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129Xe is an important candidate for the searches of electric dipole moments due to time-reversal and parity
violations in diamagnetic atoms. In view of the similarities between the electric dipole moment and the
polarizability from the point of view of many-body theory, we have performed rigorous calculations of the
ground-state polarizability of 129Xe using a self-consistent relativistic coupled-cluster method and the relativistic
normal coupled-cluster method. The discrepancy between the results from these two methods is 2%, but each of
them differs from the accurate measurement of the polarizability of the ground state of 129Xe by 1%. Our results
clearly suggest that the two theoretical methods we have employed in this work can be applied in the future to
capture electron correlation effects in the electric dipole moment of 129Xe to a high degree of accuracy.
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I. INTRODUCTION

The electric dipole moments (EDMs) of atoms due to
violations of time-reversal (T ) and parity (P) symmetries
are among the leading tabletop probes of physics beyond
the standard model of particle interactions [1,2] and they are
sensitive to new physics at the TeV scale [3]. The EDMs of
diamagnetic atoms are primarily sensitive to the nuclear Schiff
moment (NSM) and the electron-nucleus tensor-pseudotensor
interaction, which arise from hadronic and semileptonic time-
reversal or CP violation, respectively [3]. A number of experi-
ments are currently underway to observe such EDMs [5,6]. The
current best EDM limit comes from Hg, which is a diamagnetic
atom [4]. Three EDM experiments on another atom of this
class, 129Xe, are in progress and new results are expected in
the foreseeable future [5,6]. These new experimental results
for 129Xe in combination with atomic many-body calculations
of the ratios of 129Xe EDM to the NSM and the coupling
constant of the tensor-pseudotensor interaction (CT ) separately
will yield limits for the NSM and CT .

It is necessary to assess the quality of the atomic many-body
calculations of the quantities related to 129Xe EDM mentioned
above. One important step in this direction would be to perform
calculations of the ground-state electric dipole polarizability
of 129Xe, which has the same rank and parity as the EDM
mentioned above, and therefore both these quantities depend
on the same physical effects. The theoretical result obtained
for 129Xe polarizability can be compared with its experimental
value which has been measured to high accuracy [7]. These
calculations must be relativistic in character as 129Xe is a
heavy atom with 54 electrons. Furthermore, it is necessary
to use a many-body theory that can capture the correlation
effects to as high an order as possible in an atom with a
large of number of electrons. Taking these two points into
consideration, it would be appropriate to use the relativistic
coupled-cluster (RCC) theory, which is arguably the gold
standard for the relativistic theory of atoms and molecules

[8,9]. One important virtue of this theory is that it takes into
account correlation effects to all orders in perturbation at every
level of particle-hole excitation [10]. Furthermore it is size
extensive [10].

In the present paper, we have performed rigorous cal-
culations of the electric dipole polarizability of the ground
state of 129Xe using a self-consistent RCC method (RCCM)
[11] and the relativistic normal coupled-cluster method
(RNCCM) [11]. This is the first application of the latter
method to the calculation of the electric dipole polarizability
of the ground state of 129Xe. The next section gives the
salient features of these two methods and some key as-
pects of the calculations. This is followed by a presentation
and discussion of our results and, finally, we present our
conclusions.

II. THEORY AND METHOD OF CALCULATIONS

The static polarizability in the uniform dc electric field E
is defined by

〈D〉 = αE, (1)

where 〈D〉 = 〈�0|D|�0〉 is induced electric dipole moment of
state |�0〉 of an atom. In the first-order perturbation, |�0〉 can
be expressed as

|�0〉 = ∣∣�(0)
0

〉 + λ
∣∣�(1)

0

〉
, (2)

where λ is a perturbed parameter for the Dirac-Coulomb (DC)
Hamiltonian given by

H
(DC)
0 =

Ne∑
i

[cα · pi + mic
2β + VN (ri)] + 1

2

∑
i,j

1

rij

, (3)

and the superscripts (0) and (1) represent unperturbed and first-
order perturbed wave functions, respectively. In more explicit
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form, |�(1)
0 〉 can be written as

∣∣�(1)
0

〉 =
∑

I

∣∣�(0)
I

〉 〈�(0)
I

∣∣Hint

∣∣�(0)
0

〉
E0 − EI

=
∑

I

∣∣�(0)
I

〉 〈�(0)
I

∣∣D∣∣�(0)
0

〉
E0 − EI

, (4)

where |�(0)
I 〉 represents an excited state of H

(DC)
0 , E0 and EI

are the energies of the ground and excited states, respectively,
λHint = −D · E is a perturbed Hamiltonian, and D is the
electric-dipole operator. In the above equation, we have used
λHint = −D · E = −DE cosθ and λ = E cosθ , where θ is the
angle between D and E.

Using Eqs. (2) and (4), 〈D〉 = 〈�0|D|�0〉 is written as

〈D〉 � 〈
�

(0)
0

∣∣D
∣∣�(0)

0

〉 + 2λ
〈
�

(0)
0

∣∣D∣∣�(1)
0

〉

= 2
∑

I

〈
�

(0)
0

∣∣D∣∣�(0)
I

〉〈
�

(0)
I

∣∣D∣∣�(0)
0

〉
E0 − EI

E, (5)

where the first term does not contribute since the electric dipole
operator D is an odd parity operator. From Eqs. (1) and (5), α

is given by

α = −2
∑

I

∣∣〈�(0)
I

∣∣D∣∣�(0)
0

〉∣∣2

E0 − EI

. (6)

A. Unperturbed wave function of coupled-cluster
method (CCM)

In the CCM, the unperturbed wave function |�(0)
0 〉 for

closed-shell atoms can be expressed as [12]
∣∣�(0)

0

〉 = eT (0) |�0〉, (7)

where |�0〉 is the Dirac-Fock (DF) wave function, which
is determined using the mean-field approximation and T (0)

is the sum of all particle-hole excitation operators. In the
coupled-cluster singles and doubles (CCSD) approximation,
the excitation operator is T (0) = T

(0)
1 + T

(0)
2 . In the second

quantization notation, these operators can be written as

T
(0)

1 =
∑
a,i

tai a†
aai, T

(0)
2 = 1

4

∑
a,b,i,j

tab
ij a†

aa
†
bajai, (8)

where tai and tab
ij are the particle-hole cluster amplitudes, a†

n and
an are the creation and annihilation operators, respectively, and
the scripts n = a,b and n = i,j represent virtual and occupied
orbitals respectively.

To obtain the T (0) amplitudes, we solve the following
equations [12]:

〈�∗
0|

(
H DC

N eT (0))
con|�0〉 = 0. (9)

Here |�∗
0〉 represents an excited determinantal state with

respect to these reference states, H DC
N is the normal or-

dered Hamiltonian, and we use the relation e−T (0)
H DC

N eT (0) =
(H DC

N eT (0)
)con with the subscript “con” representing connected

terms [12]. In the present work, we have used the Jacobi
iterative method to numerically solve Eq. (9) [13].

B. First-order perturbed wave function for
the coupled-cluster method

In the presence of a uniform dc electric field, the atomic
Hamiltonian is given by

H = H
(DC)
0 + λHint, (10)

where the perturbed Hamiltonian λHint = −D · E has been
defined earlier. The first-order perturbation equation can be
expressed as

(
H

(DC)
0 + λHint

)(∣∣�(0)
0

〉 + λ
∣∣�(1)

0

〉)

= (E(0) + λE(1))
(∣∣�(0)

0

〉 + λ
∣∣�(1)

0

〉)
, (11)

where E(0) and E(1) are the unperturbed and the first-order
perturbed energies, respectively. Keeping only the first-order
terms in λ in the above equation, we get

(
H

(DC)
0 − E(0)

)∣∣�(1)
0

〉 = −Hint|�0〉 + E(1)
∣∣�(0)

0

〉

= D|�0〉 + 〈
�

(0)
0

∣∣Hint

∣∣�(0)
0

〉∣∣�(0)
0

〉
= D|�0〉, (12)

where E(1) is zero because D has odd parity. Using the CCM
ansatz for closed-shell atoms, we can express the total wave
function |�0〉, which has a definite parity as

|�0〉 = eT |�0〉, (13)

where we define

T = T (0) + λT (1), (14)

where T (1) is the first-order excitation operator due to Hint.
Substituting Eq. (14) in Eq. (13), we get

|�0〉 = eT (0)+λT (1) |�0〉 = eT (0)
(1 + λT (1))|�0〉, (15)

where only terms up to linear in T (1) have been kept. Com-
paring the above equation with Eq. (13), it is clear that the
first-order wave function can be written as [14]

∣∣�(1)
0

〉 = eT (0)
T (1)|�0〉. (16)

To obtain the T (1) amplitudes, we substitute Eq. (16) in
Eq. (12), and get

〈�∗
0|e−T (0)

H DC
N eT (0)

T (1)|�0〉 = 〈�∗
0|e−T (0)

D eT (0) |�0〉,
〈�∗

0|H DC
0 T (1)|�0〉 = 〈�∗

0|D|�0〉, (17)

where we have used the relation Ā = e−T (0)
AeT (0) =

(AeT (0)
)con for the operator A [10].

C. CCM expression for polarizability

Using Eqs. (7) and (16), the expression of the polarizability
for the CCM can be written as [10]

α = −〈�0|D|�0〉
〈�0|�0〉 = −2

〈
�

(0)
0

∣∣D∣∣�(1)
0

〉
〈
�

(0)
0

∣∣�(0)
0

〉
= −2〈�0|(D(0)T (1))con|�0〉, (18)
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where we define D(0) = eT (0)†
D eT (0)

. In the above equation, we
use the connected form of the expectation value for a closed-
shell atom [12], which is nonterminating. Therefore, in order
to calculate the expectation value given in Eq. (18), we have
used a self-consistent coupled-cluster approach in which the
combined power of T (0)† and T (0) is systematically increased
till the result for α converges.

D. Unperturbed wave function of normal
coupled-cluster method

Using the NCCM ansatz, the unperturbed bra state 〈�(0)
0 |

can be written as
〈
�̃

(0)
0

∣∣ = 〈�0|(1 + T̃ (0))e−T (0)
, (19)

where T0 contains the excitation operators as defined earlier;
T̃0 is the sum of deexcitation operators and is like T

†
0 . Using

Eqs. (7) and (19), we get

〈
�̃

(0)
0

∣∣�(0)
0

〉 = 〈�0|(1 +˜T (0))e−T (0)
eT (0) |�0〉

= 〈�0|�0〉
= 1. (20)

Using the above bra state, the expectation value of a one-
body operator corresponding to a particular property can be
expressed as

〈Â〉 = 〈�0|(1 + T̃ (0))e−T (0)
Â eT (0) |�0〉, (21)

where A is a general one-body operator. The presence of
e−T (0)

Â eT (0)
ensures that the expression on the right-hand side

of Eq. (21) terminates. An important attribute of the NCCM is
that it satisfies the Hellman-Feynman theorem [10].

To obtain the T̃ (0) amplitude, we solve the following
equation:

〈�0|(1 + T̃ (0))[(H eT (0)
)con,C

+
I ]|�0〉 = 0. (22)

Here we express as T (0) = ∑Ne
I=1 t

(0)
I C+

I , t (0)
I are the amplitudes

of the excitations, and C+
I represents a string of creation

and annihilation operators corresponding to a given level of
particle-hole excitation [10].

E. First-order perturbed wave function for NCCM

Similar to T (1), we express the perturbed wave function
for the bra state as

〈�̃0| = 〈�0|(1 + T̃ (0) + λT̃ (1))e−T (0)−λT (1)
. (23)

In the above expression only terms up to linear in T (1) have
been kept and T̃ (1) is given by T̃ (1) = ∑Ne

I=1 t
(1)
I CI .

To obtain the amplitudes for T̃ (1), we solve the following
equations:

〈�0|[T̃ (1),HN ]|�∗
0〉 + 〈�0|(1 + T̃ (0))HN |�∗

0〉
= −〈�0|[HN,(1 + T̃ (0))T (1)]|�∗

0〉, (24)

where HN = e−T (0)
HNeT (0)

.

F. NCCM expression for polarizability

Using Eqs. (13) and (23), the NCCM expression for polar-
izability can be written as

α = −{〈
�̃

(0)
0

∣∣D∣∣�(1)
0

〉 + 〈
�̃

(1)
0

∣∣D∣∣�(0)
0

〉}
= −{〈�0|T̃ (1)D|�0〉 + 〈�0|(1 + T̃ (0))DT (1)|�0〉

}
, (25)

where we have used relations T (n)†|�0〉 = 0 and 〈�0|T (n) = 0,
where n is integer. It is clear from the above expression for
polarizability that it terminates naturally. The NCCM is more
versatile than another coupled-cluster approach to properties
that was proposed by Monkhorst [15]. The calculation of
atomic polarizabilities by the latter method is less straight-
forward than that using the NCCM as it would entail the
computation of the double derivative of the energy with respect
to the electric field and this would require the knowledge of
complicated perturbed coupled-cluster amplitudes [16].

G. Error estimate from triples excitations

In the present work, the contributions to the polarizability
of atomic Xe from three particle-three hole (triple) and higher-
order excitations have not been included. In order to estimate
the size of these neglected effects, we define the following
approximate triples RCC amplitudes in a perturbative manner:

T
(0),pert

3 = 1

3!

∑
ijk,abc

(
H DC

0 T
(0)

2

)abc

ijk

εi + εj + εk − εa − εb − εc

(26)

and

T
(1),pert

3 = 1

3!

∑
ijk,abc

(
H DC

0 T
(1)

2

)abc

ijk

εi + εj + εk − εa − εb − εc

, (27)

with i,j,k and a,b,c subscripts denoting the occupied and
unoccupied orbitals, respectively, and ε representing the orbital
energies. The contributions of T

(0),pert
3 will be larger than that of

T
(1),pert

3 as T
(0)

2 contains physical effects arising in lower-order
perturbation. In a similar way, T (1)

1 contributions will dominate
over those from T

(0)
1 . Based on these considerations, the

dominant uncertainty due to the neglected triples excitations
are estimated by evaluating the expression

�α = 2〈�0|T †(0),pert
3 DT

(0)
2 T

(1)
1 |�0〉. (28)

III. RESULT AND DISCUSSIONS

In atomic relativistic many-body calculations, the com-
monly used basis sets are Gaussian type orbitals (GTOs). In
our present work on the polarizability of the xenon atom,
we use a two point Fermi nuclear distribution [17]. For a
finite-size nucleus, the GTOs can represent the natural behavior
of the relativistic wave functions [18]. The radial part of the
relativistic wave function using the GTOs is given by

G
L/S

k = C
L/S

k rke−αkr
2
, (29)

where the index k = 0,1,2, . . . for s,p,d, . . . type orbital sym-
metry, respectively, and the index L(S) means the large(small)
component of the relativistic wave function. Using the kinetic
balance condition, we can obtain the radial part of the small
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TABLE I. α0 and β0 parameters of the GTOs, which have been used in the present calculations.

Orbital s1/2 p1/2 p3/2 d3/2 d5/2 f5/2 f7/2 g7/2 g9/2

α0 0.020422 0.042695 0.042695 0.024227 0.024227 0.00084 0.00084 0.0082 0.0082
β0 2.016 2.025 2.025 2.02 2.02 2.25 2.25 2.23 2.23

component of the wave function from the large component
[19]. We have considered nine relativistic symmetries in the
present calculations with 40 basis functions for s1/2, 39 for
both p1/2 and p3/2, 38 for both d3/2 and d5/2, 37 for both
f5/2 and f7/2, and 36 for both g7/2 and g9/2 symmetries. We
have used an even tempered condition for which the exponent
αi can be expressed as αi = α0β

i−1
0 [20]. In our calculation,

the values of α0 and β0 are unique for orbitals of a given
symmetry. The accuracies of the results for the DF and CCM
calculations depend on these values (especially β0). The DF
equations in matrix form are solved for given values of these
two parameters and they are suitably varied so that the energies
and the expectation values of r , 1/r , and 1/r2 of the occupied
orbitals matches those obtained from the numerical GRASP2
code [21]. Keeping this value of α0 fixed, the optimal value
of β0 is obtained by minimizing the DF energy as it is de-
rived from the Rayleigh-Ritz variational principle. This leads
to

∂EDF

∂β0
= 0. (30)

Here EDF is total energy at the DF level. In the present work
we have carried out the aforementioned minimization by using
the gradient descent method [22]. The α0 and β0 values from
this approach are listed in Table I.

We have performed our polarizability calculations for
129Xe in the relativistic self-consistent CCSD [RCCSD(SC)]
framework and also using the relativistic NCCSD (RNCCSD)
separately. The idea behind the first approach has been stated
briefly in the previous section. In order to make this more
transparent, we express Eq. (18) as

α = −2〈�0|(D(0)T (1))con|�0〉
= −2〈�0|[(D + (DT (0) + c.c.) + · · · )T (1)]con|�0〉 (31)

in increasing powers of T (0). In the self-consistent method, α

is calculated by increasing successively the combined powers
of T (0)† and T (0) till self-consistency is achieved. The result
from the calculations by this method is given in Table II. The
leading contributions from the terms in Eq. (31) are listed in

TABLE II. Result of static dipole polarizability of 129Xe in [ea3
0 ].

Method Our work Others

DF 26.865 26.87 [23], 26.918 [24], 26.97 [25]
CPDF 26.973 26.98 [23], 26.987 [24], 27.7 [25]
LPRCCSDa 26.432 [26]
RCCSD(SC) 28.115 28.13 [23]
RNCCSD 27.508
Experiment 27.815(27) [7]

aLinearized perturbed RCCSD.

Table III. In Fig. 1, DT
(1)

1 has been decomposed in terms of
the DF, and some lower-order many-order perturbation theory
diagrams. It illustrates that a CCM diagram subsumes diagrams
corresponding to different physical effects to all orders in
perturbation of the residual Coulomb interaction.

Figures 1(b) and 1(f) represent typical core polarization
and pair-correlation effects, respectively. From the viewpoint
of many-body physics, the terms in Table III correspond to
various kinds of interplay between the core polarization and
the pair-correlation effects. The relativistic coupled Hartree-
Fock, i.e., the coupled perturbed Dirac-Fock (CPDF), method
contains the core polarization effects to all orders in the residual
Coulomb interaction. Our DF and CPDF results are given
in Table II and compared with those of other calculations
that were carried out using the same approximations. They
are in very good agreement with the results of Refs. [23]
and [24]. However, our CPDF result differs from that of
Ref. [25] by about 2.5%. The reason for this seems to be
the different number of basis functions and values of the
parameters in them that were chosen for the two calculations.
All the results for the polarizability calculations given in this
paper are in atomic units [ea3

0]. In Table II, we also give
results of different full fledged relativistic coupled-cluster
calculations. Our RCCSD(SC) result is very close to that of
another calculation using the same method [23], but with
somewhat different single-particle GTO basis functions. The
result of our RNCCSD calculation is also given in Table II.
The dominant contributions to α come from DT

(1)
1 and T̃

(1)
1 D,

which arise from DT (1) and T̃ (1)D, respectively. These values
are 15.208 (DT (1)) and 13.180 (T̃ (1)D) in atomic units (a.u.).
The remaining contribution (−0.88 a.u.) is due to higher-order
correlation effects that are present in the three terms given
in Eq. (25). The differences in the contributions between the
individual terms of the RCCSD(SC) and their counterparts in
the RNCCSD are not negligible. However, the final results
for the two methods given in Table II differ by only 2%.
Both of them are in reasonable agreement with an earlier
calculation using the RCCSD method which only took into
account lower-order T (0)† and T (0) terms for which the result
is 27.744 a.u. [24]. But they differ from a calculation based on

TABLE III. Contributions of the polarizability of 129Xe in [ea3
0 ]

from different terms in RCCSD.

Leading contributions α

(DT
(1)

1 + c.c.)con 30.416

(T (0)
1

†
DT

(1)
1 + c.c.)con − 0.376

(T (0)
1

†
DT

(1)
2 + c.c.)con 0.115

(T (0)
2

†
DT

(1)
1 + c.c.)con − 3.408

(T (0)
2

†
DT

(1)
2 + c.c.)con 1.268
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(a) (b) (c) (d)

(e) (f)

FIG. 1. Decomposition of DT
(1)

1 coupled-cluster diagram into the DF and many-body perturbation theory diagrams. Here, D and H
(DC)
0

refer to the dipole and the Dirac-Coulomb (DC) Hamiltonian, which are shown as single dotted and dashed lines, respectively.

a linearized perturbed relativistic coupled-cluster singles and
doubles (LPRCCSD) approach [26] by about 5%. An important
reason for this appears to be the noninclusion of correlation
effects characterized by the nonlinear terms in the RCC wave
function in the latter work.

We identify the three-particle–three-hole (triples) excita-
tions and the Breit interaction [27] as the major sources of
uncertainties in our polarizability calculations. The error due
to the former can be estimated by calculating the perturbative
triple excitations as explained earlier in Sec. II G. The absolute
value of this contribution was found in the present case to
be 0.105 a.u. Given the closeness of the values of 129Xe
polarizability at the CPDF and the different coupled-cluster
levels (see Table II), the Breit interaction for the latter cases can
be estimated by calculating the contribution of this interaction
in the CPDF approximation, and the absolute value obtained
for it is 0.051 a.u. The net uncertainty estimated for 129Xe
polarizability calculated by the two variants of RCC theory
employed in our present work comes from the two above-
mentioned uncertainties, whose absolute value is 0.156 a.u. for

RCCSD(SC). It is reasonable to assume that the uncertainties
associated with our RCCSD(SC) and RNCCSD calculations
are approximately of the same size; i.e., about 0.6% of the
total values in the two cases.

IV. CONCLUSION

The results of our calculations of the electric dipole
polarizability of 129Xe using the self-consistent relativistic
coupled-cluster theory and the relativistic normal coupled-
cluster theory have been presented and discussed. They are
within 2% of each other and differ with the measured value by
only 1%. The role of correlation effects has been highlighted
and the neglected contributions of these effects and the higher-
order relativistic effects together are estimated to be about
0.6% of the total values of both relativistic coupled-cluster
methods.

The present work paves the way for high precision studies
of the electric dipole moments of 129Xe using the two above-
mentioned relativistic coupled-cluster methods.
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