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We revisit the Floquet-Bloch eigenstates of a one-dimensional electron gas in the presence of the periodic
Kronig-Penney potential and an oscillating electric field. Considering the appropriate boundary conditions for the
wave function and its derivative, we derive the determining equations for the Floquet-Bloch eigenstates, which
are represented by a single-infinite matrix rather than a double-infinite matrix needed for a generic potential. We
numerically solve these equations, showing that there appear anticrossings at the crossing points of the different
Floquet bands as well as the band gaps at the edges and the center of the Brillouin zone. We also calculate the
high-harmonic components of the electric current carried by the Floquet-Bloch eigenstates, showing that the
harmonic spectrum shows a plateau for a strong electric field.
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I. INTRODUCTION

High-harmonic generation (HHG) in bulk crystals has
recently attracted much attention owing to its successful
observation in the strong laser field [1–6]. HHG in solids in
the nonperturbative regime thus achieved has shown different
characters from that in atomic gases [7,8], such as multiple
plateaus [5] and linear scaling of the high-energy cutoff with
the amplitude of the electric field rather than the laser intensity
[1,2,4]. Although the microscopic mechanism of HHG in solids
is still under active debate [9–12], it is pointed out that the
interband transitions between multiple bands play an essential
role [5,13–19]

The most fundamental model to discuss HHG in solids
is a one-dimensional electron gas in the presence of both
a periodic lattice potential and an oscillating electric field.
Recently, this model has been shown to reproduce some aspects
of experimental results by numerical simulations, in which the
time-dependent Schrödinger equation is explicitly solved at
each time step [16,17,19–21]. A complementary approach to
this problem is the Floquet-Bloch theory [22–28], which uti-
lizes periodicity both in time and space to obtain the eigenstates
for the time-dependent Schrödinger equation. In this approach,
one needs to treat a double-infinite Hamiltonian matrix, where
its column or row is labeled by two integers corresponding to
the high harmonics for the time and space oscillation of the
wave function. Although approximate solutions are obtained
numerically [22], the numerical cost grows rapidly to achieve
high accuracy.

The Kronig-Penney, or square wave, potential [29] simpli-
fies the problem significantly. This potential has traditionally
deepened our understanding of the band gaps in solids because
it is analytically solvable in the limit of each square approach-
ing a delta function [see Eq. (3)]. The analytical approach to
the Floquet-Bloch theory for this potential was discussed by
Faisal and Genieser [23] and Faisal [24], who proposed that
the problem of the double-infinite Hamiltonian matrix can be
reduced to that of a single-infinite matrix and the calculation

cost is thereby greatly decreased. However, their result con-
tains mistakes stemming from their misunderstanding that the
Floquet Green’s function is obtained by a simple generalization
of the time-independent problem. Also, the high-harmonic
components of the electric current have not been obtained in
the delta-function limit.

In this paper, we revisit the Floquet-Bloch theory for a one-
dimensional electron gas with the Kronig-Penney potential
in the delta-function limit and analytically derive the correct
determining equation for the Floquet-Bloch eigenstates. As
suggested in Refs. [23,24], this equation consists of a single-
infinite matrix rather than a double-infinite one. We then
numerically solve the equation, obtaining the quasienergy
dispersion. In addition to the energy gaps at the edges and
the center of the Brillouin zone that are already present in the
oscillating electric field, there appear anticrossings between
different Floquet bands owing to the interplay of the periodic
potential and the oscillating electric field. We then calculate
the high-harmonic components of the electric current carried
by the Floquet-Bloch eigenstates that are obtained in this
formalism. We show that, for a strong laser field, the high-
harmonic components do not decay exponentially, but show a
plateau.

The rest of this paper is organized as follows. In Sec. II,
we formulate the problem that is addressed in this paper.
By invoking the Floquet theorem, we derive an eigenvalue
problem for a Floquet Hamiltonian. In Sec. III, we invoke
the Bloch theorem and derive the determining equation for the
quasienergy dispersion from the conditions for the connections
of the wave function and its derivative. In Sec. IV, we solve the
equation to obtain the quasienergy dispersion and discuss the
band gaps and the anticrossings between the Floquet bands. We
then calculate the high-harmonic components of the electric
current for the Floquet-Bloch eigenstates thus obtained. The
conclusions of this paper are summarized and some future
perspectives are shown in Sec. V. In the Appendix, we point
out why the original derivation [23,24] is not correct while it
works in the absence of the oscillating electric field.
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II. FORMULATION OF THE PROBLEM

Let us begin by considering the following Hamiltonian in
the velocity gauge:

H(t) = 1
2 [−i∂x − eA(t)]2 + V (x). (1)

Here e (< 0) denotes the charge of an electron, and we work
in the units of h̄ = m = 1 and use the abbreviation ∂x = ∂/∂x

throughout this paper. The vector potential

A(t) = A0 cos(�t) (2)

represents the uniform laser electric field along the x axis, and
the periodic lattice potential V (x) is taken to be the Kronig-
Penney one in the delta-function limit:

V (x) = P

2a

∞∑
p=−∞

δ(x − pa), (3)

where a and P denote the lattice constant and the strength of
the lattice potential, respectively. We note that A(t) and V (x)
are both periodic:A(t + T ) = A(t) andV (x + a) = V (x) with
T ≡ 2π/�.

Our aim is to solve the time-dependent Schrödinger equa-
tion for the Hamiltonian (1) which is equivalent to finding the
eigenstates with the zero eigenvalue for the operator

K0(t) = i∂t − H(t). (4)

To this end, we eliminate the term proportional to A(t)2 from
H(t) by making the phase transformation

K(t) = eiθ(t)K0(t)e−iθ(t) = i∂t − H (t), (5)

H (t) = − 1
2∂2

x + ieA(t)∂x + V (x), (6)

where θ (t) ≡ exp(− i
2

∫ t

0 A(s)2ds) and ∂t = ∂/∂t . We note that
the operator K(t) has discrete translation symmetries in the t

and x directions due to the periodicities of A(t) and V (x),
respectively.

The discrete translation symmetry in time simplifies the
problem of finding zero modes of K(t). This symmetry tells
us that an eigenstate �(x,t) of K(t) is written as �(x,t) =
e−iEt�E(x,t), where �E(x,t) is a periodic function �E(x,t +
T ) = �E(x,t). We refer to E as the quasienergy since E can
be taken in a certain region such as [0,�). However, we do
not restrict E on such a region in this paper, but work in the
extended zone scheme, in which we have physically equivalent
states that have equal E modulo �. Expanding �E(x,t) in
the Fourier series, we obtain the following expression for an
eigenstate:

�(x,t) = e−iEt
∑
n∈Z

ψn(x)ein�t . (7)

Now the equation K(t)�(x,t) = 0, which we aim to solve,
reduces to the following form:∑

n

H 0
mnψn(x) + V (x)ψm(x) = Eψm(x), (8)

H 0
mn =

(
−1

2
∂2
x + n�

)
δmn + i�

α0

2
(δm,n+1 + δm,n−1)∂x,

(9)

where α0 ≡ eA0/� represents the coupling strength between
the electron and the oscillating electric field.

The discrete translation symmetry in space also simplifies
the problem, but this is not enough for the complete solution in
general. A parallel argument on space reduces the continuous
variable x to an integer and the remaining problem is to
diagonalize a double-infinite matrix where its row or column
is characterized by a pair of integers corresponding to the
high harmonics for the time and space oscillation of the wave
function. Although we can numerically obtain approximate
solutions for the problem, the computational complexity grows
rapidly in increasing the precision.

III. SOLUTION TO THE EIGENVALUE PROBLEM

The Kronig-Penney potential (3) enables us to proceed
further analytically. In this section, we analyze the eigenvalue
problem (8) and (9) in the real space, and show that the
quasienergy E is obtained as a root of a secular equation for a
single-infinite matrix [see Eq. (23) or (26) below].

Before solving our problem, we consider the solution in the
absence of the periodic potential:

H 0ψ(x) = Eψ(x). (10)

In this case, the normalizable eigenstate characterized by a real
momentum k and an integer N is given by

ϕN,k
n (x) = Jn−N (α0k)eikx (11)

and its eigenvalue of H 0 is

εN
0 (k) = k2

2
+ N�. (12)

Here Jn(x) denotes the Bessel function of the first kind. One
can easily confirm that Eq. (11) satisfies Eq. (10) by acting
H 0 onto ϕN,k

n (x) and using the identity Jn+1(x) + Jn−1(x) =
2nJn(x)/x [30]. We note that the eigenstates (11) are mutually
orthogonal and satisfy the completeness relation∑

N∈Z

∫ ∞

−∞

dk

2π
ϕNk

n (x)ϕNk
n′ (x ′)∗ = δnn′δ(x − x ′). (13)

This can be proved by using Neumann’s identities [30]∑
m∈Z

Jn±m(z)Jm(w) = Jn(z ∓ w) (14)

and Jn−m(0) = δnm.
We treat the effects of the periodic potential V (x) as

appropriate boundary conditions for the unit cell. the Bloch
theorem tells us that an eigenstate ψ(x) satisfies

ψ(a) = eiKaψ(0) (15)

for a lattice momentum K with −π/a � K < π/a. In ad-
dition, the Kronig-Penney potential (3) imposes boundary
conditions for the first derivatives. By integrating both sides
of Eq. (8) over x ∈ [−ε,ε] and taking the limit of ε ↓ 0, we
obtain

∂xψ(0+) − e−iKa∂xψ(a−) − P

a
ψ(0) = 0, (16)

where we have used ∂xψ(0−) = e−iKa∂xψ(a−) which the
Bloch theorem implies. Since V (x) vanishes on 0 < x < a,
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our problem is to solve

H 0ψ(x) = E(K)ψ(x) (0 < x < a) (17)

with the boundary conditions (15) and (16). The notation E(K)
emphasizes the fact that the quasienergy bands over the first
Brillouin zone are obtained by varying K appearing in the
boundary conditions (15) and (16).

The most general solution of Eq. (17) is of the form

ψn(x) =
∑
N∈Z

[
ANϕN,kN

n (x) + BNϕN,−kN

n (x)
]
, (18)

with

kN ≡
√

2[E(K) − N�]. (19)

We note that there is no problem if kN becomes imaginary
since we do not now work on −∞ < x < ∞, but a finite range
0 < x < a.

The coefficients {AN }N and {BN }N are determined by the
boundary conditions (15) and (16). By substituting the general
solution (18) into these conditions, we obtain the following
homogeneous matrix equation:∑

N∈Z

(M11
nN M12

nN

M21
nN M22

nN

)(
AN

BN

)
= 0, (20)

where the infinite matrixMij

nN in a 2 × 2 block form is defined
as(M11

nN M12
nN

M21
nN M22

nN

)
= CN

(
Jn−N (α0kN ) 0

0 Jn−N (−α0kN )

)
(21)

with

CN =
(

eikNa − eiKa e−ikN a − eiKa

ikN (1 − ei(kN−K)a) − P
a

−ikN (1 − ei(−kN −K)a) − P
a

)
. (22)

Equation (24) has a nontrivial solution when E(K) is chosen
so that

det M = 0, (23)

and the coefficients {AN }N and {BN }N are determined up to
the overall factor. We note that, if E(K) = M� for an integer
M and thus kM = 0, the N = M components are considered
to be eliminated from the matrix since ϕM,0

n cannot satisfy the
boundary conditions for P 	= 0.

When solved for E(K) for each K , the secular equation
(23) gives the quasienergy dispersions in the presence of the
oscillating electric field. The multiple solutions obtained for
a given K correspond to the different bands. We note that the
row and the column of M are labeled by the pair of (n,i) and
(N,i) ∈ Z × {1,2}, which have been remarkably simplified.
As noted in the previous section, if we had not used the explicit
form of the Kronig-Penney potential (3) but had only invoked
the periodicity in space, we would have obtained a matrix the
column or row of which runs over Z × Z corresponding to the
high harmonics for the wave-function oscillations in time and
space.

Another representation for the secular equation (23) is
obtained, where the column and the row of the matrix are
treated on equal footing. We multiply both sides of Eq. (24) by
Jn−N ′ (α0|kN ′ |) and sum them over n, obtaining∑

N∈Z

(W11
N ′N W12

N ′N

W21
N ′N W22

N ′N

)(
AN

BN

)
= 0, (24)

where the matrix elements of WN ′N are defined by(W11
N ′N W12

N ′N

W21
N ′N W22

N ′N

)
= CN

(
J

(−)
N ′N 0
0 J

(+)
N ′N

)
(25)

with J
(±)
N ′N ≡ JN−N ′ (α0[|kN ′ | ± kN ]). Making use of |kN ′ | in

the procedure is technically advantageous since it ensures that

det W is real or pure imaginary for any value of E(K). We
assume that the matrixJn−N (α0|kN |) has a nonzero determinant
when n and N are regarded as the labels for its row and column,
respectively. Then the secular equation (23) is equivalent to

det W = 0. (26)

In the absence of the electric field, the secular equations (23)
and (26) reproduce the well-known Kronig-Penney dispersion
relation [29]

cos Ka = cos k0a + P

2k0a
sin k0a (27)

with k0 = √
2E(K). To confirm this, let us note that the

absence of the electric field implies that N only takes zero
and the Bessel functions Jn−N (±α0) and J

(±)
NN ′ are replaced

by unity. Then the secular equations read det C0 = 0, which
readily leads to Eq. (27).

IV. PROPERTIES OF THE FLOQUET-BLOCH
EIGENSTATES

In this section, we numerically solve the equations derived
in the previous section and discuss the properties of the
Floquet-Bloch eigenstates. For simplicity, we set the lattice
constant a as unity throughout this section.

A. Absence of the periodic potential

Before discussing the effects of the periodic potential, we
investigate the properties of the Floquet eigenstates (11) in the
absence of the periodic potential.

The quasienergy of ϕN,k is given by Eq. (12), which is
illustrated in Fig. 1(a). The horizontal axis of Fig. 1(a) shows k

modulo 2π for the comparison below to E(K) in the presence
of the periodic potential. The quasienergy with N = 0 is
identical to k2/2 in spite of the coupling to the oscillating
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FIG. 1. (a) The quasienergy εN
0 (k) [Eq. (12)] for N = 0 (solid),

−1 (dashed), and 1 (dotted), in the absence of the periodic potential,
P = 0, and � = 5. The horizontal axis represents the momentum
k modulo 2π . (b) The high-harmonic distribution w0

n(k) [Eq. (28)]
for α0 = 0.01 (left) and 0.1 (right). Each data set corresponds to
the momentum k = π/2 (filled circle), π (open circle), 5π/2 (filled
square), and 3π (open square).

electric field. In addition to the dispersion relation k2/2 for
N = 0, we have an infinite number of replicas with equal
spacings� since we work in the extended zone scheme as noted
above. In the following, we refer to the set of (quasi)energy for
a given N as the Floquet band.

Now we define the high-harmonic distribution:

wN
n (k) ≡ ∣∣ϕN,k

n (x)
∣∣2 = Jn−N (α0k)2. (28)

This represents the weight of the Floquet eigenstate ϕN,k
n (x)

on the oscillating component with frequency εN
0 (k) − n� [see

Eq. (7)]. We note that wn(k) is normalized as∑
n∈Z

wN
n (k) = 1, (29)

which follows from Eq. (14). Since wN+1
n (k) = wN

n−1(k) holds
true, it is enough to discuss w0

n(k). In addition, we have

w0
−n(k) = w0

n(−k) = w0
n(k), and, hence, the nontrivial infor-

mation is contained in w0
n(k) for, say, n � 0 and k � 0. In

contrast to the quasienergy, the high-harmonic distribution
depends on the coupling strength α0 between the electron and
the electric field.

The high-harmonic distribution w0
n(k) is illustrated in

Fig. 1(b) for several values of k. First, we note w0
n(k = 0) =

δn0, which follows from the definition (28). This is because the
electric field couples to the electron through its momentum and,
thus, high-harmonic oscillation is not induced for the k = 0
state. Second, as k increases with α0 held fixed or α0 does with
k held fixed, the width of the high-harmonic distribution w0

n(k)
becomes larger. This tendency is qualitatively consistent with
the fact the the coupling to the electric field is proportional
to the momentum. We will show below in Sec. IV C that the
width of w0

n(k) is related to the high-harmonic components of
the electric current in the presence of the periodic potential. We
note that, as anticipated from the Bessel function in Eq. (28),
w0

n(k) does not show a monotonous but an oscillatory behavior
for even larger values of α0 or k.

B. Effects of the periodic potential

The Floquet-band theorem [23] holds true also in the
presence of the periodic potential. Namely, if E(K) satisfies
Eq. (26), then E(K) + M� does as well for any integer M . To
prove this, let us suppose that Eq. (26) is satisfied for E(K) and
ask if det W̃ = 0, whereM̃ is defined by replacing kN inW by
k̃N = √

2[E(K) + M� − N�] = kN−M . In this replacement,
J

(±)
NN ′ in W is replaced by J̃

(±)
NN ′ = JN ′−N (α0[|k̃N | ± k̃N ′]) =

J(N ′−M)−(N−M)(α0[|kN−M | − kN ′−M ]) = J
(±)
N−M,N ′−M . Thus W̃

is obtained by shifting the labels of both the row and the column
of W by M . Since this shift does not change the value of the
determinant, we have obtained det W̃ = 0.

Both in absence and presence of the coupling between
the electron and the electric field, the quasienergy dispersion
E(K) is symmetric about K = 0. To prove this, let us suppose
that Eq. (23) is satisfied for E(K) and show that E(K) also
satisfies Eq. (23) with K replaced by −K . For this purpose,
we try to transform the matrix M for K into that for −K by
means of elementary row and column operations. The concrete
procedure is the following. First we multiply every row in the
upper (lower) blocks by e−iKa (eiKa) and the N th column in the
left (right) blocks by e−ikN a (eikNa). Second we add the nth row
of the upper left (right) block of the resulting matrix multiplied
by −e−iKaP/a (−eiKaP/a) to the nth rows of the lower left
(right) blocks. Third we interchange the N th columns of the
left and right blocks for each N . In these three steps, the deter-
minant is invariant or changes its sign depending on whether
N is thought to be even or odd. The matrix thus obtained
differs from M for −K only in that Jn−N (±α0kN ) appears
in the opposite way in the form of Eq. (21). This difference
does not matter when their determinants are compared, for
Jn−N (±α0kN ) = (−1)n−NJn−N (∓α0kN ). Thus we have shown
that E(K) satisfies det M = 0 for K , and it also does for −K .

In the absence of the coupling between the electron and the
electric filed, or α0 = 0, the quasienergy dispersion obtained
from Eq. (27) is shown in Fig. 2(a). Here we also plot the
Floquet bands for N = ±1 in addition to the original band
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(a) (b)

O O

FIG. 2. (a) Quasienergy dispersion E(K) for the lattice potential
strength P = 3 in the absence of the coupling between the electric
field and the electron, α0 = 0. Each line belongs to the Floquet
band with N = 0 (solid), −1 (dashed), and 1 (dotted), and � = 5.
(b) Quasienergy dispersion E(K) for P = 3, α0 = 0.1, and � = 5
(filled circle). Only the quasienergies corresponding to N = 0 are
plotted.

N = 0. We note again that these states represent the same states
as N = 0 since we work in the extended zone scheme in the
energy direction. Comparing with Fig. 1(a), we notice that
the periodic potential gives rise to the energy gaps opening at
K = 0, ± π where two energy bands touch each other in the
absence of the periodic potential.

The coupling between the electron and the electric field
together with the periodic potential gives rise to the anticross-
ings of the quasienergy dispersion at the crossing points of the
different Floquet bands. Figure 2(b) shows the quasienergy
E(K) for N = 0, α0 = 0.1, � = 5, and P = 3 obtained from
Eq. (26) with the restriction of N = 0, ± 1, . . . , ± 5. The
quasienergy E(K) is close to the one for α0 = 0 with N = 0
except for the vicinity of the crossing points with N = ±1.
One can also find small jumps of the data at the crossing
points between N = 0 and ±2, but not between N = 0 and
±3, . . . , ± 5. This is because the coupling between the Floquet
bands is proportional to J

(±)
N ′N [see Eq. (25)], which rapidly

decreases as |N ′ − N | increases.
The cutoff for N in solving Eq. (26) to obtain the N = 0

band is justified for a moderate value of α0. To confirm this,
we investigate the quasienergy by solving Eq. (26) for � = 5
and P = 3 with N = 0, ± 1, ± 2, . . . , ± Ncut, where Ncut is a
varying cutoff. Figure 3 shows the size of the anticrossing at
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FIG. 3. Anticrossing size at the point indicated by a circle in
Fig. 2(b) plotted against the cutoff Ncut ranging from 1 to 10 calculated
for P = 3 and � = 5. Each set of the data corresponds to the different
coupling strength between the electron and the electric field: α0 = 0.3
(filled circle), 0.1 (open circle), and 0.01 (filled square).

the point indicated by a circle in Fig. 2(b) calculated for Ncut

ranging from 1 to 10. For the smaller values of α0 = 0.01 and
0.1, Ncut = 2 is large enough to achieve a 10−4 accuracy for the
eigenenergy. For a larger value of α0 = 0.3, the quasienergies
show oscillations up to 10% magnitude at Ncut � 3, and then
converge at Ncut = 5 within an accuracy of 10−3. We note that
α0 = 0.3 roughly corresponds to |A0| = π/2 in the unit of
|e| = 1 since we set � = 5 in our calculation.

We remark that it becomes more complicated to interpret
each quasienergy for α0 � 0.3 because the coupling to the
higher Floquet bands is not negligible and more anticrossings
appear at many K . In addition, some anticrossings become
so large that it is not simple to keep track of the one-to-one
correspondence between the quasienergy for α0 	= 0 and zero.
Of course, this is a matter of interpretation, and Eq. (26) still
provides us with the quasienergy dispersion E(K) even for
such a large value of α0.

C. High-harmonic components of the electric current

Finally we discuss the electric current

j (x,t) = e{Re[�∗(x,t)(−i∂x)�(x,t)] − eA(t)|�(x,t)|2}
(30)

carried by the eigenstate �(x,t) [see Eq. (7)], which works as
the source of HHG. We show below that the electric current
involves high-harmonic components in the presence of the
lattice potential.

In the absence of the lattice potential, the electric current
(30) does not involve any high harmonics. This is because
the momentum is a good quantum number and −i∂x�(x,t) =
k�(x,t) is satisfied for the eigenstate (11). From this relation,
we obtain the electric current as j (x,t) = e[k − eA(t)], which
is homogeneous and contains only frequencies ±�.

In the presence of the lattice potential, the Floquet-Bloch
eigenstate (18) consists of various momenta and high harmon-
ics are involved in the current. To show this, we first compactify
Eq. (18) as

ψn(x) =
∑

N,σ=±
Aσ

NϕN,σkN

n (x), (31)

where we have introduced the notations A+
N = AN and A−

N =
BN . Together with Eq. (7), we obtain the nontrivial paramag-
netic part of the electric current (30) averaged over the unit cell
as (we have been setting a = 1 in this section)

J (t) ≡ e

∫ 1

0
dxRe[�∗(x,t)(−i∂x)�(x,t)] =

∑
n

Jne
in�t

(32)

with

Jn ≡ e
∑
N,N ′
σ,σ ′,n

σkNWN ′N
σ ′σ (n)

(
Aσ ′

N ′
)∗Aσ

N , (33)

where WN ′N
σ ′σ (n) represents the following wave-function over-

lap:

WN ′N
σ ′σ (n) ≡

∑
m

∫ 1

0
dxϕN ′,σ ′kN ′

m (x)∗ϕN,σkN

m+n (x). (34)
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We noteJ−n = J ∗
n sinceJ (t) is real. Equation (32) shows that

the current involves an oscillating component with frequency
n� if Jn 	= 0.

We make a brief remark on the symmetry of the high-
harmonic current. First, the inversion symmetry of our problem
relates the high-harmonic currents for the degenerate Floquet-
Bloch eigenstates that belong to ±K . If we introduce the
notationsJn(±K) to distinguish these two, one can easily show

Jn(−K) = (−1)n+1Jn(K). (35)

Thus the high-harmonic currents for an even n vanish when
summed over ±K . Second, Jn is real since our Hamiltonian
(6) is symmetric under the product of the inversion and the
time reversal.

The result (32) reduces to the case of no lattice potential
if we put, for example, AN = δN,0 and BN = 0, which corre-
spond to the positive momentum state with momentum k0. In
this case, one can easily see that Jn = +k0W

00
++(n) = k0δn0.

Similarly, if we put AN = 0 and BN = δN,0, which correspond
to the negative momentum state with momentum −k0, we
obtain pn = −k0W

00
−−(n) = −k0δn0. In both cases, the current

does not involve any high harmonics as we have shown above.
The high harmonics are induced once neither AN nor BN

vanishes as caused by the Kronig-Penney potential. To see this
fact, we focus on the contributions toJn from N = N ′ with real
kN , which consist of the diagonal (σ = σ ′) and the off-diagonal
(σ 	= σ ′) parts. The diagonal parts are proportional to |AN |2 or
|BN |2 and again do not contain high harmonics since they are
proportional to δn0. On the other hand, the off-diagonal parts
are proportional to A∗

NBN and B∗
NAN and involve a nontrivial

dependence on n given by Jn(2α0kN ), which becomes nonzero
for n > 1 in general.

We note that this type of high harmonics is closely related
to the high-harmonic distribution (28). If the high-harmonic
distribution |ϕN,k

n (x)|2 were trivially δnN , the wave-function
overlap WNN

σ ′σ (n) would vanish for any n > 1. Thus the width
of the high-harmonic distribution roughly corresponds to the
highest order of harmonics of the electric current.

Actually Jn also contains the contributions from N 	= N ′
and numerical calculations are needed to obtain the accu-
rate values. Figure 4 shows the numerically calculated high-
harmonic currents for the Floquet-Bloch eigenstates, which
correspond to the lowest band in the absence of the oscillating
electric field [see the lowest data points in Fig. 2(b)]. The wave
function is renormalized so that

∫ 1
0 dx|�(x,0)|2 = 1. Consid-

ering Eq. (35), we have focused on |Jn(K) + Jn(−K)|/2 to
obtain the K-resolved information. As shown in Fig. 4, the
high-harmonic current at every K decreases exponentially as n

increases for a small coupling α0 = 0.01 between the electron
and the oscillating electric field. On the other hand, for a
larger coupling α0 = 0.1, the high-harmonic currents show
plateau behaviors around K = π/2. Since these plateaus give
the largest values for n = 3,5, and 7, we also expect a plateau
for Jn(K) summed over K , which is the source of HHG. Thus
our result is qualitatively consistent with experiments.

V. CONCLUSIONS

We have revisited the Floquet-Bloch theory for a one-
dimensional electron gas in the presence of the Kronig-Penney
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FIG. 4. K-resolved high-harmonic spectrum of the electric cur-
rent, |Jn(K) + Jn(−K)|/2 in the unit of |e|, calculated for the
Floquet-Bloch eigenstates corresponding to the lowest band in the
absence of the oscillating electric field [the lowest data points in
Fig. 2(b)]. The two panels are the results for α0 = 0.01 (a) and 0.1 (b),
and each data set corresponds to the lattice momentum K = 0 (filled
circle), π/4 (open circle), π/2 (filled square), 3π/4 (open square),
and π (filled triangle).

potential in the delta-function limit and the oscillating electric
field. Taking advantage of the special form of the potential,
we have shown that the Floquet-Bloch eigenstate is obtained
from an eigenvalue problem for a single-infinite matrix, which
is much simpler than the double-infinite matrix needed for
generic periodic potentials. We have numerically solved the
problem to obtain the quasienergy dispersion E(K), and shown
that it has the anticrossings at the crossing points of the Floquet
bands as well as the band gaps at the edges and the center of the
Brillouin zone. We have also confirmed that the quasienergy
E(K) is obtained at high precision especially for a small
amplitude of the vector potential |A0| � π/2 in the unit of |e| =
1. We have then calculated the high-harmonic components
of the electric current for the Floquet-Bloch eigenstates thus
obtained, showing that a plateau appears when the coupling
between the electron and the oscillating electric field is strong
enough.

Application to HHG in solids especially in the nonperturba-
tive regime is of great interest. As shown by the time-dependent
Schrödinger equation approach [19], the multiple-plateau
structure of HHG is related to the characteristic amplitudes of
the vector potential |A0| = π,2π,3π, . . . in the unit of |e| = 1.
Once we can control our calculations at such a large amplitude,
our approach will contribute to a better understanding of HHG
in solids. In addressing the strong-coupling regime by the
Floquet-Bloch theory, our single-infinite matrix formulation
is expected to be of great benefit compared with the ordinary
double-infinite matrix one.
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APPENDIX: FLOQUET GREEN’S-FUNCTION APPROACH

In this appendix, we review the original approach to solve
Eqs. (8) and (9) on the basis of the Floquet Green’s functions by
Faisal and Genieser [23] and Faisal [24]. Unfortunately, their
results contain mistakes, which we point out in the following.

The unperturbed Floquet Green’s function G0
nn′ (x,x ′) is

defined by

(E − H 0)G0
nn′(x,x ′) = δnn′δ(x − x ′) (A1)

and its explicit form is, as was obtained in Ref. [24], given by

G0
nn′ (x,x ′) =

∑
N

∫ ∞

−∞

dk

2π

ϕNk
n (x)ϕNk

n′ (x ′)∗

E − (k2/2 + N�) + i0
, (A2)

where ϕNk
n (x) is the eigenstate of H 0 [see Eq. (11)]. In this

appendix, the summation is taken over Z if its range is not
specified. The Floquet Green’s function G0

nn′ (x,x ′) enables us
to transform Eq. (8) as

ψn(x) =
∑
n′

∫ ∞

−∞
dx ′ G0

nn′ (x,x ′)V (x ′)ψn′ (x ′). (A3)

Once G0
nn′ (x,x ′) is known, the quasienergy is obtained as

follows. We invoke the Bloch theorem and assume that our
eigenstate is written as

ψn(x) = eiKxφK
n (x), (A4)

where K is a lattice momentum and φK
n (x) is a periodic

function: φK
n (x + a) = φK

n (x). Similarly to the argument in
Sec. III, this leads to the quasienergy E for each K , which
is denoted as E(K). By substituting Eqs. (3) and (A4) into
Eq. (A3), we have

φK
n (0) = P

2a

∑
p,n′

G0
nn′ (0,pa)eipKaφK

n (0), (A5)

where we have used the periodicity φK
n (pa) = φK

n (0) for any
p ∈ Z. This is a linear homogeneous equation for φK

n (0) and
the secular equation determines the quasienergy E(K).

To obtain the simplified expression for G0
nn′ (x,x ′), Faisal

[24] seems to have performed the integration over k on the
right-hand side of Eq. (A2) by invoking residue calculus.
Focusing on the factor eik(x−x ′) in the integrand, they added
a contour integral along the infinitely large semicircle on the
upper or lower half of the complex k plane depending on
x � x ′ or x < x ′, respectively, assuming that this additional
contour integral gives no contribution. Once we calculate the
residues of the integrand at the poles encircled by the composite

contour consisting of the real axis and the semicircle, we obtain
for x � x ′,

G
0,I
nn′ (x,x ′) = −i

∑
N

1

kN

Jn−N (α0kN )

× Jn′−N (α0kN )eikN (x−x ′) (A6)

and, for x < x ′,

G
0,I
nn′ (x,x ′) = −i

∑
N

1

kN

Jn−N (−α0kN )

× Jn′−N (−α0kN )e−ikN (x−x ′), (A7)

where kN ≡ √
2[E − N�]. The notation G

0,I
nn′ (x,x ′) is used to

be distinguished from the true G0
nn′(x,x ′).

We remark that the Floquet Green’s function integrated
over k used in the original derivation [24] is slightly different.
Although the explicit form is not written in Ref. [24], it can
be inferred from Eq. (17) in Ref. [24], which we denote by
G

0,II
nn′ (x,x ′). For x > x ′, G

0,II
nn′ (x,x ′) is the same as G

0,I
nn′ (x,x ′),

but, for x < x ′,

G
0,II
nn′ (x,x ′)=−i

∑
N

1

kN

Jn−N (α0kN )Jn′−N (α0kN )e−ikN (x−x ′).

(A8)

However, this line of reasoning contains a mistake, and
both G

0,I
nn′ (x,x ′) and G

0,II
nn′ (x,x ′) are not suitable for the true

G0
nn′ (x,x ′), because the contour integral along the infinitely

large semicircle is not negligible for small |x − x ′| due to
Jn−N (α0k)Jn′−N (α0k) in the integrand. This becomes man-
ifest if one represents the Bessel function Jn−N (α0k) in
terms of the Hankel functions as Jn−N (α0k) = [H (1)

n−N (α0k) +
H

(2)
n−N (α0k)]/2 and notes their asymptotic forms

H
(1,2)
n−N (α0k) ∼

√
2

πα0k
exp

[
±i

(
α0k − π (n − N )

2
− π

4

)]
(A9)

in |α0k| → ∞. Especially for x = x ′, neither of the contour
integrals along the semicircles on the upper- and lower-half
complex k plane converges due to the coexistence of the terms
proportional to e±2iα0k in the integrand.

More explicitly, we can show that both G
0,I
nn′ (x,x ′) and

G
0,II
nn′ (x,x ′) do not satisfy Eq. (A1). Equation (A1) is equivalent

to the following two conditions:

(A) (E−H 0)G0
nn′(x,x ′)=0 for x <x ′ and x >x ′, (A10)

and

(B)

{
G0

nn′ (x ′ + 0,x ′)=G0
nn′ (x ′ − 0,x ′),

∂xG
0
nn′ (x,x ′)|x=x ′+0 − ∂xG

0
nn′ (x,x ′)|x=x ′−0 =δnn′ .

(A11)

Although the two conditions (A) and (B) must be both satisfied,
one can easily show that G

0,I
nn′ (x,x ′) satisfies (A) but does not

satisfy (B) whereas G
0,II
nn′ (x,x ′) satisfies (B) but does not satisfy

(A). Thus neither G
0,I
nn′ (x,x ′) nor G

0,II
nn′ (x,x ′) is not suitable for

the true Floquet Green’s function. These inconsistencies derive
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from the mistake mentioned above in performing the contour
integral.

We note that the Floquet Green’s functions G
0,I
nn′ (x,x ′) and

G
0,II
nn′ (x,x ′) work in the absence of the oscillating electric field.

In this case, we do not have the index n, H 0 is just −∂2
x /2, and

both G
0,I
nn′ (x,x ′) and G

0,II
nn′ (x,x ′) reduce to −ieik0(x−x ′)/k0 for

x � x ′ and −ie−ik0(x−x ′)/k0 for x < x ′. One can easily show

that Eq. (A5) reduces to

φK (0) = P

2k0a

sin k0a

cos Ka − cos k0a
φK (0), (A12)

which gives the dispersion relation (27) for φK (0) 	= 0.
At present, the author has not found the proper simplified

form of G0
nn′ (x,x ′).
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