattering near the magic
wavelength λ ≈ 813 nm, i.e., a frequency of 368.6 THz, in the
magnetic substates mF = 9/2 of the ground state and excited state
of a 87Sr optical lattice clock. Only the dominant intermediate states
are shown.

Raman scattering and to the elastic ones that leave the atom’s
internal state unchanged as Rayleigh scattering. As will be
shown in Sec. III, the overall scattering rates into each of
the final fine-structure states shown in Fig. 1 are similar in
magnitude. However, the resulting effects on an optical lattice
clock can be quite different.

For instance, Raman scattering 3P0 → 3P1 is followed by
radiative decay to the ground state, since the state 3P1 has
a lifetime of about 21 μs [2]. At typical potential depths
U0 � Er, the atom is not lost from the trap in the process.
Thus, this off-resonant photon scattering process effectively
induces decay of the excited state, in addition to other decay
mechanisms such as spontaneous emission or pumping by
blackbody radiation (BBR). In contrast, the state 3P2 has an
effective lifetime on the order of 100 s at room temperature,
which is limited by BBR-induced decay [21]. Raman scattering
3P0 → 3P2 thus leaves atoms shelved in the metastable state.

We study lattice-induced decay to the ground state 1S0 exper-
imentally in Sec. II and determine the rate of decay as a function
of lattice depth. Rayleigh scattering and Raman scattering into
the state 3P2 cannot be investigated experimentally with our
setup, they are treated theoretically in Sec. III instead. There,
we present a complementary investigation of all off-resonant
scattering processes, predicting their rates from atomic data.
To derive the natural lifetime of the excited state from our
measurements, we estimate the decay rate of the excited state
due to coupling to BBR in Sec. IV. The effects of photon
scattering on atomic coherence and the performance of optical
lattice clocks are analyzed in Sec. V. Finally, we discuss
approaches to solve or avoid the potential problems at long
interrogation times in Sec. VI and summarize our findings in
Sec. VII.

II. LATTICE-INDUCED DECAY OF THE EXCITED STATE

We investigate the decay rate 3P0 → 1S0 experimentally by
measuring the populations in each of the two clock states as
a function of hold time in the trap. Lattice-induced scattering
to the state 3P1 is identified and discerned from other decay
mechanisms by varying the depth of the optical lattice, since
its rate is proportional to the intensity of the lattice laser field.

A. Experimental setup

For our measurements, we operate our 87Sr lattice clock,
which has been discussed in previous publications [17,22,23],
as follows.

After two-stage laser cooling, several hundred atoms at a
temperature T ≈ 2 μK are trapped in the optical lattice at an
initial trap depth of about 100 Er. Population of the stretched
magnetic substate mF = 9/2 is enhanced by optical pumping,
using a laser beam which is resonant with the F = F ′ = 9/2
hyperfine component of the intercombination transition at
689 nm, in a low bias magnetic field.

In order to prepare the atoms in the lowest two axial vibra-
tional states of the lattice, we reduce its depth to about 50 Er for
40 ms. Atoms with axial vibrational quantum numbers nz > 1
escape from the trap during this time, as these motional states
are no longer trapped. Subsequently, lattice depth is increased
to its final value.

To prepare a pure atomic sample in the magnetic substate
mF = 9/2 of the excited state, we apply a strong bias magnetic
field of about 0.6 mT, which splits the π -transitions of adjacent
magnetic sublevels by approximately 0.7 kHz, and selectively
transfer atoms from the magnetic substate mF = 9/2 of the
ground state to the excited state by a resonant π -pulse of the
interrogation laser beam with a duration of about 35 ms. The
remaining ground-state population is removed from the trap
by irradiating a laser beam on the strong transition 1S0−1P1.

After preparation, the sample is held in the optical lattice
for a variable amount of time th.

Finally, we destructively detect the populations in the
ground state, 1S0, and in the metastable states, 3P0 and 3P2. As
described previously [17,23], they are measured by collecting
laser-induced fluorescence on the cycling transition 1S0−1P1

on a photomultiplier tube, and atoms in the metastable states
are optically pumped to the ground state for detection.

For each hold time th and lattice potential depth U0, the
populations Ng in 1S0 and Ne in 3P0,2 are averaged over
typically thirty to forty samples. In order to reject long-term
fluctuations of the initial number of atoms, they are also divided
by the total population found in reference measurements with
th = 1 s, which are performed before and after each set of
measurements, for normalization.

Our detection scheme can neither resolve any magnetic
substates nor distinguish the metastable states 3P0 and 3P2,
because the atoms are repumped via the intermediate state 3P1

by driving the transitions 3P0,2−3S1. Therefore, only lattice-
induced decay to the ground state (see Fig. 1) can be studied
experimentally in our system, whereas the lattice-induced
population redistribution over the Zeeman and hyperfine states
of the metastable 3P states cannot be resolved.
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B. Optical lattice

Laser light near the magic wavelength of 87Sr at 813 nm is
generated by a Ti:sapphire laser. The optical lattice is formed
by a single horizontal laser beam that is focused to a 1/e2-radius
of about 65 μm and retroreflected.

Sideband spectra of the reference transition 1S0−3P0 are
used to determine the axial trapping frequencies νz, fractions
ε of atoms in excited axial vibrational states, and radial
temperatures Tr at each lattice depth.

The lattice potential depths U0 are determined from νz.
However, the effective lattice depth U experienced by the
atoms is smaller than U0 due to the finite potential energy
arising from atomic motion. We account for the eigenenergy
of the axial state with quantum number nz = 0 in harmonic
single-site approximation and neglect atoms in excited axial
vibrational states (nz > 0), which amount to a small fraction
ε ≈ 0.05 only. For the radial degrees of freedom, we approx-
imate the thermally averaged energy by its classical value,
which is well justified for radial trapping frequencies of few
100 Hz and radial temperatures Tr ≈ 2 μK. Using the virial
theorem, we find

U ≈ U0 − 1
2

(
1
2hνz + 2kBTr

)
. (2)

Most importantly, the lattice depth U is proportional to the
average light intensity experienced by the atoms. We refer to
it simply as the lattice depth in the following, unless stated
otherwise.

For our measurements, we operate the lattice at potential
depths U0 between 52 Er and 171 Er , which correspond to
effective lattice depths U between 37 Er and 151 Er .

C. Results

Before studying decay from the excited state, we first
investigate the loss of ground-state atoms from the trap.
Figure 2 shows the normalized ground-state population Ng

as a function of hold time for different lattice depths. We
observe an exponential decay, which is consistent with density-
independent losses, and no discernible influence of lattice
depth. Fits allowing for a density-dependent loss rate showed
no consistent results for the loss coefficient and were, therefore,
not pursued further. The trap lifetime is about 6 s, which
is probably limited by the residual pressure in our vacuum
system. Owing to the decreasing signal-to-noise ratio and
technical restrictions, we limit the hold time to th � 25 s
throughout our measurements.

When the samples are prepared in the excited state as
described above, population dynamics as shown in Fig. 3 are
observed instead. We clearly observe decay 3P0 → 1S0, as, in
addition to enhanced losses in the excited state, atoms emerge
in the ground state. The population in the ground state becomes
substantial after several seconds, especially for deep lattice
potentials.

For a quantitative analysis of our measurements, we model
the time evolution of the two populations by a pair of coupled
rate equations

Ṅe = −�′
bgNe − (�0 + γLU )Ne, (3a)

Ṅg = −�bgNg + (�0 + γLU )Ne (3b)
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FIG. 2. Measured populations of samples prepared in the ground
state at different effective lattice depths U as a function of hold time
th. The result of a combined fit of a rate equation model (see text for
details) is shown as a solid line.

that describe lattice-independent losses from the trap at dif-
ferent rates, �bg and �′

bg, as well as decay from the excited
state to the ground state. The rate of the latter is the sum
of a lattice-independent contribution �0 and a lattice-induced
contribution γLU . The analytic solution to these rate equations
reads

Ne(t) = Ne(0) exp(−[�′
bg + �0 + γLU ]t), (4a)

Ng(t) =
{
Ne(0)

1 − exp(−[
�bg + �0 + γLU ]t)

1 + 
�bg/(�0 + γLU )

+Ng(0)

}
exp(−�bgt), (4b)

where 
�bg = �′
bg − �bg. We perform a nonlinear least-

squares fitting of Eqs. (4) to the entire data set as shown in
Figs. 2 and 3. The initial populations Ne,g(0) are set to N0

if the state is occupied at th = 0 or to zero otherwise. The
uncertainties of the parameters given in the remainder of this
section result from this fit. We have checked for potential
lattice-induced losses from the trap by adding a contribution
γ̃ U to the loss rates in Eqs. (3a) and (3b), but find no indication
of such an effect.

As seen most clearly in Fig. 3(b), the rate equations (3)
describe the measured population dynamics and, in particular,
the dependence of the rate of decay 3P0 → 1S0 on lattice depth
very well. Our findings indicate that lattice-induced decay is
the dominant decay mechanism at typical lattice depths.

We find �bg = 0.1650(14) s−1 and N0 = 1.204(5) for our
specific apparatus and experimental procedure. Trap losses in
the excited state are slightly larger than in the ground state
[�′

bg/�bg = 1.101(13)]; discussion of this difference is beyond
the scope of this work, however. It is straightforward to increase
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FIG. 3. Measured populations (a) in the metastable states 3P0,2 and (b) in the ground state 1S0 for samples prepared in the excited state at
different effective lattice depths U as a function of hold time th. Results of a combined fit of a rate equation model (see text for details) are
shown as colored lines. The inset to (a) shows the fraction of atoms in the ground state as derived from this model. For reference, the solid
black line shows the decay of ground-state samples (see Fig. 2).

the lifetime of atoms in the lattice by reducing background
pressure to facilitate spectroscopy at interrogation times of
several seconds or more.

As key results, we determine the decay rate 3P0 → 1S0 due
to inelastic scattering of lattice laser radiation and the rate
stemming from other sources including spontaneous decay (see
Sec. IV):

γL = 556(15) × 10−6 s−1 E−1
r ,

�0 = 5.2(12) × 10−3 s−1.

As a practical note, the lattice-induced rate equals �0 at a lattice
depth U ≈ 9.4 Er.

III. CALCULATION OF SCATTERING RATES

In addition to our experimental results, we calculate the off-
resonant scattering rates of lattice laser radiation from atomic
data in order to investigate the other processes shown in Fig. 1,
to which our experiment is not sensitive. The scattering rate
3P0 → 3P1 measured in the previous section is used to verify
the results of our calculation.

A. Theory

The rate �i→f of an atom in an initial state i off-resonantly
scattering linearly-polarized incoming radiation with intensity
I and being transferred to a final state f is given by the
Kramers-Heisenberg formula [24]

�i→f = Iω′3

(4πε0)2c4h̄3

8π

3

1∑
q=−1

∣∣D(i→f )
q

∣∣2
(5)

with

D(i→f )
q =

∑
k

(
〈f |dq |k〉 〈k|d0|i〉

ωki − ω
+ 〈f |d0|k〉 〈k|dq |i〉

ωki + ω′

)
,

(6)

where dq = −erq are the elements of the electric dipole
operator in spherical tensor notation, ω and ω′ are the angular
frequencies of the incoming and scattered radiation, respec-
tively, and q is the polarization state of the scattered radiation
in spherical tensor notation, where the polarization axis of the
incoming light is used as quantization axis. The sum is over all
intermediate states k, and ωki is the frequency of the transition
i → k.

The specific case of linearly polarized lattice light is realized
in our lattice clock as well as in many others. Typically, a bias
magnetic field is applied parallel to the polarization vector of
the lattice during spectroscopy.

The two terms in Eq. (6) can be interpreted physically
as absorbing an incoming photon before emitting a scattered
photon or vice versa. Note that Eqs. (5) and (6) neglect
contributions from multiphoton transitions and non-electric-
dipole transitions.

The dependence of Eq. (6) on the magnetic substates can
be separated using the Wigner–Eckart theorem [25]:

〈k′,F ′m′
F |dq |k,FmF 〉 = (−1)F

′−m′
F

×
(

F ′ 1 F

−m′
F q mF

)
〈k′,F ′||d||k,F 〉 ,

(7)

where the term denoted by round brackets is the Wigner 3j -
symbol. 〈k′,F ′||d||k,F 〉 is the reduced matrix element with
respect to total angular momentum F.

As the electric dipole operator d acts on the subspace of
orbital angular momentum L, the reduced matrix element can
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be expressed for the decoupled angular momenta using the
well-known relation [25]

〈k′,(j ′
1j2)j ′

3||d||k,(j1j2)j3〉
= (−1)j

′
1+j2+j3+1

√
(2j ′

3 + 1)(2j3 + 1)

×
{
j ′

1 j ′
3 j2

j3 j1 1

}
〈k′,j ′

1||d||k,j1〉 (8)

if the operator d acts only on part 1 of the system, where j3 =
j1 + j2, and the curly brackets denote the Wigner 6j -symbol.

The reduced matrix element 〈k||d||i〉 is related to the
Einstein coefficient Aki for decay k → i by [26]

|〈k||d||i〉|2 = 3ε0hc3

2ω3
ki

gkAki, (9)

where gk is the degeneracy factor of the state k.
We calculate the scattering rates according to Eq. (5) using

the line strengths reported in Ref. [2] for the (4d5s) 3D states,
in Ref. [27] for the state (5s6s) 3S1, and listed in the supplement
to Ref. [28] otherwise. Similar to our previous publication
[28], we adjust the line strengths of the 3D continuum and
of the (5s5d) 3D states to reproduce well-known parameters,
specifically the differential dc-Stark polarizability and the
magic wavelength. For scattering processes 3P0 → 3PJ (J 	=
0), the relative signs of the products of reduced matrix elements
in Eq. (6) can be determined from Eq. (8). We focus solely on
the case mF = 9/2 in the following, because the scattering
processes from mF = −9/2 are equivalent for typical bias
magnetic fields.

B. Dynamic polarizability and lattice depth

The scattering amplitudes in Eq. (6) are closely related to
the dynamic polarizability of the state i, which is given by [24]

αi = 2

h̄

∑
k

ωki |〈k|d0|i〉|2
ω2

ki − ω2
(10)

for linearly polarized light.
Note in particular that the Rayleigh scattering amplitudes

are related to this polarizability by

D
(i→i)
0 = h̄αi (11)

if photon recoil is neglected (ω′ = ω). As a consequence,
the elastic scattering amplitudes of the two states 1S0 and
3P0 used in lattice clocks are necessarily equal at any magic
wavelength, where, by definition, the difference of the dynamic
polarizabilities vanishes.

Furthermore, we use Eq. (11) to infer the optical potential
depth for a given intensity of the light field from the elastic
scattering rates. The optical dipole potential depth at an
intensity I of the light field is given by

U = 1

2ε0c
αiI . (12)

C. Results

The rates of all Rayleigh (i = f ) and Raman (i 	= f )
scattering processes of laser radiation at the magic wavelength

TABLE I. Calculated off-resonant scattering rates of lattice laser
radiation by an atom in the magnetic substate mF = 9/2 of the state
i. The final state of the the atom is denoted by f with hyperfine
and magnetic quantum numbers F ′ and m′

F , respectively. Rates are
given for an intensity corresponding to an optical dipole potential of
U = 1 Er .

i → f F ′ m′
F �/(10−4 s−1)

1S0 → 1S0 9/2 7/2 3 × 10−16

9/2 5.57
3P0 → 3P0 9/2 7/2 5 × 10−10

9/2 5.57
3P0 → 3P1 7/2 7/2 1.99

9/2 7/2 0.45
9/2 1 × 10−10

11/2 7/2 0.05
9/2 6 × 10−10

11/2 2.49
3P0 → 3P2 7/2 7/2 0.37

9/2 7/2 0.26
9/2 0.76

11/2 7/2 0.08
9/2 0.53
11/2 0.50

13/2 7/2 0.01
9/2 0.11
11/2 0.22

near 813 nm that occur for 87Sr atoms (see Fig. 1) are
summarized in Table I.

Concerning Rayleigh scattering, we find equal rates of
5.57 × 10−4 s−1 · (U/Er) in both states, 1S0 and 3P0, as ex-
pected due to Eq. (11). We infer a dynamic polarizability α =
4.622 × 10−39 JV−2m2 (or 280.4 a.u.) of these states using the
same equation. These results are in excellent agreement with
previous publications [20,29].

The total rate of Raman scattering 3P0 → 3P1 is 4.98 ×
10−4 s−1 · (U/Er), which is similar in magnitude to the
Rayleigh scattering rate. This value agrees well with our
experimental observations (see Sec. II) as well as previous pre-
dictions [20]. Moreover, our calculation yields the individual
scattering rates to the different hyperfine states and magnetic
substates, which are listed in Table I.

The effective rates of lattice-induced decay to the three
accessible magnetic substates of the ground state, mF = 5/2,
7/2, and 9/2, are listed in Table II. We determine them by
combining the rates in Table I with the branching ratios of
the subsequent radiative decay to the ground state, which are
shown in Fig. 4 and result from Eqs. (7) through (9). We find

TABLE II. Calculated lattice-induced decay rates �L from the
magnetic substate mF = 9/2 of the excited state to the accessible
magnetic substates of the ground state, with magnetic quantum
numbers m′

F . Rates are given for an intensity corresponding to an
optical dipole potential U = 1 Er .

m′
F 5/2 7/2 9/2

�L(m′
F )/(10−4 s−1) 0.22 0.59 4.17
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FIG. 4. Branching ratios of the decay 3P1 → 1S0 for all hyperfine
states and magnetic sublevels that are accessible from the magnetic
sublevel mF = 9/2 of the state 3P0 by Raman scattering of linearly
polarized lattice laser light.

that lattice-induced decay to the ground state mainly populates
the original magnetic substate, mF = 9/2.

For Raman scattering 3P0 → 3P2, we predict a total rate
of 2.84 × 10−4 s−1 · (U/Er), which is about a factor of two
smaller than for Rayleigh scattering. Again, this value is in
agreement with previous predictions [20]. Table I lists the
individual scattering rates to the various accessible hyperfine
states and different magnetic substates of the final state.

Lastly, Raman scattering into the magnetic substate mF =
7/2 of the original state, 1S0 or 3P0, is strongly suppressed by
destructive interference of the different paths (see Table I).
Raman scattering to final states in the (5s4d) 3D manifold has
not been considered, because it is not possible via single-
photon electric-dipole transitions. Therefore, only Rayleigh
scattering and Raman scattering 3P0 → 3P1,2 are relevant in
87Sr lattice clocks.

IV. RADIATIVE LIFETIME OF THE EXCITED STATE

The observed lattice-intensity-independent rate �0 of
excited-state decay (see Sec. II C) stems from the natural
lifetime of the excited state and other lattice-independent
processes. Since care is taken to block out any laser radiation,
apart from the lattice laser beam and the interrogation laser
beam driving the reference transition, while the atoms are held
in the trap, optical pumping on the transition 3P0−3D1 by BBR
followed by spontaneous decay to the ground state via the
state 3P1 is the most likely process to compete with direct
spontaneous decay of the excited state.

The quenching rate �BBR due to BBR can be estimated [21]
from the BBR-induced rate of excitation and the branching
ratio R1 of spontaneous decay to the state 3P1. The former can
be described by the lifetime τ (3D1) = 2.18(1) × 10−6 s [2] of
the state 3D1, its degeneracy 2J + 1, and the branching ratio
R0 of spontaneous decay to the state 3P0, assuming Russell-
Saunders coupling. Since the frequencies of the transitions
3D1−3PJ vary significantly due to fine-structure splitting of
the multiplet [27], the cubic frequency dependence of the

spontaneous emission rates must be taken into account when
determining any of the branching ratios RJ using Eq. (8). This
results in branching ratios of 59.65%, 38.52%, and 1.82% to
J = 0, 1, and 2, respectively. We thus find a quenching rate

�BBR(T ) = 3R0R1

τ (3D1)

1

exp (h̄ω/kBT ) − 1
(13)

at a temperature T , where ω is the transition frequency
3P0−3D1. This results in �BBR = 2.23(14) × 10−3 s−1 at the
temperature T = 294.5(10) K of our experimental apparatus.

We attribute the remaining rate

�s = �0 − �BBR = 3.0(13) × 10−3 s−1

to spontaneous decay of the state 3P0. The corresponding
lifetime τ (3P0) = 330(140) s is marginally in agreement with
the value of 145(40) s predicted in Ref. [30]. To the best of our
knowledge, this is the first direct experimental measurement
of the lifetime of this state in 87Sr.

V. EFFECTS ON LATTICE CLOCKS

The relevant off-resonant scattering processes of laser radi-
ation at the magic wavelength near 813 nm, which have been
identified in Sec. III, affect lattice clocks in several different
ways.

Although Rayleigh scattering is elastic, it may still lead
to damping of the coherence of the atomic superposition
state. It has been shown previously that the rate of coherence
damping depends on the difference of the elastic scattering
amplitudes [31], and the situation in optical lattice clocks has
been discussed in Ref. [20]. We point out that the difference
of the Rayleigh scattering amplitudes between the two states
1S0 and 3P0 is proportional to their differential dynamic po-
larizability and vanishes at the magic wavelengths (see Sec.
III B). Therefore, Rayleigh scattering of lattice laser radia-
tion does not cause significant decoherence in optical lattice
clocks.

The two Raman scattering processes result in decoherence
of the atomic superposition state, as well as depopulation
of the excited state 3P0. They do not cause systematic fre-
quency shifts directly, as they are not sensitive to the phase
of the superposition state. However, the maximum slope of
the spectroscopic signal is reduced. In Ramsey spectroscopy,
these effects manifest as a reduction of fringe contrast if the
duration of an excitation pulse is small compared to the inverse
scattering rate. For excitation with a single, long pulse, the line
shape is modified more intricately; it is broadened, but remains
symmetric with respect to the detuning of the interrogation
laser from resonance.

Moreover, atoms transferred to the ground state and, pos-
sibly, to the metastable state 3P2 are still registered during
state detection. Owing to the stochastic nature of the scattering
process, this typically results in intrinsic noise of the detected
atomic populations and thus reduces the signal-to-noise ratio.
For the metastable state 3P2, this can be avoided by using a
more sophisticated detection scheme to discern atoms in the
two states 3P0 and 3P2, e.g., by selective repumping on the
transition 3P0−3D1 as demonstrated in ytterbium lattice clocks
[32,33].
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The populations created, through Raman scattering, in the
states 3P2 and 1S0 themselves may also disturb an optical lattice
clock. In particular, atoms having decayed to the ground state
are highly susceptible to the interrogation laser, whereas the
metastable state 3P2 can effectively be considered a dark state
in this respect.

Our calculations in Sec. III have shown that lattice-induced
decay to the ground state most likely returns an atom to
the magnetic sublevel mF = ±9/2 (see Table II). The con-
sequences on spectroscopy are quite similar to those of de-
coherence and depopulation of the superposition state. For
Ramsey spectroscopy, the atoms having decayed during the
free evolution time are resonantly excited by the final π/2-
pulse, resulting in reduced fringe contrast. In case of Rabi
spectroscopy with long excitation pulses, coherently driving
the reference transition in those atoms after decay modifies the
line shape further. Likewise, this degrades the slope of the error
signal and, in some cases, the observable line width, but does
not give rise to systematic frequency shifts.

In contrast, population of the other magnetic substates
(mF 	= ±9/2) in the ground state does cause line pulling
if the laser detuning is varied to derive an error signal. It
can be reduced by choosing the spectral bandwidth of the
excitation pulse or pulses either much smaller or much larger
than the frequency detuning of the transitions from adjacent
magnetic substates due to the bias magnetic field. Moreover,
87Sr lattice clocks typically monitor the transition frequencies
from both stretched magnetic substates [34]; center frequency
and frequency splitting are used to stabilize the frequency of
the interrogation laser and monitor the bias magnetic field,
respectively. For reasons of symmetry, line pulling due to
populating different magnetic substates by Raman scattering
mainly affects the frequency splitting rather than the center
frequency. The linear Zeeman splitting is also used in cor-
recting for the quadratic Zeeman effect in our clock [35],
but the effect of Raman scattering on this correction of the
transition frequency is well below one part in 1018 at typical
bias field strengths. Line pulling can be avoided entirely for
Ramsey spectroscopy by varying the relative phase of the final
pulse [36,37] rather than the laser detuning to generate an error
signal.

In either case, atoms excited by the interrogation laser
after Raman scattering give rise to quantum projection noise,
especially for Ramsey spectroscopy.

Aside from the scattering processes shown in Fig. 1, we do
not investigate changes of the motional state of an atom in the
optical lattice by off-resonant scattering in detail in this work.
They may lead to line pulling and systematic frequency shifts
due to the increased tunneling in excited axial motional states.
However, their relative strength is small in the Lamb-Dicke
regime. They are not expected to cause substantial decoherence
themselves, as the external potential is nearly identical for the
two clock states near the magic wavelength.

Last but not least, atoms that are incoherently transferred
to different states by Raman scattering may cause systematic
shifts of the transition frequency by disturbing the remaining
atoms. For instance, interactions with atoms in the original
superposition state at the same lattice site are generally no
longer suppressed by the Pauli principle and lead to collision-
induced systematic frequency shifts at high atom density.

VI. DISCUSSION

Systematic frequency shifts of the reference transition
due to off-resonant photon scattering from the lattice need
to be evaluated under actual operating conditions, but they
are not expected to become a fundamental problem at long
interrogation times. As discussed in the previous section, such
shifts may be caused by the scattering atoms indirectly, e.g.,
by atomic interactions, or by differences of the scattering rates
between the magnetic substates mF = ±9/2, which are small
at typical bias magnetic fields for linear polarization of the
lattice. On-site atomic interactions can be avoided by using a
three-dimensional lattice to suppress double occupancy [38]
or by operating in a low-density regime as in our clock.

Collapse of the atomic superposition state as well as
quantum projection noise arising from atoms excited by the
interrogation laser after decay to the ground state reduce the
signal-to-noise ratio substantially at long interrogation times
or in deep lattice potentials. Our investigations have shown that
off-resonant photon scattering from the lattice gives rise to time
constants of few 10 s at typical lattice depths of several 10 Er,
which well exceeds contributions from other sources, such
as spontaneous decay or pumping by BBR. This ultimately
degrades the minimum frequency instability and may prevent
lattice clocks from reaching the QPN limit given by Eq. (1)
and from exploiting squeezing, or entanglement in general,
to achieve frequency instability below that limit under these
conditions. Therefore, the decreasing signal-to-noise ratio is
the most important problem for the operation of lattice clocks
at interrogation times of several seconds and beyond.

Operating a clock with a shallow lattice potential obviously
reduces the scattering rates, but increases other systematic
effects such as frequency shifts due to tunneling. However,
it has been shown previously that gravity can be exploited
in vertically oriented lattice geometries to greatly reduce
tunneling by lifting the degeneracy of adjacent lattice sites,
which allows control of the resulting frequency shifts to below
1 mHz at a potential depth of only 5 Er for strontium lattice
clocks [39]. At this lattice depth, the induced photon scattering
rates are comparable to the natural decay rate of the excited
state, with time constants of a few 100 s (see Secs. II and IV).

Lattice clocks in microgravity environments or using multi-
dimensional lattices require more intense lattice light fields
and thus suffer from increased off-resonant scattering rates.
For these systems, in particular, further investigations into
controlling motional effects in lattice clocks or alternative
solutions are required.

Off-resonant scattering rates are generally different if the
optical lattice is operated at a magic wavelength other than
the widely used one near 813 nm, which is studied here. The
relative strengths of the scattering processes can be quite
different [20], although the dependence of Eq. (5) and the recoil
energy Er on laser wavelength is generally not favorable to
shorter wavelengths.

However, the light intensity experienced by the atoms can
be greatly reduced by operating the lattice at a blue-detuned
magic wavelength [40,41], e.g., near 390 nm [42], where the
atoms are trapped in the nodes of the light field. This provides
a highly interesting option to avoid off-resonant scattering of
lattice laser radiation and merits further study.
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VII. CONCLUSION

Off-resonant photon scattering from the lattice becomes
relevant if optical lattice clocks, with typical lattice depths
of several 10 Er, are operated at interrogation times of sev-
eral seconds or more. Relevant scattering processes near the
magic wavelength of 813 nm are Rayleigh scattering and
Raman scattering 3P0 → 3P1,2. The former Raman scattering
process, 3P0 → 3P1, gives rise to lattice-induced decay to
the ground state, which we have observed experimentally.
These observations and complementary predictions based
on atomic data show that all of these processes occur at
rates of several 10−2 s−1 at typical lattice depths, exceed-
ing the rates of natural and BBR-induced decay of the
excited state. Furthermore, our measurements yield an ex-
perimental value τ = 330(140) s for the natural lifetime of
the excited state 3P0, which is in marginal agreement with
predictions [30]. To the best of our knowledge, this is the
first experimental measurement of the natural lifetime of this
state.

In optical lattice clocks, Rayleigh scattering does not cause
significant decoherence of the atomic superposition state used
for spectroscopy, because the optical lattice is operated near
a magic wavelength. However, collapse of the atomic super-
position state and transfer of population to different internal
states due to Raman scattering eventually limit the achievable
frequency instability and thus useful interrogation times in op-
tical lattice clocks at the presently used lattice depths. Lattice-
induced decay to the ground state, in particular, modifies the
observed line shape and contributes to quantum projection
noise. Raman scattering also counteracts suppression of atomic
interactions and may thus lead to systematic frequency shifts.
We have pointed out several ways to overcome these problems.
Most importantly, vertical lattice geometries allow operating
clocks with 10−18 fractional accuracy at lattice depths as
shallow as 5 Er [39], which reduces the photon scattering rates
to levels comparable to those of natural decay or BBR-induced
pumping.

One may wonder whether a limit on the interrogation time
set by the scattering of lattice photons, which may be expected
at around 100 s in a strontium lattice clock, will give ion clocks
an intrinsic advantage over lattice clocks once interrogation
lasers achieve comparable coherence times. This can only be
the case for ions that have much narrower transitions, such as
the Yb+ octupole transition with an excited-state lifetime of
several years [43,44] or B+ [45], but not for systems like the
Al+ ion with an excited-state lifetime of only several tens of
seconds [46]. In ion clocks, there are other limitations of the
interrogation time, including heating in the trap, which must
be overcome. Longer interrogation times Ti increase not only
the observed line quality factor Q ∝ Ti (up to its natural value)
but also the measurement cycle duration Tc ≈ Ti, thus leading
to a frequency instability σy ∝ T

−1/2
i according to Eq. (1).

However, frequency instability scales with atom number in
the same way, σy ∝ N−1/2. Lattice clocks easily exceed ion
clocks by factors of more than 100 in the number of atoms
being interrogated at the same time. To achieve comparable
frequency instability, the interrogation time in an ion clock
must be extended by that same factor. This would require
interrogation times of several hours or more, which seems
to be well beyond reach in the foreseeable future. Therefore,
we think that, although off-resonant scattering of lattice laser
radiation cannot be avoided in optical lattice clocks and may
cause limitations, it is unlikely to pose a strong disadvantage
compared to single-ion clocks.
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