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Analytical approach to Coulomb focusing in strong-field ionization. I. Nondipole effects
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The role of the Coulomb potential of the atomic core for the creation of caustics in the photoelectron momentum
distribution for tunneling ionization in a linearly polarized strong laser field, commonly termed Coulomb focusing,
is investigated within classical theory beyond the dipole approximation. Coulomb focusing is addressed by
analytical calculation of Coulomb momentum transfer to the tunneled electron due to rescatterings, while applying
perturbation theory and classifying the recollisions either as fast or as slow. With the help of the derived analytical
treatment, we analyze the origin of the counterintuitive energy-dependent bend of the Coulomb focusing cusp
in the photoelectron momentum distribution in a linearly polarized laser field in the nondipole regime, and its
scaling with the field parameters. The high-order recollisions are shown to be responsible for a decrease of the
bend of the cusp at very low energies in this regime.

DOI: 10.1103/PhysRevA.97.063409

I. INTRODUCTION

Since the seminal works of Perelomov, Popov, and Ter-
ent’ev (PPT) [1–6], it has been known that the ionization rate
of the atom in a strong laser field can be significantly disturbed
by the Coulomb field of the atomic core. Later it was realized
that the Coulomb field of the atomic core imprints specific
signatures on the momentum distribution of photoelectrons [7],
which arise during electron excursion in the laser field after
the release (tunneling) from the bound state. The Coulomb
field effect on the electron dynamics is conspicuous, first of
all near the tunnel exit [8], and further during rescatterings
[9]. While the first effect exists at any polarization of the
laser field, the rescattering is mostly efficient in the case of
linear polarization, although even in a laser field of elliptical
polarization, rescattering and consequent Coulomb effects can
take place [10–18].

Hard rescatterings with a small impact parameter induce
well-known processes of above-threshold ionization [19],
high-order-harmonic generation [20,21], and nonsequential
double ionization [22]. In contrast to that, due to multiple
forward scattering of ionized electrons by the atomic core at
large impact parameters during oscillation in the laser field,
the electrons with large transverse momentum at the ionization
tunnel exit finally appear with low transverse momentum. Ac-
cordingly, the large initial transverse momentum space at the
tunnel exit is squeezed into the asymptotic small one, i.e., the
Coulomb field focuses electrons in the momentum space along
the laser polarization direction, which is termed Coulomb
focusing [7,23,24]. In early experiments, the traces of Coulomb
focusing was observed as cusps and humps in the photoelectron
momentum distribution [25–28]. Recently, due to advance-
ments of the midinfrared laser technique [29], the interest
in Coulomb focusing has been significantly increased with
observation of rich structures in the photoelectron momentum
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distribution near the ionization threshold in long-wavelength
laser fields, the so-called low-energy structures (LES) [30–32],
very-low-energy structures [33,34], and zero-energy structures
[35–40]. The origin of LES has been traced to multiple forward
scattering by the Coulomb field, which induces transverse and
longitudinal bunching of the electron momentum space [41–
49]. LES are well resolved in midinfrared laser fields, when
the Keldysh parameter is small, the interaction is essentially in
the tunneling regime, and classical features of the three-step
model [9] are evident.

For nonperturbative quantum descriptions of Coulomb
field effects, different modifications of the strong-field ap-
proximation (SFA) [50–52] have been developed [53–60].
The Coulomb-corrected SFA of [53,54], which employs the
quasiclassical electron wave function in the continuum in laser
and Coulomb fields, has been successfully applied for the ex-
planation of LES [43]. A similar but more systematic R-matrix
theory [55–57] has also been extended to treat recollisions
[61,62]. It appears that the perturbative SFA is also able to
account for LES [63–67] when appropriate trajectories with
soft recollisions [46] are included. However, this description is
only qualitative because for a correct quantitative description,
the effect of multiple recollisions should be taken into account.

In midinfrared laser fields, the electron dynamics after tun-
neling is mainly classical because the characteristic energies of
the process, namely, the ionization and ponderomotive poten-
tials, greatly exceed the photon energy in this regime. There-
fore, the classical trajectory Monte Carlo (CTMC) method
[68–70] has been successful in explaining LES features; see,
e.g., [32,42,47,71,72]. Although both Coulomb-corrected SFA
and CTMC successfully predict the existence of LES, they
deliver only a little insight into the underlying physics as they
both employ classical trajectories via numerical calculations
which hide the physical picture of the transformation of the
electron’s initial momentum space at the tunnel exit into the
asymptotic one at the detector.

Coulomb focusing arises due to the long-range Coulomb
interaction between the tunnelled electron and its parent ion.
This interaction is conspicuous at rescattering points when the
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tunneled electron revisits the atomic core during its excursion
driven by the laser field. Usually the momentum transfer
during high-order rescattering events is decreasing with its
order. However, the decrease is not monotonous and the
accurate description requires accounting also for high-order
rescatterings [45,71]. The understanding of Coulomb focusing
requires quantitative information on the Coulomb momentum
transfer (CMT) at effective recollisions. For instance, the
essential point in the LES explanation was establishing the
fact of the nonuniform dependence of CMT at recollisions
with respect to the ionization phase (laser field phase at the
ionization moment) and the reason for that.

Moreover, recent experiments [18,73] have shown that
Coulomb focusing is significantly modified in the nondipole
regime. The breakdown of the dipole approximation was first
observed in the case of linear polarization of the laser field
[73] as a counterintuitive shift of the photoelectron momentum
distribution peak opposite to the laser propagation direction,
which was attributed to the interaction of the tunneled electron
with the Coulomb field of the parent ion. Further numerical
calculations of the time-dependent Schrödinger equation have
shown that the photoelectron momentum distribution shift with
respect to the dipole approximation case is not uniform, but
momentum dependent [74]. The same conclusion has been
drawn from the classical [75] and Coulomb-corrected SFA
[76] calculations. However, the intuitive explanation of the
nondipole features of photoelectron momentum distribution
is still missing.

In this paper, we develop a classical analytical theory for the
description of Coulomb focusing with respect to the underlying
momentum transfer due to the Coulomb interaction. We derive
analytical formulas for the CMT to the recolliding electron
at multiple recollisions, while classifying the recollisions as
either fast or slow recollision. We include nondipole effects,
accounting for the laser magnetic-field-induced drift of the
ionized electron along the laser propagation direction during
the excursion in the laser field. The Coulomb field of the
atomic core is treated as a perturbation to the laser-driven
trajectory near the recollision point. The scaling of the CMT
at the recollision (rec-CMT) with respect to the rescattering
parameters (momentum and impact parameter) is derived.
We also address the CMT taking place at the initial part
of the trajectory, where the electron starts at the tunnel exit
and recedes from the atom. Our inquiry leads to high-order
corrections to the known formula for the initial CMT (in-
CMT), which are necessary for keeping the overall precision of
our model. In our approach, CMT is a perturbation with respect
to the instantaneous electron momentum at the rescattering
(at the tunnel exit); however, it may have a nonperturbative
contribution with respect to the electron final momentum.
We employ our framework for investigation of the counter-
intuitive energy-dependent bend of the cusp in the photo-
electron momentum distribution, revealing a fine interplay of
the nondipole and Coulomb field effects. We find a direct
relationship of multiple recollisions and the fine structure of the
cusp.

The structure of the paper is the following. In Sec. II,
the model of Coulomb focusing is introduced. The transverse
and longitudinal rec-CMT are calculated in all generality in
Sec. III. In Sec. IV, we derive the revised formula for in-CMT.

The nondipole effects in Coulomb focusing are investigated in
Sec. V. The conclusion is given in Sec. VI.

II. THE MODEL

We consider the tunneling ionization regime of an atom in
a strong laser field when the Keldysh parameter is small [50],
i.e., γ ≡ √

Ip/2Up � 1, with the ionization potential Ip and
the ponderomotive potential Up = E2

0/4ω2. Atomic units are
used throughout, unless mentioned otherwise. The laser field
is linearly polarized,

E(u) = E0e cos u,
(1)

B(u) = n × E(u),

where u = ω(t − z/c) is the laser phase, B(u) is the laser
magnetic field, E0 and ω are the amplitude and the angular
frequency of the laser field, respectively, c is the speed of light,
and e = (1,0,0) and n = (0,0,1) are the unit vectors along
the laser polarization and propagation directions, respectively.
We assume that the electron has tunneled out from the atomic
bound state, which is described by the PPT ionization rate.
The latter provides the probability for the initial transverse
momentum distribution [4],

w(p⊥) ∝ exp

(
− p2

⊥
�2

⊥

)
, (2)

where �⊥ = E
1/2
0 /(2Ip)1/4. The initial longitudinal momen-

tum with respect to the laser field direction at the ionization
moment ti is assumed to be vanishing, and the initial coordinate
is at the tunnel exit.

We consider the nondipole regime of interaction and will
keep for the solution of the equations of motion the leading
terms with respect to 1/c, which describe the laser magnetic-
field-induced drift of the electron in the laser propagation
direction. The physical condition of the applied 1/c expansion
is the smallness of the laser-induced drift distance during the
laser period d ∼ λξ 2/2 [77] with respect to the recollision
impact parameter ρ ∼ 2πp⊥/ω: d � ρ, where ξ = E0/(cω)
is the invariant laser field parameter, λ is the laser wavelength,
p⊥ =

√
p2

y + p2
z is the electron transverse momentum, p⊥ ∼

2�⊥ = 2κ
√

E0/Ea , κ = √
2Ip is the atomic momentum, Ip

is the ionization potential, and Ea = κ3 is the atomic field.
Note that the introduced small parameter ε ≡ d/ρ, in fact, is
directly related to the Lorentz deflection parameter [78,79],

�R = ε2 = κcξ 3

16ω
. (3)

The magnetically induced drift changes the impact parame-
ter of recollisions and, in this way, modifies Coulomb focusing.
However, we stress that during the brief recollision time δt , the
effect of the magnetically induced drift is negligible because
the change of the impact parameter due the drift during the
recollision time, which can be estimated as δρ ∼ (λξ 2)(ωδt),
is much smaller than the impact parameter itself. In fact, we
estimate the recollision time as δt ∼ ρ/v‖, with the electron
longitudinal velocity at the recollisionv‖ ∼ E0/ω, and the ratio
δρ/ρ ∼ εγ

√
E0/Ea . We consider the tunneling regime when

the Keldysh parameter is small γ � 1 and the field is small
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to hinder the over-the-barrier ionization, i.e., E0/Ea � 1.
The latter means that δρ/ρ, i.e., the change of the impact
parameter due the drift during the recollision time, has an
additional smallness in addition to the small parameter ε and,
consequently, can be neglected in our discussion.

Our aim is to find an analytical expression for CMT. We
assume that the Coulomb field effect is not negligible only
near recollision points and near the tunnel exit, where it is
treated as a perturbation with respect to the laser field. The latter
assumptions are valid, first, if the Coulomb force is smaller with
respect to the laser field at the recollision point and at the tunnel
exit, Z/r2

r ,Z/x2
e � E0, with the charge of the atomic core Z,

and the recollision and tunnel exit coordinates rr ∼ �⊥/ω and
xe ∼ Ip/E0, respectively, and, second, if the quiver amplitude
of the electron in the laser field greatly exceeds the recollision
and the tunnel exit coordinates E0/ω

2 	 rr ,xe. The first pair
of these conditions reads

Z

κ
γ 2 � 1, (4)

Z

κ

E0

Ea

� 1, (5)

and the second pair gives

γ

√
E0

Ea

� 1, (6)

γ 2 � 1. (7)

These conditions are well fulfilled in the tunneling regime.
The tunneled electron dynamics in the continuum after

tunneling is governed by Newton equations,
dp
dt

= −E − v
c

× B − Zr
r3

, (8)

where v is the electron velocity. The Coulomb field of the
atomic core will be treated by perturbation theory during the
recollision and we expand the momentum and coordinate as

p = p0 + p1 + · · · ,

r = r0 + r1 + · · · . (9)

The unperturbed trajectory r0(u) is determined by the laser
field,

dp0

dt
= −E

(
1 − n · v0

c

)
− n

v0 · E
c

, (10)

and momentum transfer due to the Coulomb field at the
recollision is described by the trajectory in the first order of
perturbation,

dp1

dt
= −Zr0

r3
0

, (11)

with r0 = |r0|. Taking into account that du/dt = ω(t − vz/c),
and the integral of motion in a plane laser field 0 ≡ ε0(u) −
cp0z(u) = const, with the electron energy ε0, Eq. (10) is
integrated, providing the laser-driven momentum evolution,

p0x(u) = pxr + [Ax(u) − Ax(ur )],

p0y(u) = pyr , (12)

p0z(u) = pzr + pzd (u,ur ),

with the laser vector potential Ax(u) = −(E0/ω) sin u. The
initial conditions are defined at the recollision point with
the recollision phase ur and the recollision momentum pr =
(pxr ,pyr ,pzr ), aiming at application of the solution near the
recollision point. Here, the drift momentum induced by the
laser magnetic field is

pzd (u,ur ) ≡ pxr

c
[Ax(u) − Ax(ur )] + 1

2c
[Ax(u) − Ax(ur )]2,

(13)

where the integral of motion is approximated, 0 ≈ c2, to keep
the leading term in the 1/c expansion. The unperturbed electron
trajectory near the recollision point is

x0(u) = E0

ω2
[cos u − cos ur + (u − ur ) sin ur ]

+ pxr

ω
(u − ur ) + xr,

y0(u) = pyr

ω
(u − ur ) + yr, (14)

z0(u) = pzr

ω
(u − ur ) + zd (u) + zr ,

with the recollision coordinate rr = (xr,yr ,zr ), and the laser
magnetically induced drift coordinate

zd (u) =
∫ u

ur

pzd (u′,ur )du′. (15)

Once the zero-order equations are solved, the momentum
transfer due to the Coulomb field at the recollision can be
derived as the first-order correction,

p1 = −Z

ω

∫ ur+δ

ur−δ

r0(u′)
r3

0 (u′)
du′, (16)

where r0(u) = [x0(u),y0(u),z0(u)]. The value of the parameter
δ is coupled to the properties of the recollision and will be
discussed in the next section.

In the discussion above, the Coulomb field effect is ac-
counted for only near recollision points and near the tunnel
exit, where it is treated as a perturbation with respect to the
laser field. Still Eq. (16) for CMT includes nonperturbative
Coulomb effects via dependence on the recollision parameters,
i.e., the electron momentum pr and coordinate rr at the
recollision point. In fact, the multiple recollisions preceding
the currently discussed one can have a significant contribution
to the considered pr and rr , although the Coulomb field is
perturbation at every single one of them.

III. MOMENTUM TRANSFER DURING RECOLLISIONS

A. Classification of recollisions

For estimation of rec-CMT, we first classify recolliding
trajectories. There are two characteristic recolliding trajecto-
ries: (1) when the electron longitudinal velocity is vanishing
at the recollision point, xr = 0 and pxr = 0, and (2) when
the electron has the highest velocity at the recollision point,
xr = 0, |pr | �= 0, and E(ur ) = 0. We will call the above-
mentioned two types of recollisions a slow recollision and
a fast recollision, respectively; see Fig. 1. The first type of
recollision corresponds to the peak of the momentum transfer
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FIG. 1. Green (dot-dashed line) and blue (dashed line) trajectories
correspond to slow recollision with k = 1 and k = 2 (yellow circles),
respectively. Yellow trajectory corresponds to fast recollision with
l = 2 (blue square).

in dependence on the initial ionization phase, and the second
type corresponds to the plateau of the momentum transfer, as
discussed in [45]. Let us remark that the slow recollision is
also known in the literature as “soft recollision” [46].

The momentum transfer to the recolliding electron due to
the Coulomb field of the atomic core at the kth recollision event
is given by Eq. (16). As the main contribution to the integrals
comes near the recollision points, we expand the trajectory
near the recollision phase where rec-CMT takes place. We
approximate the trajectory of the electron of Eq. (14) at the
recollision point (xr,yr ,zr ) with the recollision momentum
(pxr,pyr ,pzr ) near the recollision phase ur as an expansion
in σ = u − ur , up to the σ 2 order,

x0(u) ≈ xr + pxr

ω
σ − E(ur )

2ω2
σ 2,

y0(u) ≈ yr + pyr

ω
σ, (17)

z0(u) ≈ zr + pzr

ω
σ − pxrE(ur )

2cω2
σ 2,

because zd (ur ) = 0 and z′
d (ur ) = pzd (ur ) = 0.

B. Slow recollisions

In the case of slow recollision pxr = 0, consequently, the
trajectory in the leading order is

x0(u) ≈ xr − E(ur )

2ω2
σ 2, y0(u) ≈ yr, z0(u) ≈ zr . (18)

In the latter, we have neglected p⊥σ/ω terms with respect
to the recollision coordinate ρ ∼ p⊥/ω because the effective
value of σ , derived from the condition E0σ

2/ω2 ∼ ρ ∼ p⊥/ω,
is σ ∼ √

p⊥ω/E0 ∼
√

γ
√

E0/Ea � 1, and the transversal
motion near the recollision point can be neglected for slow
recollision. In general, the rescattering parameter xr neither
has to vanish at rescattering recollision nor has to be small.
This assumption leads to generalization of the slow recollision
for a larger class of recollisions with vanishing velocity.

From Eq. (16), we calculate rec-CMT for slow recollision
along the trajectory approximated by Eqs. (18) while extending
the integration limits to infinity (δ → ∞). The latter is well

justified since large values of σ correspond to large deviation
of the phase from the recollision point giving negligible
contribution to the integration. The expression for rec-CMT at
general slow recollisions with arbitrary xr is given in Appendix
A. In the case of common slow recollision xr → 0, we have
the following simple formula for rec-CMT:

p1x,s(ur ) ≈ Z
sign [E(ur )]

3
√|E(ur )|

23/2P1

r
3/2
r

, (19)

p1y,s(ur ) ≈ −Z
23/2P2yr√|E(ur )|r5/2

r

, (20)

p1z,s(ur ) ≈ −Z
23/2P2zr√|E(ur )|r5/2

r

, (21)

where rr = √
x2

r + y2
r + z2

r , P1 = 3πP −1
−1/2(0)/8 ≈ 1.27, and

P2 = 3πP −1
−3/2(0)/8 ≈ 0.927, and P μ

ν (η) is the Legendre func-
tion of the first kind.

C. Fast recollisions

In the case of generalized fast recollision, we assume
xr = 0 and relax the condition on acceleration to E(ur ) ≈ 0. In
estimating rec-CMT, the electron trajectory near the recollision
point in the leading order can be then approximated with

x0(u) ≈ pxr

ω
σ,

y0(u) ≈ yr + pyr

ω
σ, (22)

z0(u) ≈ zr + pzr

ω
σ.

With this approximation for the trajectory and tending the time
integration limits to ±∞ (see Appendix B), we derive the
following rec-CMT for fast recollision:

p1x,f ≈ 2Zp⊥r

rrpxrpr

, (23)

p1y,f ≈ −2Zyr

r2
r pr

, (24)

p1z,f ≈ −2Zzr

r2
r pr

, (25)

where p⊥r =
√

p2
yr + p2

zr and pr =
√

p2
xr + p2

yr + p2
zr .

Thus, we have derived analytical rec-CMT formulas for the
common slow recollision (xr = 0) given by Eqs. (19)–(21).
In the general case of slow recollisions at nonvanishing xr , the
rec-CMT is determined by Eqs. (A1)–(A3) in Appendix A. For
fast recollision, we have derived rec-CMT in Eqs. (23)–(25).
When the recollision picture fails, the formulas of CMT are
modified and given in Appendix B. The formulas for rec-CMT
are expressed via parameters (coordinate and momentum) of
the recollision and are valid even in the case when the global
electron trajectory is significantly disturbed by the Coulomb
field with respect to the laser-driven one. The nondipole effects
in these formulas are accounted for in the parameters zr

and pzr .

063409-4



ANALYTICAL APPROACH TO … . I. NONDIPOLE EFFECTS PHYSICAL REVIEW A 97, 063409 (2018)

D. Simpleman estimations

The leading scaling of rec-CMT in Eqs. (19)–(21) and
(23)–(25) can be explained from the following intuitive con-
sideration. The transverse rec-CMT can be estimated as the
transversal force F⊥r ∼ 1/r2

r acting during the recollision as

p1⊥ ∼ F⊥r τr , (26)

where τr is the duration of the recollision. We define the half of
the recollision duration as a time when the electron longitudinal
distance from the core reaches the value of the recollision
distance, i.e., x(τr/2) = rr . In the case of slow recollision,
x(t) ≈ −E(ur )t2/2 and

τr,s ∼ 2
√

2rr/|E(ur )|, (27)

while for fast recollision, xF (t) ≈ pxr t and

τr,f ∼ 2zr/pxr . (28)

Thus, from Eqs. (26)–(28), we find estimations for the trans-
verse rec-CMT,

p1⊥,s ∼ − 23/2Z

r
3/2
r

√|E(ur )|
, (29)

p1⊥,f ∼ − 2Z

rrpxr

. (30)

The longitudinal rec-CMT at slow recollision is easily esti-
mated from the longitudinal force F‖ r ∼ −xr (t)/z3

r via

p1‖,s ∼
∫ τr,s /2

−τr,s /2
F‖ rdt ∼ −2Z

r3
r

∫ τr,s /2

0
xs(t)dt = ZE(ur )τ 3

r,s

233r3
r

,

which yields

p1‖,s ∼ 23/2Z

3
√|E(ur )|r3/2

r

. (31)

For estimation of the longitudinal rec-CMT at the fast recolli-
sion, one has to take into account that there is a compensation
of rec-CMT stemming from trajectories before and after the
recollision which can be incorporated by a reestablishment of
the time dependence of zr (τ ) = zr + p⊥r τ in F‖ r and in the
limit of pxr 	 p⊥r ,

p1‖,f ∼ −Z

∫ τr,f /2

0

[
pxrτ

(zr + p⊥r τ )3
− pxrτ

(zr − p⊥r τ )3

]
dτ

≈ Zpxrp⊥r τ
3
r,f

22z4
r

.

Once substituted from Eq. (28), we obtain the final formula

p1‖,f ∼ 2Zp⊥r

zrp2
xr

. (32)

Thus, by the applied simple estimations, the leading scaling
of rec-CMT from Eqs. (23)–(25) is reproduced in the limit of
p⊥r � pxr .

In this section, we have derived formulas for estimation of
rec-CMT for specific recollision events, i.e., slow recollision
and fast recollision. The rec-CMT for both of the recollisions
can be represented in a unified form,

p1 ≈ −Zrr

r3
r

τr , (33)

with an appropriate effective time of recollision τr that is dif-
ferent for slow recollision and fast recollision. We will employ
this form for rec-CMT later in our analysis of nondipole effects.
Before we approach the investigation of the nondipole effects,
we need an estimate for in-CMT that is as accurate as the one
we have for rec-CMT, which is derived in the next section.

IV. INITIAL COULOMB MOMENTUM TRANSFER

For the analytical estimation of in-CMT, we have to calcu-
late the Coulomb momentum transfer to the electron, which
takes place immediately after the leaving the tunnel exit, by
using Eq. (16). The electron is at the tunnel exit xi at ionization
phase ui with a transversal momentum p⊥i and is further
accelerated by the laser fieldE(ui) in the longitudinal direction.
We assume that the transversal motion is much smaller than
the longitudinal one and expand the denominator of Eq. (16):

1

[x2(u) + y2(u) + z2(u)]3/2
≈ 1

|x(u)|3
[
1 − 3

2

y2(u) + z2(u)

x2(u)

]
.

(34)

Taking into account that y = pyiσ/ω and z = (pzi + pzd )σ/ω,
the second term in the bracket can be estimated as

y2(u) + z2(u)

x2(u)
∼ p2

⊥iσ
2(

xi − E0
2ω2 σ 2

)2
ω2

+ 2p⊥ipzdσ
2(

xi − E0
2ω2 σ 2

)2
ω2

.

(35)

The first term in Eq. (35) is dominant over the second one by
a factor of ε and, consequently, the second term is neglected.
The order of magnitude of the first term is ∼E0/Ea � 1, which
justifies the expansion above. We estimated the effective region
of σ ≡ u − ui from the relation E0σ

2/ω2 ∼ xi .
The first-order approximation for in-CMT uses the unper-

turbed trajectory, which yields in-CMT formulas as derived
in [80]; see Appendix C 1. Additionally, we calculate the
second-order in-CMT with the first-order correction to the
trajectory; see Appendix C 2. Combining the first- and second-
order momentum corrections and expanding over the small
parameter 1/(|E(ui)|x2

i ) ∼ E0/Ea , we arrive, in the quasistatic
regime, with xi = −Ip/E(ui), at the following expressions for
the corrected in-CMT:

p2‖,in = ZπE(ui)

(2Ip)3/2

[
1 + 2Z|E(ui)|

Ea

√
2Ip

− 3p2
⊥i

8Ip

+ O

(
E2

0

E2
a

)]
,

(36)

p2⊥,in = −2Zp⊥i |E(ui)|
(2Ip)2

×
[

1 + 8Z|E(ui)|
3Ea

√
2Ip

− p2
⊥i

2Ip

+ O

(
E2

0

E2
a

)]
. (37)

For the analysis of the precision of the approximate for-
mulas for CMT derived in Secs. III and IV, see Supplemental
Material [81].
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(a
.u

.)

(a.u.)

FIG. 2. Momentum space of the initial electron distribution at
the tunnel exit, which contributes to the final momentum bin at
px = 0.588 and pz = −0.0157 a.u., corresponding to the first slow
recollision. Note that the center of the ring is shifted to the negative-pz

direction.

V. NONDIPOLE EFFECTS

In this section, we demonstrate how the analytical formulas
derived in the previous sections can be employed to gain insight
into the process of Coulomb focusing in the nondipole regime.
In particular, we provide an explanation for the observed
counterintuitive and energy-dependent shift of the Coulomb
focusing cusp in photoelectron momentum distribution [73].
This shift manifests a breakdown of the dipole approximation
because in the dipole approximation, the cusp resides at
the center of the photoelectron momentum distribution (i.e.,
p⊥ = 0).

Our aim is to investigate the origin of the shift and to
explain its nontrivial shape in the nondipole regime. The
central cusp is shifted along the laser propagation direction
by a value varying with respect to the asymptotic longitudinal
momentum, which can be seen in our CTMC simulation of
photoelectron momentum distribution presented in Fig. 3.

For large longitudinal momenta, the shift is positive, which
is expected, because of the positive drift momentum of the
electron in the laser field along the propagation direction.
Meanwhile, for lower longitudinal momenta, the shift becomes
negative, but tends again to zero at very low longitudinal
momenta. Such complex momentum dependence is intriguing
and demands further investigation.

It is known that the electrons ending on the central cusp
originate on a circle in the initial transverse momentum phase
space at the ionization tunnel exit [18]. Moreover, the center
of this circle gets shifted against the propagation direction in
the nondipole regime as a compensation for the magnetically
induced momentum drift, as shown in Fig. 2. The radius of this
ring in the initial momentum space is an indicator of Coulomb
focusing because it is equal to the total transverse rec-CMT for
the cusp electrons. Using the formulas for rec-CMT given by
Eq. (33), we will estimate the final transversal momenta of the
cusp electrons at different final longitudinal momenta. Our aim
is to deduce the reason for the behavior of the cusp momentum

shift along the laser propagation direction from the analytical
formula of the shift.

Let us follow an electron which originates at the tunnel
exit with pzi ≈ 0 and pyi �= 0, and ends up at the cusp
asymptotically (the laser wave propagates along the z axis and
is polarized along the x axis). The advantage of this choice is
that in the y direction, the dynamics is similar to the dipole
case and the final y component of the electron momentum is
vanishing,

pyf = pyi + p2y,in + p1y ≈ 0, (38)

where pyi , p2y,in, and p1y are the y components of the electron
initial momentum, in-CMT, and total rec-CMT, respectively.
Moreover, from our analytical formulas, one can find a rela-
tionship between the y and z components of rec-CMT. The
electron dynamics along the z axis is modified by the laser
magnetic field. The final z component of the photoelectron
momentum, according to Eq. (13), is

pzf ≈ p1z + A2(ui)

2c
− pxiA(ui)

c
, (39)

where p1z is the rec-CMT for the discussed electron ionized
at the laser phase ui , and the laser wave propagates along the
z axis and is polarized along the x axis. Assuming that the
electron undergoes N rescatterings, Eq. (38) reads

pyi + p2y,in +
N∑

n=1

p
(n)
1y ≈ 0, (40)

where p
(n)
1y is the rec-CMT at the nth recollision.

Further, we exploit the possibility to estimate the individual
rec-CMT as a product of the acting force during the recollision
and the time of the recollision τn, as shown in Sec. III, Eq. (33),

p
(n)
1y ≈ −Zyn

r3
n

τn. (41)

Later we can apply the derived analytical formulas (19)–(21)
and (23)–(25) to estimate recollision time τn precisely.

The change to the final momentum p1z due to the Coulomb
interaction is estimated as the sum of rec-CMTs, yielding

p1z =
N∑

n=1

p
(n)
1z = −Z

N∑
n=1

zn

r3
n

τn. (42)

As the recollision time τn and the recollision distance rn are
the same in Eqs. (40)–(42), we may use the former to simplify
the expression for p1z. For the latter, we need to estimate the
recollision coordinates yn and zn. We define them stepwise
from recollision to recollision as

y1 = (pyi + p2y,in)(t1 − t0),

y2 = (pyi + p2y,in)(t2 − t0) − Z
y1

r3
1

τn(t2 − t1),

...
(43)

yN = (pyi + p2y,in)(tN − t0) − Z

N−1∑
n=1

yn

r3
n

τn(tN − tn),
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where t0 is the ionization time, and tn is the nth recollision time
for n � 1. The upper formulas can be used to express Eq. (40)
as follows:

pyi + p2y,in = Z

N∑
n=1

τn

r3
n

(pyi + p2y,in)(tn − t0)

−Z2
N∑

n=1

τn

r3
n

n−1∑
k=1

yk

r3
k

τk(tn − tk), (44)

where the first term corresponds to first-order corrections to the
zero-order trajectory and the second iterative term to the next-
order corrections. When neglecting higher-order correction
terms than the second order proportional to ∼(τn/r3

n)2, we
arrive after rearrangement at

Z

N∑
n=1

τn

r3
n

(tn − t0) ≈ 1 + Z2
N∑

k<n

τnτk

r3
nr3

k

(tn − tk)(tk − t0). (45)

The rescattering coordinate along the laser propagation direc-
tion zr depends on the magnetically induced drift momentum
of the electron (pzi = 0 is chosen),

z1 = p
(1)
zd (t1 − t0),

z2 = p
(2)
zd (t2 − t0) − Z

z1

r3
1

τn(t2 − t1),

...

zN = p
(N)
zd (tN − t0) − Z

N−1∑
n=1

zn

r3
n

τn(tN − tn), (46)

where we used the magnetic drift from Eq. (13) (adjusted for
the initial momentum pxi along the polarization direction) to
define the averaged drift momentum as

p
(n)
zd ≡ 1

tn − t0

∫ tn

t0

{
pxi

c
[Ax(t) − Ax(t0)]

+ 1

2c
[Ax(t) − Ax(t0)]2

}
dt. (47)

Although in the tunneling regime pxi = 0, we incorporate the
in-CMT of Eq. (C10) into pxi and set pxi = p2‖,in(ui,pyi).
When we substitute Eq. (46) into Eq. (42), we obtain

p1z = −Z

N∑
n=1

p
(n)
zd

τn

r3
n

(tn − t0)

+Z2
N∑

n=1

τn

r3
n

n−1∑
k=1

zk

r3
k

τk(tn − tk), (48)

where the first term again corresponds to the first-order
correction to the unperturbed trajectory and the second term
corresponds to higher-order corrections. When neglecting the
higher-order contributions ∼(Zτn/r3

n)2 and employing the
relationship of Eq. (45), we can write

p1z ≈ −p
(1)
zd + Z

N∑
n=2

(
p

(1)
zd − p

(n)
zd

)τn(tn − t0)

r3
n

. (49)

The first term here describes rec-CMT at the first recollision
and the other terms arise only due to the multiple recollisions.

In the case of a single recollision, the lengthy derivation
above becomes very transparent,

p1z = −Z
z1

r3
1

τ1 = − z1

y1
p1y = − z1

t1 − t0
= −p

(1)
zd , (50)

showing that in this case, the z component of rec-CMT equals
the averaged (between the ionization and the rescattering time)
drift momentum in the laser propagation direction.

One can give another intuitive perspective to Eq. (50) of
the single recollision case while discussing the nondipole
dynamics of the electron in the cusp, which has an initial
momentum only along the laser propagation direction pi =
(0,0,piz), and comparing it with the dipole case. The electron
dynamics in the nondipole and in the dipole case will be similar
if the recollision impact parameters are the same, zr = z(0)

r ,
where the parameters of the dipole case are indicated with the
upper index (0). The rescattering coordinate in the nondipole
case is zr = (pzi + pzd )(t1 − t0), while in the dipole case,
it is simply z(0)

r = p
(0)
zi (t1 − t0). Thus, the electron dynamics

will be similar in both cases if pzi = p
(0)
zi − pzd , i.e., when

the electron has an additional initial momentum opposite to
the laser magnetically induced drift. The similar dynamics
means, in particular, the same rec-CMT: p1z ≈ p

(0)
1z . Because

in the nondipole case the cusp is at vanishing momentum, i.e.,
p

(0)
zi + p

(0)
1z ≈ 0, we arrive at the relation p1z = −pzi − pzd ,

corresponding to Eq. (50) with pzi ≈ 0. The comparison links
the averaged drift momentum before the first rescattering
directly to the asymptotic momentum of the cusp electrons,
which can now be estimated via Eq. (39) as

pzf = pzi + p1z + A2(ui)

2c
≈ −pzd + A2(ui)

2c
, (51)

where an intriguing interplay of the rec-CMT and of the
magnetic drift contributions given by their opposite signs is
revealed.

In the general case of multiple recollisions, we derive the
asymptotic momentum using Eq. (49) as

pzf ≈ A2(ui)

2c
− pxiA(ui)

c
− p

(1)
zd

+Z

N∑
n=2

(
p

(1)
zd − p

(n)
zd

)τn(tn − t0)

r3
n

, (52)

where we sum over N recollisions. The first three terms in this
equation can be combined, yielding

pzf ≈ −T
(1)
zd + Z

N∑
n=2

(
p

(1)
zd − p

(n)
zd

)τn(tn − t0)

r3
n

, (53)

where

T
(1)
zd ≡ 1

u1 − u0

∫ u1

u0

[
pxf A(u)

c
+ A2(u)

2c

]
du, (54)

with u0 = ui and asymptotic longitudinal momentum pxf ≡
−A(ui) + pxi . Note that the latter equation coincides with
Eq. (51) in the case of the single rescattering as pzf = −pzd +
A2(ui)/(2c) = −T

(1)
zd .
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(a
.u

.)

(a.u.)

FIG. 3. The manifestation of the breakdown of the dipole approx-
imation in photoelectron momentum distribution: CTMC simulation
for hydrogen in intense laser pulse of linear polarization E0 = 0.0407,
ω = 0.012 and the laser pulse duration 15.7/ω. The peak of the

cusp was estimated via the first term in Eq. (53), pzf = −T
(1)
zd (black

solid line), further via the full Eq. (53) (red dashed line), and finally
calculated as a sum of in-CMT and rec-CMT at each recollision via
the analytical formulas of Sec. III (green dotted line).

Equation (53) is the main result of this section, which
predicts the momentum shift of the Coulomb focusing cusp
in the nondipole regime. In the case of a single recollision,
which is the case at rather large final pxf (pxf � 0.52 a.u. in
Fig. 3), the momentum shift is determined by the first term

pzf = −T
(1)
zd , i.e., by the average drift momentum due to the

laser magnetic field T
(1)
zd during the electron excursion in the

laser field. This term is determined only by the laser parameters
as well as by the ionization and recollision phases, u0 and u1,

respectively, via T
(1)
zd ; see also [75]. As we show in Fig. 3, our

analytical formula pzf = −T
(1)
zd represented by the solid line

gives remarkable agreement with the cusp bend obtained by the
fully numerical CTMC simulation for large and intermediate
values of longitudinal momenta. It explains the positive shift of
the cusp at large pxf , as well as the counterintuitive negative
shift at lower pxf due to dominating rec-CMT at the single
recollision.

In the case of more than one rescattering, the second term in
Eq. (53) quantifies the role of multiple recollisions. Although
the second term is more complicated for exact calculations,
it contains a very simple qualitative message: the multiple
recollisions are the reason to decrease the negative shift of
the cusp and to move it towards the vanishing momenta at
very low pxf . The increasing number of recollisions at smaller

(a
.u

.)

FIG. 4. The average magnetically induced drift momentum p
(n)
zd

obtained until the nth rescattering for the ionization time ti = 4.087,
corresponding to the multiple rescattering case at px ≈ 0.3.

pxf leads to smaller negative shift of the cusp. This message
stems from the fact that the second term is positive because of
a relation p

(k)
zd > p

(l)
zd , at k < l; see Fig. 4.

Besides the mentioned qualitative message, Eq. (53) can
also provide a way for a quantitative estimate of the nondipole
momentum shift of the Coulomb focusing cusp. We compare
the results derived from Eq. (53) with fully numerical CTMC
simulations in Fig. 3. While the first-term contribution de-
scribes very well the peak of the cusp for large longitudinal
momenta (px � 0.52) when only a single rescattering exists
(the horizontal fringes in the photoelectron momentum dis-
tribution correspond to the slow recollision condition; when
one crosses the horizontal line towards lower longitudinal
momenta, the number of rescatterings increases by one), a
relatively large discrepancy appears at lower momenta, when
the negative shift of the cusp begins to decrease, tending to
zero at very low energies. The evaluation of the full Eq. (53)
is shown in Fig. 3 by the dashed line. For the evaluation of the
sum, the recollision coordinate and momentum are required for
the specific trajectories ending up at the cusp. The latter are
found approximately using the zero-order trajectory corrected
by in-CMT. The initial momentum of the trajectories pyi is
found using the condition of Eq. (38), along with the analytical
formulas for rec-CMT. The calculation via Eq. (53) shows the
tendency to decrease the nondipole shift of the cusp at low
energies. Thus, the simplified formula of Eq. (53) catches the
main features of the cusp shift and proves the corresponding
qualitative message.

In intuitive terms, when there is more than one rescattering,
the nondipole dynamics is no longer similar to the dipole
case. In fact, by a single parameter of the initial transverse
momentum, one cannot fix the impact parameters of multiple
scattering events to be the same as in the dipole case.

Whereas the positive offset of the bend can be attributed to
the magnetic drift pzd = A2(ui)/2c, the negative offset can
be seen as a result of a counterbalance between the CMT
p1z and magnetically induced drift pzd (u,ui). Due to the
magnetically induced drift, the electron moves in the positive
z-coordinate direction and gains a negative CMT in the z

direction at the rescattering; the larger the drift (which is the
case for the smaller longitudinal momentum), the larger the
rec-CMT becomes in the z direction. Such picture holds for
relatively large longitudinal momenta with a single recollision.
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(a
.u

.)

(a.u.)

(a
.u

.)

FIG. 5. The evolution of the compensated momentum of the
electron p(t) + A(t), which indicates the history of the CMT. The
example shows the trajectory which ends up at the photoelectron mo-
mentum distribution cusp, tunneled at ti = −1.25 with pyi = 0.116
and pzi = 0. (a) The py momentum component changes significantly
at the end of the laser pulse (t ≈ 2200). (b) Negative rec-CMT of the
pz at the end of the laser pulse where we isolated the contribution of
the Coulomb interaction and plotted it by a yellow dashed line.

Nevertheless, the simulations have shown that the offset of the
cusp at lower longitudinal momenta bends again towards the
laser propagation direction, which is related to the increasing
number of recollisions. The effective drift in this case is
decreasing as p

(n)
zd < p

(1)
zd , which consequently decreases the

total CMT in the z direction.
There is a second reason for the photoelectron momentum

distribution cusp to shift towards vanishing momentum at very
low energies. The low-energy electrons are still rather close
to the parent ion when the interaction with the laser pulse
is over. At this point and later on, the focusing property of
the Coulomb field manifests and pulls these electrons towards
the ion, decreasing further the transverse momentum; see an
example in Fig. 5. As we can see in Fig. 5(a), the py momentum
component changes significantly even at the end of the laser
pulse, where the recollision picture no longer holds, and the
condition given in Eq. (40) is not applicable. Figure 5(b) shows
nontrivial negative CMT for the pz at the tail of the laser pulse,
which is not incorporated in our simplified discussion in this
section. We estimated the position of the cusp by the asymp-
totic Kepler formula using the position from the numerical
trajectory at the end of the laser pulse and the momenta from
Eq. (53). The result is that only the low-energetic trajecto-
ries near the origin are slightly influenced, yielding a better
agreement with the simulation in this region than shown in
Fig. 3.

Finally, let us note that the dotted line in Fig. 3 shows
the final momentum of the cusp electron, which is calculated

using our analytical formulas for rec-CMT at individual rescat-
terings, with recollision parameters derived from the fully
numerical trajectory. It serves as a proof of accuracy of the
derived analytical formulas for rec-CMT.

VI. CONCLUSION

We have developed an analytical model for a quantitative
description of Coulomb focusing effects in laser-induced
strong-field ionization. Under the assumption that the Coulomb
field effect is a perturbation for the near recollision laser-
driven trajectory, we have derived analytical formulas for the
CMT at recollisions which depend on the local recollision
coordinate and momentum. For an effective treatment of CMT,
we classify the recollisions into two types: slow and fast
recollisions. The nondipole effects are shown to be negligible
during the brief time of the recollision; however, they are indi-
rectly incorporated in the theory via the recollision coordinate
and momentum. Within the same model, we have derived
essential higher-order corrections to the known expressions
for the initial CMT at the tunnel exit [80] (the precision
of the derived formulas is examined in the Supplemental
Material [81]).

The applied perturbative treatment of the Coulomb field
effect is well suited for the description of Coulomb focusing,
which is due to multiple forward scattering of ionized electrons
by the atomic core at large impact parameters during excursion
in the laser field. In contrast, the hard rescatterings with a
small impact parameter, which are not perturbative, induce
well-known processes of above-threshold ionization.

The derived analytical formulas for the CMT, employed
along with numerical simulations, can help one to gain insight
into the detailed features of the Coulomb focusing effect in
different laser field setups, e.g., in two-color or elliptically
polarized laser fields. In particular, they allow estimation of
the role of each particular rescattering event, which is hidden
in the fully numerical CTMC simulation, but essentially helps
to develop an intuitive picture for Coulomb focusing. The
way in which the high-order rescatterings influence Coulomb
focusing will be investigated in more detail in the second paper
of this series.

Finally, we have employed the derived analytical formu-
las for CMT to gain insight into the nontrivial features of
the photoelectron momentum distribution in the nondipole
regime. We have obtained a simple analytical formula (53)
describing the nondipole shift of the photoelectron momentum
distribution cusp in the laser propagation direction. The peak
of the cusp in the photoelectron momentum distribution in the
nondipole regime is positive at large longitudinal momenta,
but becomes negative at intermediate values, and moves again
towards the laser propagation direction for even lower rates.
We have explained this counterintuitive behavior of the peak
of the cusp by relating it to the laser magnetically induced
average drift. The increase of the negative shift of the cusp
at decreasing longitudinal momentum is explained by the
increase of the laser magnetically induced average drift until
the single recollision. The decrease of the negative shift of the
cusp at very low longitudinal momenta is shown to arise due
to multiple rescatterings.
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APPENDIX A: CMT AT SLOW RECOLLISIONS

From Eq. (16), we calculate rec-CMT for slow recollision
along the trajectory approximated by Eqs. (18) while extending
the integration limits to infinity (δ → ∞). The results yield

p1x,s = −πZ√
23|E(ur )|(y2

r + z2
r

)
rr

(
3xr

rr

P −1
− 3

2

{
− sign [E(ur )]

xr

rr

}

− sign [E(ur )] P −1
− 1

2

{
− sign [E(ur )]

xr

rr

})
, (A1)

p1y,s = − 3πZyr√
23|E(ur )|(y2

r + z2
r

)
r3
r

P −1
− 3

2

{
− sign [E(ur )]

xr

rr

}
,

(A2)

p1z,s = − 3πZzr√
23|E(ur )|(y2

r + z2
r

)
r3
r

P −1
− 3

2

{
− sign [E(ur )]

xr

rr

}
,

(A3)

where rr = √
x2

r + y2
r + z2

r and P μ
ν (η) is the Legendre function

of the first kind which emerges during the integration, using
the tabular integral [82]∫ ∞

0

xμ−1dx

(1 + 2x cos t + x2)ν

=
(

2

| sin t |
)ν−1/2

�

(
ν + 1

2

)
B(μ,2ν − μ)P 1/2−ν

μ−ν−1/2(cos t),

(A4)

where �(x) stands for the Gamma function, B(x,y) for the Beta
function, P μ

ν (x) for the Legendre function of the first kind, and
−π < t < π , 0 < Re(μ) < Re(2ν).

For illustration, we show the behavior of the Legendre
functions in Fig. 6. Both functions diverge for η → −1,
which is, however, out of the region of our interest since
the condition xr �

√
y2

r + z2
r is fulfilled at the recollision

and leads to the restriction on the argument of the Legendre
function | sign [E(ur )] xr

rr
| � 1√

2
. The other possible case of

xr 	 √
y2

r + z2
r along with E(ur )xr > 0 does not belong to the

soft-recollision case. It corresponds to the hard-recollision case
with a large rec-CMT, which is beyond the present treatment.

FIG. 6. The Legendre functions within the valid range given by
Eqs. (A1)–(A3). Distinct values are P −1

−3/2(0) ≈ 0.787 and P −1
−1/2(0) ≈

1.08. Both functions diverge at η → −1, which is out of the region of
our interest since physically relevant cases correspond to |η| < 1/

√
2.

The Legendre function of the first kind can be expressed for
real x ∈ [−1,1] as

P μ
ν (x) = 1

�(1 − μ)

(
1 + x

1 − x

) μ

2

× 2F1

(
−ν,ν + 1; 1 − μ;

1 − x

2

)
, (A5)

via the hypergeometric function 2F1(a,b; c; z) [82], which
gives

P −1
− 3

2
(0) = 2F1

(
3
2 ,− 1

2 ; 2; 1
2

) = 0.786 894, (A6)

P −1
− 1

2
(0) = 2F1

(
1
2 , 1

2 ; 2; 1
2

) = 1.078 71. (A7)

APPENDIX B: CMT AT FAST RECOLLISIONS

In the case of a fast recollision, the first-order correction
to the momentum is given by Eq. (16), using the approximate
expression for the trajectory of Eqs. (22). Once we substitute
for the lower and upper limit of integration ur − δ → ur +
σ1 and ur + δ → ur + σ2, respectively, we can evaluate the
integrals for each component and arrive at

p1x,f ≈ Z

{
pxr [(yrpyr + zrpzr )σ + ωrr ][

p2
xr r

2
r + (yrpzr − zrpyr )2

]√
p2

xrσ
2 + (pyrσ + ωyr )2 + (pzrσ + ωzr )2

}σ2

σ1

, (B1)

p1y,f ≈ Z

{
−yrp

2
xrσ − (yrpzr − zrpyr )(ωzr + pzrσ )[

p2
xr r

2
r + (yrpzr − zrpyr )2

]√
p2

xrσ
2 + (pyrσ + ωyr )2 + (pzrσ + ωzr )2

}σ2

σ1

, (B2)

p1z,f ≈ Z

{
−zrp

2
xrσ − (yrpzr − zrpyr )(ωyr + pyrσ )[

p2
xr r

2
r + (yrpzr − zrpyr )2

]√
p2

xrσ
2 + (pyrσ + ωyr )2 + (pzrσ + ωzr )2

}σ2

σ1

. (B3)

While in the dipole limit relation yrpzr = zrpyr holds due to symmetry, in the nondipole case yrpzr − zrpyr ≈ yr [pzd (ur,ui) −
1

ur−ui

∫ ur

ui
pzd (u,ui)du] ∼ yr cξ 2. The terms proportional to (yrpzr − zrpyr )2 in the denominators in Eqs. (B1)–(B3) are ξ 2 times

smaller with respect to the leading term (in estimation we use pxr ∼ cξ ) and can therefore be neglected with respect to the
expansion parameter ε of Eq. (3), which can be rewritten as ε ∼ (ξ/γ )

√
Ea/E0. Using pxrσ/ω ∼ yr , one can show negligible

contributions of the magnetic drift terms with respect to the leading one in the numerators of Eqs. (B2) and (B3) by a factor of ξ .
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Thus, after neglecting the discussed terms, we have

p1x,f ≈ Z

[
p⊥rσ + ω

pxrrr

√
p2

xrσ
2 + (pyrσ + ωyr )2 + (pzrσ + ωzr )2

]σ2

σ1

, (B4)

p1y,f ≈ Z

[
−σyr

r2
r

√
p2

xrσ
2 + (pyrσ + ωyr )2 + (pzrσ + ωzr )2

]σ2

σ1

, (B5)

p1z,f ≈ Z

[
−σzr

r2
r

√
p2

xrσ
2 + (pyrσ + ωyr )2 + (pzrσ + ωzr )2

]σ2

σ1

, (B6)

with σ1 and σ2 being the lower and upper limits of integra-

tion, respectively, and p⊥r =
√

p2
yr + p2

zr .

In the rescattering picture, the limits σ1 and σ2 can be set to
±∞, yielding, for fast recollision, Eqs. (23)–(25).

For high-order fast recollision, the recollision picture may
break down, which means that the CMT (although being
rather small) is not decreasing sharply when the electron
leaves the recollision point. In this case, Eqs. (23)–(25) do
not provide a good approximation. Our analysis shows that
better approximation is achieved with σ1 = −Mod(ur,π ) and
σ2 = π − Mod(ur,π ), which correspond to the integration
between the surrounding turning points of the trajectory. For
fast recollision [i.e., with vanishing laser field E(ur ) ≈ 0] and
beyond the recollision picture, we can set σ1 = −σ2 = −π/2
in Eqs. (B4)–(B6), yielding, for fast recollision in the leading
term,

p1x,f b ≈ 2πZp⊥r

pxrrr

√
p2

r π
2 + 4ω2r2

r

, (B7)

p1y,f b ≈ − 2πZyr

r2
r

√
p2

r π
2 + 4ω2r2

r

, (B8)

p1z,f b ≈ − 2πZzr

r2
r

√
p2

r π
2 + 4ω2r2

r

. (B9)

Let us estimate conditions when the recollision picture is
violated. This is the case once the transversal distance at fast
recollision is comparable or greater than the amplitude of the
quiver motion. There is also a restriction on the longitudinal
momentum pxr , which can be derived assuming Eqs. (20) and
(21), and (24) and (25), to yield comparable results to rec-CMT.
These conditions read

rr �
|E(ur )|

ω2
, (B10)

pxr �
√

|E(ur )|rr

2
. (B11)

APPENDIX C: CALCULATION OF IN-CMT

1. First order in-CMT

The first-order approximation for in-CMT uses the unper-
turbed trajectory,

x0(σ ) ≈ xi − E(ui)

2ω2
σ 2, (C1)

z0(σ ) ≈ p⊥i

ω
σ, (C2)

with the coordinate z0(σ ) along the initial transverse momen-
tum, and the momentum corrections in this order are

p1‖(u) = −Z

ω

∫ u

ui

sign [x0(u)]

x2
0 (u)

du, (C3)

p1⊥(u) = −Z

ω

∫ u

ui

z0(u)∣∣x3
0 (u)

∣∣du. (C4)

The integrals are evaluated for xi < 0 as

p1‖(u) = Zσ

2x2
i ω[1 + σ 2/γ 2(ui)]

+ Zγ (ui) arctan [σ/γ (ui)]

2x2
i ω

,

p1⊥(u) = Zp⊥i

2E(ui)x2
i

{
1

[1 + σ 2/γ 2(ui)]2
− 1

}
, (C5)

with γ (ui) = √
2Ipω/|E(ui)|, which at σ → ∞ yields in-

CMT formulas as derived in [80], reading

p1‖,in = Zπ√
23|xi |3|E(ui)|

= ZπE(ui)

(2Ip)3/2
, (C6)

p1⊥,in = − Zp⊥
2x2

i |E(ui)|
= −2Zp⊥|E(ui)|

(2Ip)2
. (C7)

2. Second-order corrected in-CMT

For calculation of the second-order in-CMT, we need
the first-order correction to the trajectory, which is found
integrating Eqs. (C5),

x1(σ ) = Zσγ (ui)

2x2
i ω

2
arctan

[
σ

γ (ui)

]
≈ Zσ 2

2ω2x2
i

, (C8)

z1(σ ) ≈ −Zp⊥iσ
3

6ω3|x3
i |

, (C9)

where we keep only the leading terms in the expansion over
the small σ . The correction to in-CMT is calculated using the
first-order correction to the x coordinate of the trajectory, but
neglecting the correction to the z coordinate, as it is small,
determined by the small initial transverse momentum.
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The second-order corrected in-CMT can be expressed via the exit coordinate xi ,

p2‖,in = πZ sign [E(ui)]√
23|E(ui)x3

i |

[
1 + 4Z − 3p2

⊥i |xi |
8|E(ui)|x2

i

+ O

(
1

x4
i E

2
0

)]
, (C10)

p2⊥,in = − Zp⊥i

2|E(ui)|x2
i

[
1 + 4Z − 3p2

⊥i |xi |
6|E(ui)|x2

i

+ O

(
1

x4
i E

2
0

)]
. (C11)

Let us note that it is easy to identify the term ∼Z in the expansions in Eqs. (C10) and (C11) as the second-order momentum
correction, whereas the term ∼p2

⊥i is the correction in the first order due to the transversal motion.
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