
PHYSICAL REVIEW A 97, 062703 (2018)

NO evaporative cooling in the 2�3/2 state
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The scattering at ultralow temperatures of fermionic 14N16O molecules in the metastable 2�3/2 is considered,
under the influence of parallel electric and magnetic fields. It is found that a magnetic field of several thousand
Gauss can enhance the ratio of elastic-to-inelastic collision rates. The magnetic field can therefore assist the
electric field in increasing this ratio. Evaporative cooling of NO is feasible only in the presence of combined
magnetic and electric fields and for temperatures above about 70 mK.
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I. INTRODUCTION

In a recent paper [1], we discussed the collision cross
sections of ground-state nitric oxide (NO) molecules at low
temperatures, below 1 K. This work was motivated by the
possibility of evaporatively cooling this species, if it were to be
produced in a sub-Kelvin sample by buffer-gas cooling, Stark
deceleration, or other means [2–5]. In Ref. [1] it was found that
elastic rate constants greatly exceed inelastic rate constants
only at temperatures above about one hundred millikelvin.
Evaporative cooling would therefore be limited to temperatures
on this order, thus succumbing to the “millikelvin catastrophe”
common in cold molecules [6–8].

In the 2�1/2 ground state considered in Ref. [1], the appli-
cation of a very large electric field (of order tens of kV/cm)
was found to suppress the inelastic rates, but this field is likely
too large to usefully do so in the laboratory. The application of
a magnetic field would do little to suppress collisions in this
state, which has a negligible magnetic moment. By contrast, the
metastable excited 2�3/2 state of NO does possess a magnetic
moment and could in principle be influenced by magnetic, as
well as electric, fields. Magnetic fields have been predicted to
suppress inelastic scattering of 2�3/2 OH molecules [9–11],
leading to ongoing efforts to achieve evaporative cooling in
this radical [12].

In this paper we therefore extend the work of Ref. [1] to the
metastable state of NO, studying the influence of combined
(parallel) electric and magnetic fields on collision rates. While
the addition of a magnetic field has some modest additional
effect, the conclusion remains that evaporative cooling of NO
below 100 mK is problematic.

II. THEORY

A. NO molecular structure in absence of external field

In this section we briefly describe the structure of the NO
molecule. The NO ground-state structure is considered in
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Ref. [1], to which we refer readers for details. In the rigid-
rotor approximation, the internal structure of the ground 2�

electronic state, ground vibrational state includes the spin-orbit
(SO) interaction, rotation (ROT), spin-rotation (SR) interac-
tion, �-doubling structure, and nitrogen hyperfine interaction
(HFS) in 14N16O. The well-defined axial components � and
� are combined to define �, a good quantum number in the
Hund’s case-(a) representation. Components of � doubling are
|�| = 1/2 and |�| = 3/2, both doubly degenerate, of which
2�3/2 is the higher-lying state. Their separation is determined
by a spin-orbit fitting parameter of 123.146 cm−1 [13], far
enough for neglecting the lower state in our cold-collision
calculation. For these purposes the nearest rotational level
J = 5/2 can be neglected because the 14NO rotational constant
is 1.696 cm−1 [13].

The total angular momentum of the molecule �J has definite
projections on the space-fixed axis M and on the molecule-
fixed axis �. The eigenvectors of HSO + HROT + HSR for each
J,M are doubly degenerate in �:∣∣2

�±
3/2

〉 = |� = ±1,S,� = ±1/2〉|� = ±3/2,J,M〉. (1)

In zero electric field, these states are combined into a parity
doublet +/−. The parity basis is a linear combination of (1)
that is labeled according to their total parity under the inversion
operation E∗ for each rotational level,∣∣2

�3/2(+/−)
〉 = 1√

2

(∣∣2
�+

3/2

〉 ± (−1)J−S
∣∣2

�−
3/2

〉)
. (2)

These functions can also be classified according to p = e or f

symmetry, total parity exclusive of a (−1)J−1/2 rotational
factor. The �-doubling constant is �� = 5 × 10−5 K [14]
which is about 350 times smaller than for the 2�1/2 state.

In addition, the 14N nucleus has spin I = 1 (the spin of the
16O nucleus is zero), we extend the basis function set to also
include �I , coupled to �J to form �F in the laboratory frame, thus
the J = 3/2 level of our interest splits into three hyperfine
components F = 1/2, F = 3/2, and F = 5/2. This identifies
the molecular basis set as |η,|�|,J,I,F,MF ; p〉, where MF is
the projection of F onto the laboratory axis, and η is a general
index which represents all other quantum numbers. Within the
2�3/2, J = 3/2 manifold, we employ the shorthand notation
|F,MF ; p〉 ≡ |η,|�|,J,I,F,MF ; p〉.
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FIG. 1. Stark energies of the hyperfine |F,MF ; e/f 〉 and �-
doublet levels for J = 3/2 of the 2�3/2 state of the NO molecule
at zero magnetic field. Each line is doubly degenerate in MF . The
hyperfine state of our interest |5/2,5/2; f 〉 is highlighted.

B. Stark and Zeeman field interactions with NO

In the presence of a homogeneous electric field �E whose
direction specifies the space-fixed Z axis, the effective Hamil-
tonian is augmented by the Stark-effect term HS = − �ds · �E .
The space-fixed component of the electric-dipole moment of
the molecule dZ

s = T 1
0 ( �ds) needs to be rotated to the molecule-

fixed axis, to which the electric-dipole moment �dm is referred
by using a Wigner D matrix, T 1

0 ( �ds) = ∑
q D

(1)
q0

∗
T 1

q ( �dm). The
electric-field Hamiltonian becomes

HS = −E
∑

q

D
(1)
q0

∗
T 1

q ( �dm).

In the |J,M,�〉 basis, matrix elements of HS are well known,
and with the use of the Wigner–Eckart theorem these terms are
finally recast into the F MF -parity basis. We will not explicitly
express terms here but refer to, e.g., Ref. [9].

The Stark effect for a single NO molecule in its first-excited
electronic state, J = 3/2 is demonstrated in Fig. 1. In the
absence of a magnetic field, the hyperfine components are
degenerate for |MF | levels. The opposite-parity states repel
as the field is increased. In the large-E limit parity ceases to
be a good quantum number. In this case we follow convention
and label the lower and upper states of the doublet as e and
f states, respectively (see below). The critical field where
the Stark effect transforms from quadratic to linear is around
E0 = ��/2d ∼ 7 V/cm, based on the dipole moment of NO,
d = 0.15872 D [15]. For fields larger than E0 the HS term
dominates over the hyperfine HHFS term in the molecular
effective Hamiltonian and F is no longer a good quantum
number. However, HS commutes with FZ , resulting in a
block-diagonal Hamiltonian matrix elements with respect to
the magnetic quantum number MF .

To transform smoothly from the zero-field �-doubling
Hamiltonian basis to the strong field basis for fixed values
of J and M , it is convenient to introduce a mixing angle δM

and denote lower and upper states of �-doublet pairs by

|e〉 = cos δM

∣∣2
�+

3/2

〉 − sin δM

∣∣2
�−

3/2

〉
, (3)

|f 〉 = sin δM

∣∣2
�+

3/2

〉 + cos δM

∣∣2
�−

3/2

〉
. (4)

The Stark Hamiltonian in the {|e〉,|f 〉} basis can be represented
by

HS = − dEM|�|
J (J + 1)

[
cos 2δM sin 2δM

sin 2δM − cos 2δM

]
.

In the limiting cases δM = 0, which corresponds to a very high
field, the Stark Hamiltonian matrix is a diagonal matrix in the
basis {|e〉 = |2�+

3/2〉, |f 〉 = |2�−
3/2〉}, and for δM = π/4 that

corresponds to the zero-field limit the Stark Hamiltonian is off-
diagonal in the basis {|e〉 = (|2�+

3/2〉 − |2�−
3/2〉)/

√
2,|f 〉 =

(|2�+
3/2〉 + |2�−

3/2〉)/
√

2}. By contrast, the �-doubling Hamil-
tonian

H� = ��/2

[− sin 2δM cos 2δM

cos 2δM sin 2δM

]

is diagonal in the low-field limit δM = π/4.
In an applied homogenous magnetic field the molecular

magnetic moment interacts with the field and consequently
the energy levels are subjected to the Zeeman effect with
the Zeeman interaction Hamiltonian operator HZ = − �μs · �B,
where �μs is the magnetic moment in the space-fixed reference
frame. Unlike the |�| = 1/2 state for which the orbital and
spin contribution to the molecular magnetic moment nearly
cancel, the magnetic moment of the |�| = 3/2 state (J = 3/2)
is large. The Landé factorgJ = (gL� + gS�)�/[J (J + 1)] =
0.777246 [16], where gL and gS are electron orbital and spin g

factors, respectively. The Zeeman splitting is shown in Fig. 2
for the field range 0–200 G at which the stretched molecular
states are split by an energy shift comparable to the Stark
shift at the range of 0–6000 V/cm. We focus on the low-field
seeking state of highest energy which is the stretched state with
quantum numbers |5/2,5/2; f 〉 for collisions.
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FIG. 2. Zeeman energies of the hyperfine |F,MF ; e/f 〉 and �-
doublet levels for J = 3/2 of the 2�3/2 state of the NO molecule at
zero electric field. In a detailed resolution each line would be p-doubly
split. The hyperfine state of interest, |5/2,5/2; f 〉, is highlighted.
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The electric- and magnetic-field configuration can be arbi-
trary with an angle θEB between them. In the following we set
θEB = 0 because the electric dipoles are more easily induced
when electric and magnetic moments are parallel [10] and also
because MF is a conserved quantum number.

Figures 1 and 2 appear remarkably similar on the scale
shown, showing the range over which the two fields produce
comparable energy shifts. However, the states belonging to
these spectra are quite different. Consider the stretched state
|5/2,5/2; f 〉 of interest. This state is doubly degenerate be-
tween states with MF = ±5/2 and the same f . The states
immediately lower in energy, in large electric field, differ by
changing MF , but still retain the f parity. By contrast, the
stretched state at high field in Fig. 2 is nearly degenerate in
e or f parity, but has a unique, positive value of MF = +5/2.
The state immediately lower in energy changed MF , but still
has both parity states e and f . These differences will matter be-
low, in determining the dominant inelastic-scattering channels.

C. NO-NO interaction Hamiltonian

Let us now consider scattering due to the collision of two
NO molecules of mass m, and located at �r1, �r2, respectively. We
restrict our discussion to two-body scattering in the center-of-
mass frame by considering the relative position �R = �r1 − �r2 of
body 1 with respect to body 2, and reduced mass mred = m/2
associated with the relative motion. In spherical coordinates we
are able to solve the scattering problem by using a separation
of angular and radial variables of the total wave function
�(R,θ,φ); the system is subjected to the centrifugal potential
h̄2L(L + 1)/(2mredR

2).
For a pair of 14N16O fermionic molecules the wave function

is antisymmetric with respect to interchange of the molecules.
The effect of the inversion of the coordinates of all particles in
the molecular center of mass is given by E∗(R,θ,φ) = (R,π −
θ,φ + π ), thus the exchange properties of the partial waves are
governed strictly by the properties of the spherical harmonics.
Spherical harmonics have a definite parity (−1)L with respect
to inversion about the origin, which means that the spatial wave
function is inversion-antisymmetric for odd L and vice versa.

Considering collisions of identical species we must use
the symmetrized combinations of the uncoupled hyperfine
representation |F1,MF1; p1〉|F2,MF2; p2〉|L,ML〉. The sym-
metrized functions (for F1 �= F2 or MF1 �= MF1 or p1 �= p2)
are

|F1,MF1; p1〉|F2,MF2; p2〉|L,ML〉S
= 1√

2
{|F1,MF1; p1〉|F2,MF2; p2〉|L,ML〉

± (−1)L|F2,MF2; p2〉|F1,MF1; p1〉|L,ML〉}, (5)

with the + sign for bosonic molecules and the − sign for
fermionic molecules. In the case of indistinguishable fermionic
NO molecules this relation immediately ensures that only odd
partial waves are allowed in a totally antisymmetric wave
function.

The potential-energy surface between the molecules in-
cludes a van der Waals interaction and is represented as
−C6/R

6, which we assume is isotropic in the present calcula-
tion. We take C6 = 35.2Eha

6
0 as a lower estimate of actual C6

obtained from the London formula and the mean dipole static
polarizability for the NO molecule [17]. We are interested in
the effects of long-range forces, and in particular dipole-dipole
interactions, which are dominant at long range in ultracold
scattering. For this reason we simply replace the short-range
physics with a hard-wall boundary condition at R = 30a0.
On this distance scale, the higher-excited rotational states are
unlikely to be relevant.

The long-range interaction is dominated by electric dipole-
dipole interaction between the two molecules:

Vdd( �R) = −3(R̂ · �d1)(R̂ · �d2) − �d1 · �d2

4πε0R3

= −
√

30d2

4πε0R3

∑
q;q1,q2

(−1)qC2
q

(
2 1 1
q −q1 −q2

)
C1

q1
C1

q2
,

(6)

where �R = RR̂ is the intermolecular separation vector in
relative coordinates, and �di is the electric dipole of molecule i.
C1

qi
and C2

q are components of first- and second-rank spherical
tensors, which are given by reduced spherical harmonics.
The term Vdd can be given in a matrix representation in the
symmetrized hyperfine basis (5), as written, e.g., in Ref. [18]
with a remaining dependence on the radial coordinate R.

The space-fixed reference frame collisional Hamiltonian for
the NO-NO molecular system whose point mass is located at
the center of mass is

Htot = − h̄2

2mred

d2

dR2
+ H1,2 + V, (7)

where H1,2 = H1 ⊗ 12 + 11 ⊗ H2 is the sum of the one-
molecule effective Hamiltonians, V is the general term of
potential energy including centrifugal barrier, long-range
isotropic van der Waals interactions, and anisotropic dipole-
dipole interactions.

The total wave function �( �R) is represented by a column
vector having the nth component of the form

�n( �R) = ψn(R)

R
[|F1,MF1; p1〉|F2,MF2; p2〉|L,ML〉S],

where n is a collective index denoting all the channel indices
in the square brackets, and ψn is the diabatic solution of the
set of coupled radial equations[

Nch∑
m=1

(
− h̄2

2mred

d2

dR2
+ Em

)
δnm + Vnm

]
ψm = Etotψn, (8)

with Em being the threshold energy of channel m, which is
defined as the eigenenergy of H1,2 in the R → ∞ limit. Etot

represents the total collision energy, which is a conserved
quantity during the collision. The total energy Etot = Ec + En,
where Ec is the collision energy relative to the threshold energy
En of the incident channel.

In addition to symmetric properties of the wave functions
another molecular symmetry of great importance for the inter-
action Hamiltonian is the total molecular angular-momentum
projection onto an electric-field axis, Mtot = MF1 + MF2 +
ML. This quantum number is conserved in an electric field
by dipole-dipole interactions and the same holds for magnetic
fields.
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The set of coupled Schrödinger equations (8) in multi-
channel scattering was solved by employing the log-derivative
propagator method [19]. Matching the log-derivative matrix
with the asymptotic solution for open channels at large R

yields the open-open submatrix of the reaction K matrix, and
subsequently the scattering matrices S and T . The partial scat-
tering cross section for a collision process between an inbound
channel i and any of the outbound channels f is given by

σL,i→f (E) = 2 × π

k2
i

∑
ML

∑
f,L′,M ′

L

|〈i,L,ML|T |f,L′,M ′
L〉|2,

where f = i for elastic processes and f �= i for inelastic pro-
cesses, k2

i = 2mred(Etot − E
1,2
i )/h̄2 = 2mredEc/h̄

2 a square
of the wave number of an incident channel, and the numerical
factor of two is required because of permutation symmetry in
collisions of identical particles in indistinguishable hyperfine
states. The total cross section is a sum of partial cross sections
over all possible incoming partial waves L

σi→f (E) =
∑
L

σL,i→f (E).

We also consider scattering rate constants, defined as K = viσ ,
where vi is the incident collision velocity.

In practice, we consider only scattering within the |�| =
3/2 manifold and disregard possible collision events where
molecules scatter into |�| = 1/2 states, which are far
away in energy. Within this approximation, and for the
|5/2,5/2; f 〉|5/2,5/2; f 〉 initial state of interest, we find that
including partial waves L = 1, 3, 5 is sufficient to converge
the cross sections to perhaps 20 percent at the highest energies
considered, a sufficient convergence for our computation pur-
poses. At the lowest collision energy of 10−5 K a right bound of
15 000a0 is sufficient to have a converged cross section below
5%. Within these approximations there are Nch = 258 total
scattering channels.

III. SCATTERING RESULTS

We have calculated the elastic and inelastic cross sections
for colliding molecules subjected to magnetic and electric
fields. Note that, by elastic is meant collisions during which the
internal state |F,MF ; p〉of both molecules remains unchanged,
whereas by inelastic is meant collisions in which at least one
molecule converts its internal state to another. The collision
energy within the wide range of 10 μK through 1 K is
considered. As a rule of thumb, we seek circumstances where
the ratio of elastic to inelastic collision rates is 100 or greater,
to facilitate evaporative cooling.

Figure 3 shows cross sections for E = 6000 V/cm and
B = 1000 G with partial-wave contributions to the total cross
sections. Below 1.5 mK the inelastic collisions dominate
over the elastic collisions. At around 10−4 K the inelastic
cross section features a maximum. Below this energy lies the
threshold regime where σinel scales with collision energy Ec as
E

1/2
c . Above this energy, σinel ∼ E−2

c . For the indicated values
of the electric and magnetic field the favorable ratio of at
least one hundred elastic events to one inelastic collision event
seems to hold from 100 mK to higher collision energies, thus
allowing NO molecules to be cooled by collisions to this limit.
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FIG. 3. (a) Elastic and (b) inelastic cross sections versus the
collision energy for 6000 V/cm applied electric field and 1000 G
applied magnetic field. Also shown are the individual partial-wave
contributions L = 1, 3, 5 to the total cross section calculated in the
inbound channel |5/2,5/2; f 〉|5/2,5/2; f 〉|1,0〉S .

Figure 3 closely resembles the similar Fig. 3 in Ref. [1],
which showed the result for the |�| = 1/2 state of the NO
molecule, also in an electric field E = 6000 V/cm. It differs,
of course, in that the |�| = 1/2 had no magnetic moment and
would not have been influenced by a magnetic field. The fact
that the overall magnitude and variation of the cross sections
is similar between the |�| = 3/2 and |�| = 1/2 states, is
reasonable since the principal physics being explored here is
due to the electric-dipole interactions between the molecules.
There are also differences in the two cases, which likely arise
from details of angular-momentum coupling in the |�| =
3/2 versus |�| = 1/2 state, and particularly in the hyperfine
structure.

The effect of the magnetic field on the |�| = 3/2 state can be
significant. To see this, we examine scattering-rate coefficients
in zero electric field, as shown in Fig. 4, for collision energies
Ec = 100 mK and Ec = 1 mK. Figure 4 plots rate coefficients
versus magnetic-field strength. At the low collision energy of
1 mK, the inelastic rate actually exceeds the elastic rate, until
a field of about 2000 G is applied. At still higher fields, the
inelastic rate continues to diminish. Nevertheless, the ratio of
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FIG. 4. Rate coefficient for elastic (solid curves) and inelastic
(dashed curves) as a function of magnetic field at E = 0 V/cm for
the two different collision energies: Ec = 1 mK (red, dark curve) and
Ec = 100 mK (blue, light curve).

elastic to inelastic scattering remains less than an order of
magnitude for the fields considered. Qualitatively, the same
behavior is seen for Ec = 100 mK, although elastic scattering
already exceeds inelastic scattering in zero field. The general
conclusion, from the point of view of evaporative cooling, is
that a magnetic field does not sufficiently increase the ratio of
elastic to inelastic scattering.

The presence of a magnetic field can also strongly influence
the behavior of rate constants when an electric field is present.
This influence is indicated in Fig. 5. Panel (a) of this figure
shows rate coefficients versus electric field for a low collision
energy, Ec = 1 mK. In the absence of a magnetic field (black
lines), the inelastic rate actually far exceeds the elastic rate for
most of the range; a situation similar to the case in the |�| =
1/2 state (see Fig. 4 of Ref. [1]). Incorporating a magnetic
field parallel to the electric field can ameliorate this difference:
elastic and inelastic rates are comparable for all electric fields
if the magnetic field is 1000 G (red lines); while the elastic rate
exceeds the inelastic rate for all electric fields if B = 3000 G
(blue lines). Moreover, large electric fields tend to suppress the
inelastic rates while leaving the elastic rates alone, an effect
already emphasized for the |�| = 1/2 state. Admittedly, the
fields required for this suppression are unrealistically large
to be a useful means of achieving evaporative cooling at
millikelvin temperatures.

The situation is somewhat more promising in the case of
100 mK collision energy [Fig. 5(b), zoom to small electric field
in Fig. 5(c)]. Here inelastic scattering is already suppressed
in zero field and becomes further suppressed as the magnetic
field is increased. Meanwhile, the elastic-scattering rate is
essentially unchanged by the magnetic fields. In a B = 3000
G magnetic field, it is conceivable that merely polarizing the
atoms (E > 40 V/cm) is sufficient to promote evaporative
cooling to this temperature.

IV. SEMI-QUANTITATIVE ANALYSIS

Regardless of some inelastic suppression at large fields
and at temperatures above 10 mK, inelastic scattering is
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FIG. 5. Rate coefficients for elastic (solid curves) and inelastic
(dashed curves) scattering as a function of electric field at B = 0 G
(black curve), B = 1000 G (red curve), and B = 3000 G (light blue
curve). The collision energy is fixed at the value (a) Ec = 1 mK, (b)
Ec = 100 mK. (c) The same as in panel (b) but in detailed electric-field
range.

nevertheless a fact of life for these radicals. It is worthwhile to
look at the mechanism of inelastic scattering, both to see why
this scattering occurs, and why it is suppressed.

Starting from the stretched state |5/2,5/2; f 〉|5/2,5/2; f 〉,
collisions can be inelastic, thereby releasing energy, by trans-
formations of two types: either the molecules can change
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FIG. 6. Inelastic cross sections versus collision energy (a)
in the absence of field, (b) subjected to an electric field of
E = 6000 V/cm and a magnetic field of B = 1000 G. The collisions
occur in the incident state |5/2,MF1 = 5/2; f 〉|5/2,MF2 =
5/2; f 〉|1,0〉S and individual partial cross sections represent
losses to channels that change MF1 and MF2. The notation
�MF = M ′

F1 − MF1 + M ′
F2 − MF2.

the total projection of angular momentum on the field axis,
�MF = �MF1 + �MF2, with the shed angular momentum
transferred to partial-wave angular momentum; or else one or
both molecules can change parity state from f to e.

The partial cross sections for the various �MF channels are
shown in Fig. 6, both in the absence of applied field [Fig. 6(a)]
and in fields of E = 6000 V/cm and B = 1000 G [Fig. 6(b)].
Quite generally, these partial cross sections exhibit a propensity
rule, whereby larger changes in angular momentum, �MF , are
suppressed relative to smaller changes. A notable exception
is the partial cross section for �MF = 0. In zero field this
process is somewhat suppressed with respect to �MF = −1
for energies below ∼10 mK, while in strong fields it is
suppressed to be the least significant cross section of all.

The ability of the molecules to scatter into different �MF

and parity channels depends qualitatively on two things: the
initial-to-final-state coupling, and the energy released in the
collision. This can be seen in the plane-wave Born approxima-
tion, where the transition amplitude between initial channel i

with wave number ki and parities p1i , p2i , to final channel f

with wave number kf and parities p1f , p2f , is given by [7]

〈i|T |f 〉 = 4mred

h̄2 Ci,f

√
kikf

∫ ∞

0

jLi
(kiR)jLf

(kf R)

R
dR

= ACi,f

√
kikf

k
Li

i

k
Lf

f

F (a,b,c; (ki/kf )2). (9)

Here ki and kf are the wave numbers of the initial and
final channels; F is a hypergeometric function whose indices
depend on angular-momentum quantum numbers; and Cif are
matrix elements of the dipole coupling in the dressed states of
the molecules, exclusive of the 1/R3 scaling.

The matrix elements Cif depend strongly on electric field,
which can be seen as follows: In the expression (6) for the
dipolar interactions, the matrix elements of the individual C1

qi

components is given by

C1
qi

= 〈
J,M,|�|∣∣C1

qi

∣∣J,M,|�|〉[cos 2δM sin 2δM

sin 2δM cos 2δM

]
,

using [20]

〈
J,M,�

∣∣C1
qi

∣∣J,M,�′〉 = δ�,�′�

J (J + 1)

{
M, qi = 0

±
√

J 2−M2

2 , qi = ∓1.

Thus in the two-molecule field-dressed basis the Ci,f matrix
elements depend on the parity states and the electric field (via
δM ) as

〈ee|C|ee〉 ∝ cos2 (2δM ),

〈ee|C|ef 〉 ∝ sin (4δM ),

〈ee|C|ff 〉 ∝ sin2 (2δM ),

(10)

Thus in the zero-electric-field limit, δM → π/4, the initial
channel with p1i = p2i = f is directly coupled only to the final
channel with p1f = p2f = e; both molecules must change
parity. Whereas in the high-electric-field limit, δM → 0 and the
initial channel p1i = p2i = f couples only to channels where
p1f = p2f = f also; that is, the f character of the state is
preserved.

The second effect, that of the energy released in the
collision, follows from the Born-approximation result, noting
that in the threshold limit ki/kf → 0, the hypergeometric
function in Eq. (9) is reduced to unity. The energy dependence
is therefore in the prefactor

√
kikf k

Li

i /k
Lf

f . For final wave
numbers given by the energy released, kf = (2mred�E/h̄2)1/2,
where �E is the energy between incident and final thresholds,
and for p waves Lf = 1, we have σif ∝ 1/

√
�E, which is

suppressed as the gap �E gets larger. This idea was used
to explain the electric-field suppression of inelastic rates in
Ref. [1].

Selected rate constants in the Born approximation, with
�MF = −1,0, are shown in Fig. 7. The rates show the smooth
transition between ee final states that are the dominant result at
zero field, to the ff final states that dominate at large field. At
small electric field, both �MF = −1,0 channels with opposite
ee parity are readily available, with gap �E remaining small,
on the order of the �-doubling energy. Both possibilities are
therefore approximately equally likely.
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FIG. 7. Rate coefficients in Born approximation for inelastic scat-
tering as a function of electric field at B = 0 G between the incident
channel |f,f 〉 ≡ |5/2,MF1 = 5/2; f 〉|5/2,MF2 = 5/2; f 〉|1,0〉S and
final channels indicated in the legend that are either of different e

(or f ) parity or different MF . The collision energy is fixed at the
value Ec = 1 mK. The solid purple curve corresponds to a sum
of all �MF = −1 state-changing collisions, where only selected
dominant Ki→f are shown. Only the Lf = 1 outcoming partial wave
is considered.

On the other hand, at large field, a parity-conserving
�MF = −1 transition, |5/2,5/2; f 〉|5/2,5/2; f 〉 →
|5/2,5/2; f 〉|5/2,3/2; f 〉 is easily allowed, with a gap
corresponding to approximately the hyperfine splitting
(Fig. 1), so this transition proceeds rapidly. But for a
�MF = 0 transition, the only parity-preserving operation is
|5/2,5/2; f 〉|5/2,5/2; f 〉 → |5/2,5/2; f 〉|5/2,5/2; f 〉; that
is, elastic scattering. The �MF = 0 inelastic transition is
therefore highly suppressed.

Finally, we note that, for any allowed transition, such
as the �MF = −1 transition, |5/2,5/2; f 〉|5/2,5/2; f 〉 →

|5/2,5/2; f 〉|5/2,3/2; f 〉 at high field, the addition of a mag-
netic field further splits the energy between the |5/2,5/2〉 and
|5/2,3/2〉 states, increasing the gap �E and further somewhat
suppressing the inelastic rates. This is the result seen in
Fig. 5.

V. CONCLUSIONS

We analyzed the possibility of evaporative cooling of NO
molecules in their |�| = 3/2, J = 3/2 state and computed
scattering cross sections and rate coefficients under the influ-
ence of electric and magnetic fields. We find that evaporative
cooling is viable only for collision energies Ec no lower than
∼100 mK, which is similar to a result obtained for NO in the
2�1/2 state [1]. Without the influence of an external magnetic
field, the ratio of elastic to inelastic rates is highly unfavorable
and does not exceed 100 at Ec = 100 mK even when an
unrealistically high electric field is applied. Magnetic fields
of a few thousand gauss are necessary for effective cooling,
the suppression of the inelastic rate can then be controlled by
an additional electric field, which is in accordance with the
phenomenon found for the 2�1/2 state [1].

As a result, no matter what field is applied and of what
magnitude, the most probable inelastic process is the one that
changes the sum of total-angular-momentum projection �MF

for both collision species by one.
Finally, we discussed the role of molecular state parity that is

during inelastic processes preferred to be changed or conserved
with respect to the magnitude of the electric field.
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