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Analytical approach to Coulomb focusing in strong-field ionization. II. Multiple recollisions
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An analytical method for treating Coulomb focusing in strong-field ionization in a linearly polarized laser field
has been proposed in the first paper of this series, where analytical formulas have been derived for the Coulomb
momentum transfer to the tunneled electron at the tunnel exit and due to rescatterings. In this paper, we analytically
investigate a buildup of the Coulomb momentum transfer during multiple laser driven recollisions of the tunneled
electron on the parent ion. We find that the momentum transfer at rescattering events, while being a perturbation
with respect to the instantaneous electron momentum at the rescattering, induces a significant nonperturbative
contribution to the total momentum transfer. Moreover, we show that the higher-order recollisions contribute
considerably to the total momentum transfer and cannot be omitted for the proper description of the Coulomb
focusing. We also show that our analytical approach to Coulomb focusing is well suitable for proper description
of the Coulomb focusing cusps of the photoelectron momentum distribution at energies larger than 50 meV.
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I. INTRODUCTION

Rescattering is one of the key concepts in strong-field
physics [1]. While hard rescatterings with a small impact
parameter are the reason for above-threshold ionization [2],
high-order-harmonic generation [3], and nonsequential double
ionization [4], soft rescatterings with a large impact parameter
induce Coulomb focusing, that is, squeezing the photoelectron
momentum space transverse to the laser polarization direction
[5–7]. The recollision physics is more pronounced in mid-IR
laser fields [8], because the photoelectron dynamics is more
quasiclassical in this case, which allowed the recent discovery
of new Coulomb effects, such as low-energy structures (LESs)
[9–33]. For the same reason the classical trajectory Monte
Carlo method [34–36] is well suited to describe the photo-
electron dynamics and has been used to explain the so-called
low-energy structures (see, e.g., [11,21,26,37,38]). Although
the classical trajectory Monte Carlo simulation can predict the
photoelectron momentum distribution, it provides no insight on
how the specific features in the momentum distribution emerge.

The quantum descriptions of Coulomb field effects have
been implemented using the strong-field approximation (SFA)
[39–41] and including Coulomb corrections [42–49]. How-
ever, the effect of multiple recollisions is very challenging to
treat within SFA [50,51].

In this series of two papers, we develop a classical analytical
theory for the description of Coulomb focusing. In the first
paper of the series (paper I) we have derived analytical formulas
for the Coulomb momentum transfer (CMT) to the electron
at the tunnel exit and at recollisions, which are classified as
slow or fast recollisions. In this paper (paper II) we calculate
analytically the total CMT and derive the final photoelectron
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momentum distribution while employing these formulas. The
advantage of the analytical description is that one can see how
the final Coulomb effect is built up during the interaction,
and can single out the reason for the appearance of the
specific features of the photoelectron momentum distribution.
In particular, we have used the analytical approach in paper I to
figure out the reason for the counterintuitive energy-dependent
shift of the photoelectron momentum cusp in the nondipole
regime.

In this paper, we use the previously derived analytical
estimates for CMT at recollisions (rec-CMT) and at the
tunnel exit (in-CMT) for estimation of the total CMT of any
tunneled electrons. For the derivation of the total CMT two
analytical methods are applied: fully perturbative and step-by-
step method. While in the first method the Coulomb effect is
assumed to be a perturbation with respect to the laser driven
global electron trajectory, in the second method the Coulomb
field is locally treated perturbatively, only near the recollision
point; however, the trajectory itself is adjusted after each
recollision. We find that CMT is a perturbation with respect
to the instantaneous electron momentum at the rescattering;
however, it has a nonperturbative contribution with respect to
the electron final momentum. Further, we analyze the role of
high-order rescattering events in the final CMT.

Once we can derive the total CMT for any tunneled
electron, we apply the methods and generate the asymptotic
photoelectron momentum distribution. In order to settle the
question of whether we can address the Coulomb focusing
and its features within our model, we compare the analytically
determined spectra to the results of classical trajectory Monte
Carlo simulation.

The structure of the paper is the following. In Sec. II,
the calculation model of CMT is introduced. Further, the
total CMT and the final photoelectron momentum distribution
with two methods are derived in Sec. III and the accuracy
of our methods is investigated. The conclusion is given in
Sec. IV.
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II. THE MODEL

We consider the dipole regime of tunneling ionization of an
atom in a strong laser field. The laser field is linearly polarized:

E(u) = E0e cos u, (1)

where u = ωt is the laser phase; E0 and ω are the amplitude
and the angular frequency of the laser field, respectively;
and e = (1,0,0) is the unit vector along the laser polarization
direction. We assume that the electron has tunneled out from
the atomic bound state which is described by Perelomov,
Popov, and Terent’ev (PPT) ionization rate [52]. The initial
longitudinal momentum with respect to the laser field direction
at the ionization moment ti is assumed to be vanishing, and the
initial coordinate is at the tunnel exit.

Our aim is to find an analytical expression for CMT. We
assume that the Coulomb field effect is not negligible only
near recollision points and near the tunnel exit, where it is
treated as a perturbation with respect to the laser field. The
tunnelled electron dynamics in the continuum after tunneling
is governed by Newton equations:

dp
dt

= −E − Zr
r3

, (2)

where p is the electron momentum. Atomic units are used
throughout. The Coulomb field of the atomic core will be
treated by perturbation theory during the recollision and we
expand the momentum and coordinate as

p = p0 + p1 + . . . , r = r0 + r1 + . . . . (3)

The unperturbed trajectory r0(u) is determined by the laser
field:

dp0

dt
= −E, (4)

and momentum transfer due to the Coulomb field at the
recollision is described by the trajectory in the first order of
perturbation:

dp1

dt
= −Zr0

r3
0

, (5)

with r0 = |r0|;
p0x(u) = pxr + [Ax(u) − Ax(ur )],

(6)
p0⊥(u) = p⊥r ,

with the laser vector-potential Ax(u) = −(E0/ω) sin u. The
initial conditions are defined at the recollision point with
the recollision phase ur , and the recollision momentum pr =
(pxr,p⊥r ), aiming at application of the solution near the
recollision point. The unperturbed electron trajectory near the
recollision point is

x0(u) = E0

ω2
[cos u − cos ur + (u − ur ) sin ur ]

+ pxr

ω
(u − ur ) + xr,

(7)
r0⊥(u) = p⊥r

ω
(u − ur ) + r⊥r ,

with the recollision coordinate rr = (xr,r⊥r ).

Once the zeroth-order equations are solved, the momentum
transfer due to the Coulomb field at the recollision can be
derived as the first-order correction

p1 = −Z

ω

∫ ur+δ

ur−δ

r0(u′)
r3

0 (u′)
du′, (8)

where r0(u) = (x0(u),r0⊥(u)). The value of the parameter δ is
coupled to the properties of the recollision and is discussed in
Sec. III of paper I, where we also present analytical solutions
to Eq. (8) for the well-defined recollision events.

In the discussion above, the Coulomb field effect is ac-
counted for only near recollision points and near the tunnel exit,
where it is treated as a perturbation with respect to the laser
field. Still Eq. (8) for CMT includes nonperturbative Coulomb
effects via dependence on the recollision parameters, i.e., the
electron momentum pr and coordinate rr at the recollision
point. The role of multiple recollisions for the total momentum
transfer is discussed in Sec. III.

One may also apply a less accurate description assuming
that the Coulomb field is a perturbation globally, i.e, at any
moment the difference between the exact and laser driven
trajectories is small and negligible. In this description the
unperturbed electron trajectory is given by Eqs. (6), replacing
the recollision phase ur by the ionization phase ui , and
replacing the recollision coordinate rr and momentum pr by
the coordinate and momentum at the tunnel exit: ri = (xi,0,0)
and pi = (0,pyi,pzi), respectively. The tunnel exit can be
roughly estimated in the quasistatic regime asxi = −Ip/E(ui),
which corresponds to the zero-range potential case.

III. TOTAL MOMENTUM TRANSFER AND
PHOTOELECTRON MOMENTUM DISTRIBUTION

In this section, we illustrate the capability of our analytical
approach to provide an estimation of the final momenta for any
arbitrary ionization phase ui , and initial transversal momentum
p⊥i and, accordingly, the estimation for the asymptotic photo-
electron momentum distribution. We compare our analytical
results with the numerical classical trajectory Monte Carlo
simulations, to check whether the derived analytical formulas
for rec-CMT and in-CMT can provide physically relevant
results. We consider two different approaches: the straightfor-
ward zeroth-order trajectory approach and the more elaborate
step-by-step approach. For simplicity the dipole approximation
is applied and Ip = 0.5 and Z = 1 throughout this section.

A. Zeroth-order trajectory approach

In this approach, the Coulomb field of the atomic core
is treated as a global perturbation. Then, the zeroth-order
trajectory describes the trajectory of the electron solely in
the laser field. The total Coulomb effect mostly amounts
to in-CMT and rec-CMT (there is also a small asymptotic
contribution after the laser pulse is switched off, which was
discussed in paper I. For the estimation of rec-CMT, we use
the zeroth-order trajectory to find the rescattering points and for
each rescattering event apply our rec-CMT formulas derived
in Sec. III of paper I. The in-CMT distorts the zeroth-order
trajectory significantly, which can have an essential impact
on the rescattering points. Therefore, we include the in-CMT
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FIG. 1. Total CMT vs ionization phase ui via the zeroth-order tra-
jectory approach: (a) longitudinal momentum transfer, (b) transverse
momentum transfer, and (c) the corresponding errors; p⊥i = 0.2.
Numerical simulations are shown with triangles, the estimation (see
the text) is shown with red crosses, and in-CMT is shown with a green
double arrow. The contribution of each rec-CMT is shown by a line
segment: slow recollision, red; fast recollision, blue. The contributions
are added to in-CMT and to the previous rec-CMTs, as long as it is
larger than 5% of the total numerical estimate of CMT. This restriction
was applied for the sake of graphical simplicity only.

in the zeroth-order trajectory via modification of the initial
momentum (see Appendix A1).

We compare results of our analytical estimations for the
total momentum transfer with numerical simulations in Fig. 1
(in the latter a smooth switch-off of the laser pulse is used). For
ui > 0, a very good agreement with the numerical simulations
is achieved. The error is well behaved and peaks at the phases
where two methods are switching, namely, the single slow
recollision forks into two fast recollisions. There is an easily
understandable discrepancy for ui < 0, since decreasing ui

tilts the electron’s quivering trajectory down and hence the
first recollision becomes slow, which generally yields larger
momentum transfer than fast recollision. For some particularly
small and especially negative ui , the momentum transfer is
so large that the whole zeroth-order trajectory is not a valid
approximation anymore and our present approach fails. The
accuracy issue will be discussed below in Sec. III D.

We underline an important message of Fig. 1, which has
been enabled by our analytical approach. A single rescattering
is not sufficient to describe the CMT. The contribution of high-
order rescatterings to the total CMT is significant and should
not be neglected for a good quantitative description.

B. Step-by-step approach

When the electron is ionized near the peak of the laser
field, its drift velocity is small, and rescattering can happen
with a small impact parameter, inducing large distortion of
the laser driven trajectory. The same can happen when the
electron is ionized with a small transverse momentum at other
ionization phases. It is understandable that the zeroth-order
approximation fails in this case. However, we can improve our
estimations by taking into account rec-CMT at each recollision
during propagation in the laser field. Thus, the electron is
propagated by the laser field only step by step from the
ionization phase ui till the end of the laser pulse over all the
rescattering events, and by correcting the electron momentum
by the estimated rec-CMT at every single recollision point.
This approach is expected to give much more precise results,
with a wider range of applicability of ionization phases and
initial transverse momenta.

Although the laser driven trajectory is disturbed due to
rec-CMT at the recollisions, the rec-CMT itself can be still
calculated using perturbation theory because the latter is al-
ways applicable at least during the short time of the recollision.
This allows us to use the same formulas for rec-CMT as in the
previous subsection. The only difference is that the zeroth-
order trajectory is replaced by several step-by-step evolved
zeroth-order trajectories (for more details see Appendix A2).

We plotted the resulting CMT for various ionization phases
and fixed p⊥i = 0.2 a.u. in Fig. 2. The relative error does not
change much for the positive phases where only few rescatter-
ings take place. For the negative phases we can actually see an
increase in the precision which is a good indication that our
step-by-step approach could deliver much better results.

Although the procedure of finding the right rescattering
points seems to be straightforward, we need a quite good
algorithm selecting them automatically in order to automatize
the methods. The algorithms for selection of the proper
rescattering point can be found in Appendix B.

We point out the remarkable qualitative similarity of the
results of the two methods for the total CMT in Figs. 1
and 2. Although the zeroth-order trajectory approach is less
accurate quantitatively [see the larger error for p1‖ at ui < 0
in Fig. 1(c) with respect to Fig. 2(c)], the behavior of the
transverse and longitudinal rec-CMT with respect to the laser
phase is similar. Both methods show that the contribution of
high-order rescatterings to the total CMT is significant and
determines the behavior of the total CMT with respect to the
ionization phase.

C. Comparing methods

Let us compare the accuracy of both methods over the
whole valid parameter space. For a special class of initial
conditions, the components of the final momentum can be
vanishing, leading to an artificial enhancement of the relative
error. Therefore, we redefine the relative error as follows:

δp‖ =
∣∣∣∣∣ p‖(ui,p⊥i) − p

(num)
‖ (ui,p⊥i)

max [p‖(ui,p⊥i),p‖(ui,p⊥i) − p0‖(ui)]

∣∣∣∣∣100%, (9)
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FIG. 2. Total CMT vs ionization phase ui via the step-by-step
approach: (a) longitudinal momentum transfer, (b) transverse momen-
tum transfer, and (c) the corresponding errors; p⊥i = 0.2. Numerical
simulations are shown with triangles, the estimation (see the text) is
shown with red crosses, and in-CMT is shown with a green double
arrow. The contribution of each rec-CMT is shown by a line segment:
slow recollision, red; fast recollision, blue. The contributions are
added to in-CMT and to the previous rec-CMTs, as long as it is larger
than 5% of the total numerical estimate for CMT, again, for the sake
of clarity only.

δp⊥ =
∣∣∣∣∣ p⊥(ui,p⊥i) − p

(num)
⊥ (ui,p⊥i)

max [p⊥(ui,p⊥i),p⊥(ui,p⊥i) − p0⊥(ui)]

∣∣∣∣∣100%,

(10)

withp‖/⊥(ui,p⊥i) being the proper component of the electron’s
final momentum given by Eq. (A4) or by Eq. (A5) at n = N

for the zeroth-order or step-by-step method, respectively. The
superscript “(num)” denotes the corresponding value obtained
numerically and subscript “0” marks the value obtained from
the zeroth-order trajectory neglecting any Coulomb interac-
tion. The newly defined relative error is well behaved even
for the final vanishing momentum where the momentum is
replaced with the total CMT instead. We show the redefined
error for valid ranges of the ionization phase ui , and the initial
transversal momentum in Fig. 3 for our zeroth-order trajectory
method and in Fig. 4 for the step-by-step method.

Obviously, the initial momentum p⊥i plays a crucial role.
With decreasing p⊥i the first rescattering has a smaller impact
parameter and, therefore, induces larger CMT, which will
introduce discrepancy to the zeroth-order trajectory. Thus, our
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FIG. 3. Relative error of the photoelectron estimated asymptotic
momentum in the zeroth-order trajectory approach: (a) longitudinal
momentum and (b) transverse momentum.

method for analytical estimation of CMT is not applicable for
small initial transverse momenta of the ionized electron and for
small ionization phases (near the peak of the laser field). The
vertical lobes indicate the ionization phases with underlying
slow recollision. The error rises there, since the CMT at such
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FIG. 4. Relative error of the photoelectron estimated asymptotic
momentum in the step-by-step approach: (a) longitudinal momentum
and (b) transverse momentum.
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FIG. 5. Photoelectron momentum distribution: (a) numerical classical trajectory Monte Carlo simulation, (b) via the zeroth-order trajectory
method, and (c) via the step-by-step method.

recollision is much larger than the CMT at fast recollisions and
even a small relative error has a large total contribution.

Finally, let us note that the white areas arise due to several
effects, such as chaotic dynamics, hard recollisions, and the
trapping of electrons in Rydberg states. Such effects do not
play a significant role for Coulomb focusing. The role of the
errors of the present analytical approach for the description of
the final photoelectron momentum distribution is discussed in
the next section.

D. Photoelectron momentum distribution

In the previous subsection, we have seen that our analytical
methods allow us to determine the photoelectron asymptotic
momentum during the laser driven excursion in the continuum
in the field of the atomic core. However, since the accuracy is
not acceptable in the whole range of the ionization phases or in
the initial transverse momenta, a question arises, namely, how
accurately can the final photoelectron momentum distribution
be described by our methods? In this section we compare
results of fully numerical classical trajectory Monte Carlo
simulation of the final photoelectron momentum distribution
with those of our analytical methods. In order to do this,
we performed classical trajectory Monte Carlo simulations in
two dimensions due to the symmetry of the problem in the
dipole approximation. Every two-dimensional (2D) trajectory
of the initial transversal momentum p⊥i is weighted with
the PPT transverse momentum distribution wPPT(p⊥i) and
with an additional factor of 2πp⊥i . The latter accounts for
the fully three-dimensional (3D) initial phase space the two
transversal dimensions of which can be mapped onto a single
dimension due to the symmetry via d2p⊥i = 2πp⊥idp⊥i .
With the electron asymptotic distribution functionwsim(p‖,p⊥)
provided by the 2D classical trajectory Monte Carlo simula-
tion, one restores the real final 3D photoelectron momentum
distribution:

d3f

d3p
∝ wsim(p‖,p⊥)

2πp⊥
, (11)

where we have restored the second transversal dimension
via the relation d2p⊥ = 2πp⊥dp⊥ for the final transversal
momentum p⊥.

We performed three different classical trajectory Monte
Carlo simulations with 107 trajectories to determine the pho-
toelectron momentum distribution at the end of the laser pulse:
one fully numerical, the second using our zeroth-order trajec-
tory method, and the last using the step-by-step method. The
resulting photoelectron momentum distributions are compared
in Fig. 5.

As we can see, both methods reproduce the central vertical
cusp. However, the width of the cusp is reproduced by the step-
by-step method more correctly. On one hand, the horizontal
fringes appear already by the zeroth-order method, which
can be understood as a manifestation of the fine role of the
slow recollisions (so-called longitudinal bunching [25]). On
the other hand, the step-by-step method seems to reconstruct
even the right thickness and location of the fringes and thus
we conclude it is a better investigative tool. Unfortunately,
both simulated photoelectron momentum distributions exhibit
additional horizontal lines (e.g., at px ≈ 0.61 a.u.). Such lines
can be attributed to an “artificial” longitudinal bunching effect
which arises when one slow recollision is replaced by two fast
recollisions yielding a slightly greater total CMT. Because of
this artifact, an additional horizontal line appears underneath
each slow recollision regular fringe, which is demonstrated as
a twofold line in the photoelectron momentum distributions.
Luckily, the utility of the results is not jeopardized since the
artificial fringe is much weaker than the real effect and can be
therefore easily disclosed.

The numerical photoelectron momentum distribution pos-
sesses a half-circle fringe of radius ∼0.08 a.u. (center at the
origin) with a prominent peak structure inside. This structure
is created by electrons with low transverse momenta near the
peak of the laser pulse, for which the error of our analytical
methods is large (see white areas in Figs. 3 and 4). Although
both analytical methods reproduce the peak, they fail to predict
the correct structure of it. This is due to the fact that these
electrons undergo multiple recollisions with large CMT and
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FIG. 6. (a) Photoelectron energy distribution. (b) Photoelectron
longitudinal momentum distribution: numerical classical trajectory
Monte Carlo simulation (solid, blue), via the zeroth-order trajectory
method (dashed, red), and via the step-by-step method (dash-dotted,
green). We show also distributions while restricting trajectories to
those with an error greater than 100% in at least one direction: via the
zeroth-order trajectory method (dashed, magenta) and via the step-
by-step method (dash-dotted, cyan). The curves are shifted vertically
for visibility while keeping the same shift for the same methods in
individual panels.

never really gain substantial distance from the ion during the
whole laser pulse and are strongly influenced by the Coulomb
field even when the pulse is long gone. For such behavior, the
perturbative recollision picture does not hold and our methods
fail.

Since LES was first observed in the photoelectron energy
spectra [9], we investigated in Fig. 6(a) whether they can be
reproduced by our analytical methods. The spectrum and the
longitudinal momentum distribution [in Fig. 6(b)] are obtained
by the classical trajectory Monte Carlo simulations where
we separated the contributions of the electrons with their
total CMT estimated with errors smaller than 100% and of
the remaining electrons with their total CMT estimated more
wrongly. As we see, the excluded contributions of the wrongly
estimated photoelectrons are negligible in the energy domain,
especially for nonvanishing energies. However, a sharp peak
can be found at px ≈ 0.075 a.u., which can be discerned
clearly in Fig. 6(b). As we can see, already the zeroth-order
trajectory method captures the positions of the peaks in the
energy distribution Fig. 6(a) quite correctly. Nevertheless, the
peak at the vanishing longitudinal momentum is misplaced,
which is corrected by the more precise step-by-step method.

We can conclude that our analytical approach is able to
predict correctly many features of photoelectron momentum
distribution, in particular, width of the vertical cusp, the peaks
along it, and the position of the horizontal caustic fringes due
to the longitudinal bunching. Our approach fails only at very
low momenta px � 0.05 a.u. While predicting the existence
of the lowest momentum peak, none of our methods provides
its correct structure. The reason is that the trajectories with
a large error (white areas in Figs. 3 and 4) mostly contribute
to this prominent peak at low momenta, which explains the
noticeable discrepancy between the numerics and our results
in this region. On the bright side, the white areas contribute to
the momentum peaks at larger energies only negligibly and do
not threaten the utility of our approach to Coulomb focusing
for the largest part of the photoelectron momentum distribution
[see Fig. 6(b)].

IV. CONCLUSION

We have developed an analytical description of Coulomb
focusing effects in laser induced strong-field ionization, which
is based on the analytical formulas for CMT derived in paper
I. For the derivation, the Coulomb field effect is treated as a
perturbation at recollisions.

In paper II, we used the analytical formulas for CMT at
the tunnel exit and later at the rescattering events from paper
I in order to derive the total CMT on an electron tunneled at
any arbitrary ionization phase. For this purpose, we proposed
two different methods which we also successfully applied for
derivation of the final photoelectron momentum distributions.

Besides the simplest zeroth-order laser driven trajectory
method, we put forward also the step-by-step method, when
after each recollision the electron trajectory is corrected ac-
counting for CMT at the recollision. We show that the accuracy
of our approach fails only at very low photoelectron energies. In
addition, the latter method provides an extension of the model
beyond the perturbative regime, where the CMT at a recollision
introduces significant distortion to the global trajectory, and
leads to a better agreement with numerical simulations at low
photoelectron energies than the former method.

The perturbative treatment of the Coulomb field effect was
successfully applied for investigation of Coulomb focusing and
its features. We found out that the treatment is well suited for
the description of the Coulomb focusing as it arises due to
multiple forward scatterings of the ionized electrons by the
atomic core at relatively large impact parameters. Nevertheless,
the perturbative treatment seems to fail for recollisions with
small impact parameter leading to well-known processes of
above-threshold ionization. During these hard recollisions, the
electron absorbs a large amount of energy from the laser and
finally ends up at high energies. However, the contribution of
the hard recolliding trajectories to the Coulomb focusing cusps
is minor.

The analytical description of Coulomb focusing allows
estimation of the role of each particular rescattering event.
In particular, we have proven by our analytical approach (see
Fig. 2) that single rescattering is not sufficient to quantitatively
describe Coulomb focusing in midinfrared laser fields and
the contribution of high-order rescatterings should not be
neglected.
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APPENDIX A: THE TOTAL CMT

In this section we define two methods for derivation of
the total CMT: the zeroth-order method and the step-by-step
method.

1. Zeroth-order trajectory approach

In this approach, the Coulomb field of the atomic core is
treated as a global perturbation. The zeroth-order trajectory
describes the electron in the laser field:

x̃0(u) = E0

ω2
[cos u − cos ui + (u − ui) sin ui]

+ (u − ui)
p2‖,in

ω
+ xi, (A1)

ỹ0(u) = pyi + p2y,in

ω
(u − ui), (A2)

z̃0(u) = pzi + p2z,in

ω
(u − ui), (A3)

with p2y,in and p2z,in being projections of the transversal in-
CMT p2⊥,in(ui,

√
p2

yi + p2
zi ) in y and z directions, respectively.

The in-CMT p2‖,in and p2⊥,in are given in paper I by Eqs. (36)
and (37), respectively.

The final momentum is obtained by including the contribu-
tion of all rec-CMT into the momentum transfer, yielding

p(ui,p⊥i) = p0(ui,p⊥i) + p2,in(ui,p⊥i) +
N∑

j=1

p(j )
1 (ui ,̃p⊥i),

(A4)

where N is the total number of effective rescatterings, p0(ui) =
(−A(ui),pyi,pzi) is the zeroth-order asymptotic momentum,
p⊥i = (0,pyi,pzi) is the initial transverse momentum,
p2,in(ui,p⊥i) ≡ p2‖,in(ui,|p⊥i |)e − |p2⊥,in(ui,|p⊥i |)| p⊥i

|p⊥i | is
the initial momentum correction, p̃⊥i ≡ p⊥i −
|p2⊥,in(ui,|p⊥i |)| p⊥i

|p⊥i | is the distorted initial transversal

momentum, and p(j )
1 (ui ,̃p⊥i) is the rec-CMT at jth recollision

given by the formulas derived in paper I, corresponding to the
specific type of this recollision.

We treat a recollision as slow recollision, when ẋr = 0 and
xr ẍr > 0, as well as those when ẋr = 0, xr ẍr < 0, but only
as long as |xr | < xthresh = E0/(5ω2). For the estimation of
rec-CMT we use Eqs. (A1)–(A3) from paper I in both cases.
All slow recollisions with |ẍr | < ẍthresh = E0/10 are neglected
because such recollisions happen at the end of the laser pulse
and have negligible rec-CMT (see Fig. 7). For some electrons
this is not true, however most of them are further trapped in
the Rydberg states.

Finally, we treat the remaining rescatterings as fast recol-
lision and use the estimates given in paper I by Eqs. (23)–
(25) or Eqs. (B7)–(B9), depending on the conditions given
by Eqs. (B10) and (B11). The only exceptions are the fast
recollision closest to any slow recollision with xr ẍr < 0 and
|xr | < xthresh, which we neglect since the rec-CMT is already
taken into account via the slow recollision (see an exemplary
slow recollision at ur ∼ 2π or 13π replacing the two closest
fast recollisions in Fig. 7).

−400

−200

0

200

400

5π 10π 15π 20πx
(a
.u
.)

u (rad)

x(u)

FIG. 7. An illustrative trajectory demonstrating two different
types of recollisions: slow recollision (by orange dots) and fast
recollision (by blue squares). We keep the slow recollision points
if |xr | < E0/(5ω2) for xr ẍr < 0, otherwise we find the closest fast
recollision points. We also keep those slow recollisions with xr ẍr > 0
but neglect any slow recollision points with ẍr < E0/10.

2. Step-by-step approach

In this approach the electron is propagated by the laser field
only step by step from the ionization phase ui till the end of the
laser pulse over all the rescattering events, and by correcting
the electron momentum by the estimated rec-CMT at every
single recollision point.

The drift momentum after the nth recollision is dependent
of all rec-CMT received at all previous recollisions and can be
iteratively defined as

p(n)(ui,p⊥i) = p(n−1)(ui,p⊥i) + p(n)
1 (ui,p(n−1)(ui,p⊥i)),

(A5)

where we have for simplicity redefined the in-CMT
as zeroth-order rec-CMT: p(0)

1 (ui,p⊥i) ≡ p2‖,in(ui,|p⊥i |)e −
|p2⊥,in(ui,|p⊥i |)| p⊥i

|p⊥i | . The iteration starts at n = −1 with

p(−1)(ui,p⊥i) := −Ax(ui)e + p⊥i . Let us note that n = 0 cor-
responds to the momentum after tunneling and before the first
rescattering event which happens at n = 1. The properties
of the nth rescattering can be determined from the zeroth-
order trajectory evolved from the (n − 1)th event with the
p(n−1)(ui,p⊥i) momentum yielding

x
(n)
0 (u) = 1

ω

∫ u

uin

(
p(n)

x (ui,p⊥i) + Ax(u)
)
du + x

(n−1)
0 (uin),

(A6)

r(n)
0⊥(u) = p(n)

⊥i (ui,p⊥i)

(
u − uin

ω

)
+ r(n−1)

0⊥ (uin), (A7)

where we set uin = ur of the nth rescattering. The tunnel exit
enters the iteration as x

(−1)
0 = xi , r(−1)

0⊥ = (0,0), and for n = 0
we have uin = ui .

Trajectories obtained with the step-by-step and the zeroth-
order approaches are compared with the numerical simulation
for ui = −π/100 in Fig. 8. As we can see, the trajectories do
not differ for the first half period which is achieved by taking
the initial momentum correction into account. The difference
starts to manifest during the second half period of the laser
field (i.e., after the first rescattering); however, the step-by-step
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FIG. 8. The electron trajectories in different approaches: (solid,
gray) numerical solution, (dashed, orange) zeroth-order approach, and
(dot-dashed, multicolor) step-by-step approach. Rescattering points
are noted by black triangles. All trajectories match well for the first
half period but start to differ after the first rescattering event. The
used parameters are E0 = 0.041, ω = 0.0134, ui = −π/100, and
p⊥i = 0.2.

zeroth-order trajectory approach provides a rather good ap-
proximation for the exact numerical trajectory.

APPENDIX B: METHODS

Despite the precise method we use, the essence of our
semianalytical approach is the correct determination of the
rescattering points. The main challenge is to find an algorithm
that will correctly choose the rescattering points and refuse
other candidates. Even though the underlying principles for
the rescattering point classification are the same, differences
can be found and both methods require special algorithms. Let
us therefore discuss the methods separately.

1. Zeroth-order trajectory

Since we know the whole zeroth-order trajectory distorted
by the in-CMT analytically from Eqs. (A1)–(A3), we can easily
determine the rescattering points as p0‖(ur ) + p1‖,in = 0 for
slow rescattering (save them in sorted list S) and x̃0(ur ) = 0
for fast cases (and save them in sorted list F) up to the end of
the laser pulse. The lists are sorted increasingly with respect to
the rescattering phase ur of the individual events. The number
of elements in a list will be denoted by prefix “#.” Once we
have gathered all the candidates, we have to apply selection
rules.

(1) Remove the first element in S if its rescattering phase
ur ∼ π .

(2) When #F > 1: starting from the lowest ur , for each
neighboring pair of F points find the S recollision they surround
if its distance |x(ur )| > xthresh, otherwise memorize the two F
points for later removal; finally, after analyzing of all F pairs
remove all memorized F points.

(3) From the S rescatterings we keep only those fulfilling
one of the following two conditions:

r(ur ) · E(ur ) > 0 and |x(ur )| < xthresh, (B1)

r(ur ) · E(ur ) < 0 and |E(ur )| > Ethresh, (B2)

where the first condition selects all the unfavorable turning
points when they happen close enough to the ion and the second
condition selects all the favorable turning points excluding
those at the end of the laser pulse with respect to the thresh
Ethresh.

Let us note that the end of the pulse must be chosen ap-
proximately because otherwise fast recollisions could appear
for late phases when the quiver motion is nearly non-existing.
For such recollisions we lack estimations of rec-CMT but their
contribution to the total momentum is assumed to be vanishing
due to the large distance from the ion for trajectories of our
interest.

2. Step-by-step approach

The step-by-step method is a little bit more elaborated and
the general scheme from the zeroth-order trajectory cannot
be used. Since we are interested only in the next rescattering
point, there is little sense in searching for all the rescattering
points till the end of the laser pulse in order to find the proper
subsequent one.

Therefore, we find all the slow or fast candidates within
the range ur < 9π/4 + uin with uin = ui and n = 0 by using
the zeroth-order vector Eq. (A5) and we find the step-by-step
evolved trajectory by Eqs. (A6) and (A7) in complete analogy
to the zeroth-order case, prepending the ionization phase to the
list F and apply the following procedure.

(1) If #S + #F = 1 there are no further rescattering points.
(2) If the first event in F precedes the first event in S: remove

the first element in S if its ur < π + uin.
(3) If the first element in S precedes the first element in

F, (a) remove the second element in S if its ur < π/4 + uin

(eliminating fake slow recollision due to non-negligible rec-
CMT); (b) if #F > 0 then remove the first element in F when
its ur < π + uin, otherwise remove every even element in S or
every element in S for which |E(ur )| < Ethresh—the remaining
list S contains all valid rescattering points.

(4) When #F > 1: starting from the lowest ur , for each
neighboring pair of F points find the S recollision they surround
if its distance |x(ur )| > xthresh, otherwise memorize the two F
points for later removal; finally, after analyzing of all F pairs
remove all memorized F points.

(5) From the S rescatterings we keep only those fulfilling
one of the following two conditions:

r(ur ) · E(ur ) > 0 and |x(ur )| < xthresh, (B3)

r(ur ) · E(ur ) < 0 and |E(ur )| > Ethresh, (B4)

where the first condition selects all the unfavorable turning
points when they happen close enough to the ion and the second
condition selects all the favorable turning points excluding
those at the end of the laser pulse with respect to the thresh
Ethresh.

At the end of this procedure, we have a list of all valid
rescattering points including the original one. The second
element of the union S + F is the next rescattering point and
we can estimate the momentum after this rescattering from
Eqs. (A5) by using the right rescattering type and formula. Now
we set uin = ur and clear the lists S, F; further, we append the
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rescattering point ur to the proper list instead of the ionization
phase and repeat the whole procedure above for n = n + 1.
We repeat so till no further rescattering points are found (i.e.,

#S + #F = 1) or until the end of the laser pulse. Again, there
is some caution required while setting the end of the pulse in
order to eliminate the unwanted fast recollisions.
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