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Triple-differential cross sections (TDCS) are presented for the electron and positron impact ionization of
inert gas atoms in a range of geometries where a number of significant few body effects compete to define the
shape of the TDCS. Using both positrons and electrons as projectiles has opened up the possibility of performing
complementary studies which could effectively isolate competing interactions which cannot be separately detected
in an experiment with a single projectile. A comparison is presented between theory and the recent experiments
of [Gavin, deLucio, and DuBois, Phys. Rev. A 95, 062703 (2017)] for e± and contrasted with the results from
earlier electron experiments. For the special case of xenon(5p), cross sections are presented for both electron-
and positron-impact ionization in kinematics where the electron case appears well understood. The kinematics
are then varied in order to focus on the possible role of distortion, exchange, and target wave-function effects.
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I. INTRODUCTION

Coincidence techniques are a powerful way of studying
atomic collision processes. Using them much has been learned
about the subtleties of the interactions in collisions between
photons, ions, and electrons with atomic and molecular targets.
More recent pioneering work using antimatter projectiles,
e.g., [1,2], has opened up the possibility of performing
complementary experiments which could effectively isolate
competing interactions which cannot be separately detected
in an experiment with a single projectile. Such experiments
[3,4] have recently been performed for electron and positron
impact of Ar(3p) [5] at an impact energy of 1 keV, which is
sufficiently high that annihilation and capture effects for the
positron can be safely neglected. A coincidence experiment
places a much more severe test on theory than less differential
measurements, and while there have been some interesting
experimental and theoretical results presented for double-
differential cross sections [6–10], the focus here will be exclu-
sively on the triple-differential cross section. The experiment
of [4] suffered from the size of the errors that had to be
tolerated; nevertheless, suitably averaged distorted-wave Born
approximation (DWBA) calculations [11] behaved reasonably
well in describing these results. The experimental program
is under development, and there is a need for reliable fully
quantum-mechanical calculations to help give an impetus to
this effort. Also, the new experiments directly compare e− and
e+ impact ionization in the same kinematics. For the electron
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case there is an abundance of high-quality experimental data,
and if we are to understand how and why the positron case
differs from the electron case, we need an approach that
works well for the latter for the targets (heavy inert gases)
and kinematics (coplanar asymmetric) favored by current
measurements. Some earlier theoretical studies of the triple-
differential cross sections (TDCSs) for positron scattering may
be found in [12–14], but these calculations were restricted
to atomic hydrogen. Our aim here is to treat multielectron
targets. Here the DWBA approach has been successful in
describing (e−,2e−) experiments [15–25]. Therefore, it seems
reasonable to use it to explore positron-impact ionization. A
virtue of the DWBA is that its relative simplicity enables us to
isolate the separate contributions to ionization of effects such
as exchange and distortion. In its basic form the DWBA does
not take account of postcollisional interactions (PCI) between
the scattered projectile (electron or positron) and the ejected
electron. However, modifying the DWBA by the addition
of a Gamov factor gives a reasonable way of assessing the
importance of PCI. Atomic units (h̄ = e = me = 1) are used
throughout.

II. COINCIDENCE MEASUREMENTS

In a coincidence experiment a projectile of momentum
k0 and energy E0 impinges on a target atom and ionizes it.
The ejected electron and scattered projectile are detected with
their angles and energies resolved. The momentum vectors of
the scattered projectile k1 and the ejected electron k2 form a
plane, and thus we can define all possible kinematics by the
set (k0,k1,k2,�,θ1,θ2), where � defines the angle k0 makes
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FIG. 1. The fast incoming projectile has momentum k0 and
energyE0 and comes in at an angle�with respect to the plane in which
the two final-state particles are detected at angles θ1,θ2 with respect
to the projection of the incoming direction on their plane. � = 0◦

corresponds to coplanar geometry, � = 90◦ to perpendicular plane
geometry, and �12 is the angle between the two detected particles.

to the plane of detection, the “gun angle” (see Fig. 1). Such
a measurement is kinematically complete and is ideal for
exploring subtle collisional effects which would be swamped
by more robust interactions in a less differential measurement.

III. THEORY

A. Electron impact

The distorted-wave Born approximation has been applied
to electron-impact ionization for quite some time, the first
detailed account being given by [26]; the version we use here
is in essential features the same with some refinements. For a
full discussion of the approximation, its strengths, weaknesses,
and our computational implementation see [19,24]. For the
electron-impact ionization of the n,l orbital of an inert gas
atom, the TCDS, after summing over all final and averaging
over all initial spin states, is given by

d3σ DWBA

d�1d�2dE
= 2(2π )4 k1k2

k0

l∑
m=−l

[|fnlm|2 + |gnlm|2

− Re(f ∗
nlmgnlm)], (1)

where

fnlm(k1,k2) = 〈χ−(k1,r1)χ−(k2,r2)| 1

‖r1 − r2‖
× |χ+

0 (k0,r1)ψnlm(r2)〉,

gnlm(k1.k2) = 〈χ−(k1,r2)χ−(k2,r1)| 1

‖r1 − r2‖
× |χ+

0 (k0,r1)ψnlm(r2)〉. (2)

Here χ+
0 is the distorted wave calculated in the static-exchange

potential of the atom, and the χ−’s are distorted waves
calculated in the static-exchange potential of the ion and then
orthogonalized to ψnlm. These are normalized to a δ function,
i.e.,

〈χ±(k,r)|χ±(k′,r)〉 = δ(k − k′). (3)

For the target wave functions we use the Hartree-Fock orbitals
given in [27]. In the approximation (2) the electron-electron
interaction occurs exactly once and no account is taken of PCI
between the two final-state electrons. In our calculations below,

the full nonlocal exchange potential is not used but rather
a localized version [19,28–31] is employed. Its use greatly
simplifies the static-exchange calculations in that one needs
only solve differential equations rather than integrodifferential
equations. Because we treat each of the exiting electrons as
moving in the field of a spin- 1

2 ion, there is an inherent
ambiguity in the choice of exchange potential in the final
channels—we could chose it to be singlet or triplet [19,32].
For most energies there is little or no difference between results
calculated with the singlet or triplet potentials [19,31], but at
low energies there is a weakness in the singlet form: for some
energies it can become complex. A method has been proposed
in [29] to make the potential real again if this happens, but
this method results in a discontinuous singlet potential and
generally gives results in poorer agreement with experiment
than the equivalent triplet calculation (see [19,25]). The neglect
of PCI could be important. To take some account of it a Gamow
factor Ne−e− [15,33] is sometimes employed,

d3σ PCI

d�1d�2dE
= Ne−e−

d3σ DWBA

d�1d�2dE
, (4)

where

Ne−e− = γ

eγ − 1
(5)

with

γ = 2π

‖k1 − k2‖ . (6)

The Gamov factor is related to the analytic ansatz approxi-
mation of Brauner, Briggs, and Klar (BBK) [12]. The essence
of the BBK approximation is to assume that the full three-
body wave function could be approximated by three two-
body wave functions corresponding to the three final-state
particles all independently acting in pairs. The approach has
the appealing advantage of treating each two-body system in
a symmetric way. The Ne−e− factor comes from the Coulomb
wave representing the two-body interaction between the two
outgoing electrons [13,34]. The BBK approximation tends to
give a reasonable representation of the shape of the TDCS but
unfortunately yields only a poor representation of the absolute
size of the cross section and is difficult to apply to multielectron
targets [35,36]. Nevertheless, the Ne−e− factor tends to give
the dominant angular behavior of the TDCS at low energies
and it does correctly force the cross section to go to zero
when k1 = k2. However, the overall normalization is lost. To
ameliorate this it is usual to have Ne−e− normalized so that it
is fixed to 1 when the angle between k1 and k2 is 180◦.

A modified version of the Ne−e− factor has been put forward
by Ward and Macek [37]. These authors suggested replacing
Ne−e− by

Me−e− = Ne−e−|1F1(−iν3,1, − 2ik3r3av)|, (7)

where

k3 = 1

2
‖k1 − k2‖,

ν3 = − 1

‖k1 − k2‖ , (8)

r3av = 3

ε

[
π

4
√

(3)

(
1 + 0.627

π

√
ε ln ε

)]2

,
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with ε being the total energy of the two emerging electrons.
The parameter r3av is chosen by the requirement that the Me−e−

factor reproduce the Wannier behavior and thus it is hoped to
correctly “normalize” Ne−e− .

The use of Ne−e− , or indeed Me−e− for that matter, is
a relatively crude way of including PCI effects and it is
only really useful very close to threshold [19]. The use of
a somewhat cruder approximation than the DWBA can be
informative. The simplest possible approximation to the TDCS
is to neglect the exchange amplitude gnlm and to assume that the
impulsive interaction between the incident and target electron
is dominant, and that we can represent the incoming and
outgoing particles as plane waves corresponding to classical
straight-line trajectories. This gives us the plane-wave impulse
approximation (PWIA) (see [24,38]):

f PWIA
nlm (k1,k2) = − 1

(2π )9/2

∫
e−i(k1·r1)e−i(k2·r2)

[
1

r12

]

×ψnlm(r2)eik0·r1d3r1d
3r2. (9)

The PWIA does not contain any form of multiple scattering or
exchange. The initial and final wave functions are not eigen-
functions of the same Hamiltonian and thus not orthogonal,
which leads to the cross section having the wrong asymptotic
behavior as the momentum transfer q goes to zero. Its principal
merit is that the explicit dependence of the TDCS on the target
wave function is immediately apparent.

Returning to (9) and making use of the well-known Bethe
relation [39]

∫
d3r1e

i(k0−k1)·r1
1

‖r1 − r2‖ = 4π

q2
ei(q·r2), (10)

where q = k0 − k1 is the momentum transfer vector, we find

f PWIA
nlm (k1,k2)= −2

(2πq)2

[
1

(2π )3/2

∫
d3rei(k0−k1−k2)·rψnlm(r)

]

= −2

(2πq)2
φnlm(krecoil), (11)

where

krecoil = k0 − k1 − k2 , (12)

and φnlm(krecoil) is the wave function in momentum space. The
integral in (11) may be evaluated by substituting the usual
radial form

ψnlm(r) = Rnl(r)Ylm(r̂) (13)

and expanding the plane wave in spherical harmonics to find
that

f PWIA
nlm = −2

(2πq)2

{
4πil

(2π )3/2

[∫ ∞

0
r2drRnljl(krecoilr)Ylm

× (k̂recoil)

]}

= −2

(2πq)2
Fnl(krecoil)Ylm(k̂recoil). (14)

Note thatFnl does not depend on the magnetic quantum number
m. Since ψnlm is normalized to unity it follows that∫ ∞

0
p2|Fnl(p)|2dp = 1. (15)

The probability that the absolute value of the momentum lies
between p and p + dp is given by p2|Fn,l(p)|2dp. Substituting
in (1) we have

d3σ PWIA

d�1d�2dE
= 8k1k2

q4k0

(4π )2

(2π )3

∣∣∣∣
∫ ∞

0
drr2Rnl(r)jl(krecoilr)

∣∣∣∣
2

×
l∑

m=−l

Y ∗
lm(k̂recoil)Ylm(k̂recoil), (16)

but from Unsöld’s theorem [40],
l∑

m=−l

Y ∗
lm(k̂recoil)Ylm(k̂recoil) = 2l + 1

4π
(17)

and hence,

d3σ PWIA

d�1d�2dE
= (2l + 1)

k1k2

k0q4

4

π2

[∫ ∞

0
r2Rnl(r)jl(krecoilr)

]2

.

(18)

Thus the triple-differential cross section separates into the
product of two factors. The one in the square bracket in (18)
depends purely on the target and the second, which contains the
q−4 factor, looks like the classical Rutherford scattering term.
Clementi and Roetti [27] give analytic fits to the Hartree-Fock
spatial orbitals in terms of an expansion over Slater orbitals of
the general form

χnlm = N (n,α)rn−1e−αrYlm(θ,φ) (19)

where

N (n,α) = (2α)n+ 1
2

[(2n)!]
1
2

. (20)

Using these functions Fnl(krecoil) can then be reduced to a sum
over integrals of the form

IW (β,m,l,krecoil) =
∫ ∞

0
e−βrrmjl(krecoilr)dr. (21)

Such integrals admit an analytic solution [41]. From (14) it
follows that the TDCS in the PWIA will have a zero whenever
Fnl(krecoil) has a node. In Fig. 2 we plot |F51|2 for xenon. It
will be helpful to consider the nodes of the momentum space
wave function: the first node is at the origin, a second node
which corresponds to an exact zero in the plane-wave cross
section occurs when krecoil ≈ 2.94 a.u., and there is a further
minimum at krecoil ≈ 7.25 a.u. The first maximum in |F5,1|2
is at k ≈ 0.578 a.u. For k > 2.0 a.u. the amplitude of the
function is very small, so in order to explicitly show the nodes
we have plotted it on both a linear and a log scale. Let us first
consider the zero at the Bethe ridge point krecoil = 0. Depending
on the impact and binding energies, such a zero may or may
not be possible. In coplanar asymmetric geometry where one
particle is detected at some fixed anticlockwise angle θ1 and
the TDCS is given as a function of the clockwise measured
angle θ2, then conservation of energy and the Bethe point
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FIG. 2. The function |F51(k)|2 plotted for xenon. In the left panel
we use a linear scale. In the right we use a log scale where the solid blue
vertical line is k = 0.578, the short dashed green line is k = 2.94 a.u.,
and the long dashed red line is k = 7.25 a.u.

give us

k2
0 = k2

1 + k2
2 + 2I

k0 − k1 = k2

⇒ k2
0 + k2

1 − 2k1k0 cos θ1 = k2
2

⇒ k2
0 + k2

1 − 2k1k0 cos θ1 = k2
0 − 2I − k2

1

⇒ cos θ1 = k2
1 + I

k1k0
. (22)

Even if it is not kinematically possible to reach the Bethe point
itself, we will still have a minimum in the TDCS if krecoil is
smaller than the k = kmax which gives the first maximum in
Fn,l(k). The PWIA is too crude an approximation for almost
all electron and positron experiments. A somewhat better
approximation is the first Born approximation (FBA), in which

we continue to ignore the exchange term and use plane waves
for the incident and scattered particles but treat the wave
function of the ejected electron as a continuum state of the
ion. The Bethe integral relation can still be employed and the
TDCS is symmetric about the direction of momentum transfer.
As a consequence of the orthogonality between initial and final
ejected electron states, the FBA has the correct asymptotic form
as q → 0.

B. Positron impact

We will again use the DWBA, (1) to (2). In this case there
is no exchange amplitude gnlm = 0, and the distorted waves
χ+

0 (k0,r1) and χ−(k1,r1) for the positron are generated in
the static potential of the atom(ion) for positron impact (i.e.,
minus the static potential for electron impact). The distorted
wave χ−(k2,r2) for the slow ejected electron is orthogonalized
to the bound state. There is now no ambiguity in the choice
of exchange potential. The ground state of our targets is spin
singlet (S = 0) and therefore the ejected wave function must be
calculated in the singlet static-exchange potential. To estimate
PCI we can make use of a Gamov function again but where
now we change the sign of γ in (5),

Ne+e− = �

e� − 1
(23)

with

� = − 2π

‖k1 − k2‖ . (24)

In a number of earlier calculations, including our own [11],
the Me+e− [37] factor was used. In their original derivation
Ward and Macek assumed that at threshold both exiting
particles (electrons in their case) preferentially moved at
180◦ to each other, which is consistent with the Wannier
model for threshold electron-impact ionization. This will not
apply in the positron case. Furthermore, we know [25] that
the DWBA + Me−e− gives poor agreement with the absolute
experiments of [42,43] at 1 and 2 eV above threshold for
the electron-impact ionization of helium. DWBA + Ne−e−
with Ne−e− normalized to 1 at �12 = 180◦ is in accord with
both the shape and absolute size of these experiments. We
will therefore only make use of Gamov factors Ne−e− and
Ne+e− in the calculations presented below. We will adopt the
same normalization for both positron and electron collisions,
i.e., we will normalize Ne−e− = 1,for �12 = 180◦, Ne+e− =
1,for �12 = 180◦. Neither the PWIA nor the FBA include
exchange or postcollisional interaction between the exiting
particles and thus they will return the same TDCS for electron
and positron scattering.

IV. RESULTS

A. Argon(3 p)

In Fig. 3 we show a comparison between our calculations
(DWBA, DWBA with Ne±e− ) and the recent experiments of
[3]. The experiments are relative, and we have averaged our
calculations over the experimental uncertainties of ±10 eV in
the energy and ±0.5◦ in θ1. Both the electron and positron
results show a similar pattern and reasonable shape agreement
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FIG. 3. Triple-differential cross sections for the electron- and positron-impact ionization of Ar(3p), E0 = 1 keV,E2 = 26 ± 10 eV, the
scattering angle displayed in the individual panels. The positron results are on the left, the electron on the right. Also shown, solid line, DWBA,
and dashed line, DWBA+Nee calculations. Experiment [3] was relative and was normalized to give the best visual fit to the DWBA.
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FIG. 4. Triple-differential cross sections for the electron-impact
ionization of Ar(3p), E0 = 1015.8 eV,E2 = 120 eV, θ1 = 8◦. Ex-
perimental data from [44], theory: DWBA, solid line, DWBA+Nee,
dashed, experiment was relative and normalized to give best visual fit
to theory.

with the measurements in the binary direction, but the exper-
imental results tend to overshoot theory in the recoil region
and there is an intimation of additional structure in the recoil
direction.

There have been quite a number of electron-impact ioniza-
tion experiments on argon [44–48], but not, to our knowledge,
in these precise kinematics of Fig. 3. In Fig. 4 we show a
comparison between our calculations and the experiments of
[44]. Generally, agreement is good and there is no evidence of
any structure in the recoil direction. In [20] experimental results
were presented for krypton(4p) and xenon(5p) in kinematics

which mimic those considered here. In Fig. 5 we compare
with these measurements. The agreement is reasonable, and
while the theoretical results tend to overestimate the size of
the recoil to binary ratio in xenon, there is no structure in the
recoil direction. In all our calculations PCI, as incorporated by
the Ne±,e− factors, makes only a little difference to the shape,
and since all the experiments are relative it is not clear how its
influence could be distinguished. Given the amount and quality
of experimental data for (e,2e) on argon and the experimental
challenges faced in measuring electron and positron-impact
ionization in the same experimental device, we are inclined to
the view that there is some systematic experimental issue in
the measurements of [1] and that the DWBA offers the most
practical way of giving direction and guidance to the evolving
experimental program. In the next section we focus on xenon
targets.

B. Xe(5 p)

Let us first consider the (e,2e) experiments of [20]. These
measurements were in coplanar asymmetric geometry, which
is ideal for this investigation since we can reasonably hope
to avoid the complicating effects of positronium formation
and annihilation. The target was xenon at an impact energy of
1.032 keV, with E1 = 1 keV,E2 = 20 eV. In Fig. 6 we show
DWBA results at θ1 = 2.5◦ and θ1 = 8◦. Agreement between
experiment and the DWBA is encouraging in both cases. There
is a local minimum in the binary peak in the direction of
momentum transfer at 8◦, which is absent in the 2.5◦ case.
Returning to the analysis given above in (22), we see that the
Bethe region (krecoil < kmax) is accessible in the former case
but not in the latter, and thus the 8◦ kinematics is sensitive
to the p nature of the target wave function, while the 2.5◦
experiment is not. PCI, as manifested through the Ne−e− factor,
makes only a little difference. We have calculated the TDCS
for positron-impact ionization in the same kinematics. The
measurements discussed in this paper are all relative, and given
the challenges facing experiment, it would seem unlikely that
absolute cross sections will be available in the near future. It is

FIG. 5. Triple-differential cross sections for the electron-impact ionization of Kr(4p) (left panel) and Xe(5p) (right panel), E1 =
1 keV, E2 = 20 eV, θ1 = 8◦. Experiment from Ref. [20] theory: DWBA solid line, and DWBA+Nee dashed line.

062702-6



ELECTRON- AND POSITRON-IMPACT IONIZATION OF … PHYSICAL REVIEW A 97, 062702 (2018)

FIG. 6. TDCS for the electron-impact ionization of Xe(5p), E0 = 1.032 keV, E1 = 1 keV, E2 = 20 eV for (a) θ1 = 2.5◦, (b) θ1 = 8◦.
Experiment is from [20]. Curves: DWBA + Ne−e−, red dashed curve; DWBA, without Ne−e−, long solid blue; FBA, dotted green. The momentum
transfer direction is indicated by the vertical brown arrow. The experiment is relative and has been normalized to the DWBA to give the best
visual fit.

thus incumbent on theory to explore kinematical arrangements
where the shape of the TDCS is sensitive to the choice of
projectile. With this in mind, we varied the kinematics in our
DWBA calculations by changing the value of θ1. For a scattered
angle θ1 = 16◦ we found some interesting differences in the
recoil direction between the TDCSs for e+ and e−. The cross
sections for the three angles are shown in Fig. 7.

Again, PCI has only a small effect in all three cases. The
binary peak in the positron case is enhanced over the electron
case for θ1 = 2.5◦ and 8◦ but is smaller for 16◦. Furthermore,
in the positron case there is a local minimum in the recoil
direction which is absent for electron-impact ionization. The
relative behavior in the binary direction is an exchange effect
and depends on the absence of the g amplitude in the positron
case.

In order to better understand this striking difference between
the positron and electron results in the recoil direction, in

Fig. 7(c) we performed a series of model calculations shown
in Fig. 8. The calculations can be summarized as follows:

(i) PWIA: plane waves for all free particles, no exchange
amplitude g. This calculation elucidates the contribution of
target wave-function effects to the shape of the TDCS.

(ii) FBA: plane wave for incoming and scattered particle,
no exchange amplitude g, slow ejected electron calculated in
the static potential of ion.

(iii) PWDWPW: plane wave for incoming and fast ejected
particle, no exchange amplitude g, singlet static exchange for
ejected electron.

(iv) DWBA (electron): spin singlet static exchange for both
exiting electrons, slow electron in field of ion, fast electron
in field of atom, wave functions of both outgoing particles
orthogonalized to ground state.

(v) DWBA (positron): singlet static-exchange potential for
ejected electron in field of ion, static atomic potential for

FIG. 7. TDCS for the electron and positron impact ionization of Xe(5p), E0 = 1.0328 keV, E1 = 1 keV, E2 = 20 eV: (a) θ1 = 2.5◦, (b)
θ1 = 8◦, (c) θ1 = 16◦. Electron curves: DWBA + Ne−e−, green dotted curve; DWBA without Ne−e−, purple dashed dotted. The positron curves
are DWBA + Ne+e−, solid red; DWBA without pci, long dashed blue. The momentum transfer direction is indicated by the solid vertical line.
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FIG. 8. TDCS for the ionization of Xe(5p), left panel for electron impact, right panel for positron impact. E0 = 1.0328 keV, E1 = 1 keV,
E2 = 20 eV, θ1 = 16◦, all curves without PCI. DWBA, green with filled disks; PWIA, black dashed dotted; FBA, dashed blue, PWDWPW, red
with filled diamonds. The brown vertical line shows the direction of momentum transfer.

positron, direct amplitude only, wave function of slow electron
orthogonalized to the ground state.

The PWIA is very much smaller than the other cross
sections. We see two zeros in the recoil direction. These
arise because krecoil passes through the second node of the
Xe(5p) wave function, corresponding to krecoil ≈ 2.95 (see
Fig. 9).

It appears that the FBA TDCS, though much bigger, retains
a “memory” of the zeros in the PWIA. There is in the FBA
calculation a local minimum in the recoil peak. This minimum
is entirely absent from the PWIA and it is not, therefore, a
wave-function effect. The only difference between FBA and
PWIA is that the former allows for the elastic scattering of
the slow ejected electron and consequently, we conclude that
this must be the origin of the local minimum. The PWDWPW
differs from the FBA only in the possibility of exchange for the

FIG. 9. krecoil = |k0 − k1 − k2| plotted as a function of θ2 for
Xe(5p), E0 = 1.0328 keV, E1 = 1 keV, E2 = 20 eV, θf = 16◦. The
horizontal line at 2.95 is the value for the second node in Fig. 2.

slow ejected electron. The full DWBA calculations are the only
ones that differentiate between positron and electron scattering.
In the electron case we experimented with “switching off ”the
exchange potential for the incoming and scattered electron and
it made very little difference. We conclude that a major differ-
ence between the positron and electron-impact ionization is in
the elastic scattering in the incident channel. This might come
as something of a surprise, since Rutherford scattering from the
nucleus would give rise to an identical elastic differential cross
section for both electron and positron scattering. However, it
is well known that for scattering from a xenon atom the elastic
scattering differential cross section (DCS) is very different for
the two particles. In Fig. 10 we show the differential cross
section for an impact energy of 1032.8 eV calculated using
the accurate ab initio optical potential approach of [49]. For

FIG. 10. Elastic differential cross section for electron, solid line,
and positron, dashed line, impact on xenon, calculated using the
optical potential method of [49]. The projectile impact energy is
1032.8 eV.
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very small angles the electron DCS is a factor of 6 larger than
that of the positron, while for 180◦ it is 2 orders of magnitude
larger. For electron scattering in coplanar symmetric geometry,
a peak at large angles has been observed [50,51] and explained
in terms of multiple scattering [15,52]. Because the probability
of large-angle scattering of the positron is so much smaller,
one would not expect to see a large angle peak in the positron
case and indeed, when we performed such calculations none
was evident. Equally, one would expect to see a single peak
for positron scattering in perpendicular plane geometry, unlike
the double peaks predicted and observed in the electron case
[15,25,53–55]. For (e,2e) the effect of allowing for the elastic
scattering of the fast electron in the final channel leads to
the local minimum, seen in the FBA and the PWDWPW,
being replaced by a maximum. However, for positron-impact
ionization this minimum persists.

V. SUMMARY

Complementary positron- and electron-impact ionization
experiments would allow a better understanding of some of the
subtleties of few body atomic collision physics. We have pre-
sented triple-differential cross sections for the electron-impact
ionization of argon(3p), krypton(4p), and xenon(5p), and
comparison with experiment is generally encouraging. Agree-
ment with the recent experiments of [3] is less encouraging,

but we have argued that since the apparent discrepancy between
theory and experiment is seen in both their electron and
positron experiments and there is a wealth of evidence that
the DWBA performs very well for electron-impact ionization
in these kinematics that the problem most likely lies with the
measurements. For the xenon(5p) target in coplanar asymmet-
ric geometry we have confidence in the theoretical description
for electron scattering. We have calculated cross sections for
both positron and electron scattering in the kinematics of the
electron experiments of [20]. We varied the kinematics by
changing the angle of the scattered projectile and found an
interesting difference between the recoil behavior for positrons
and electrons in the recoil direction where θ1 = 16◦ which we
attributed to distortion effects, i.e., the elastic scattering of the
incident and final particles. Further work would be informative,
especially if there were a complementary experimental effort.
We recommend the project to our experimental colleagues.
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