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Nonequilibrium atom-surface interaction with lossy multilayer structures
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The impact of lossy multilayer structures on nonequilibrium atom-surface interactions is discussed. Specifically,
the focus lies on a fully non-Markovian and nonequilibrium description of quantum friction, the fluctuation-
induced drag force acting on an atom moving at constant velocity and height above the multilayer structures.
Compared to unstructured bulk material, the drag force for multilayer systems is considerably enhanced and its
behavior as a function of both the atom’s velocity and distance from the surface exhibits different regimes. These
features are linked to the appearance of coupled interface polaritons within the superlattice structures. Our results
are not only useful for an experimental investigation of quantum friction but also highlight a way to tailor the
interaction by simply modifying the structural composition of the multilayer systems.
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I. INTRODUCTION

The notion of vacuum changed dramatically after the rise
of quantum mechanics. The existence of quantum fluctuations
even at zero temperature and the possibility of structuring
the vacuum has led to the discovery of many new interesting
phenomena. In this context many vacuum fluctuation-induced
interactions such as the Casimir and Casimir-Polder effect
[1] have been investigated. Strongly related to the Casimir-
Polder force is quantum friction, a drag force that even at
zero temperature opposes the relative motion of two or more
objects in vacuum [2]. One of the most studied configurations
consists of an atom (or a microscopic object) moving parallel
to a surface at constant height and velocity [3–6]. In such
a system, quantum friction has a simple interpretation in
terms of the interaction between the moving microscopic
object and its image within the material below. The motion
of the image is delayed due to the frequency dispersion of
the material permittivity, leading to both a modification of the
equilibrium Casimir-Polder force perpendicular to the surface
and a component of the force parallel to the surface that
opposes the motion. Already in this simple picture, we can
intuitively understand the relevance of two mechanisms at
work in the quantum frictional process: The strength of the
coupling between the microscopic object and its image and
the resistance felt by the image when dragged through the
material. The latter can be related to the dynamics of the
charge carriers within the material composing the substrate
and, in particular to its resistivity. Instead, the coupling strength
strongly depends on the electromagnetic densities of states
characterizing the system. Altering either one of these aspects
will eventually lead to a modification of quantum friction.
A currently popular class of systems where this can be
implemented is nanostructured substrate materials [7–9]. In
the framework of fluctuation-induced forces, they have already
been considered both in theoretical analyses (see, for example,
Refs. [3,10–13]) and in experiments [14–18]. One prominent
example is given by nanoscaled multilayer structures, where
a specific pattern of distinct layers are repeatedly stacked

forming a superlattice [19–21]. When carefully designed,
they are known for exhibiting effective hyperbolic dispersion
relations [20,22,23], which have applications in many fields
of research [24–26]. In the present work, we investigate how
the characteristic behavior of quantum friction and specifically
its strength and functional dependence on the velocity and
position of the atom is modified when the planar medium is a
two-component superlattice of alternating layers with metallic
and dielectric properties. The paper is organized as follows.
In Sec. II, we briefly review the theory of quantum friction,
highlighting the features connected with the properties of the
surface, which can lead to a modification of the interaction
through nanostructuring. We introduce in Sec. III our material
models, analyzing the properties and the physical parameters,
which are relevant to the quantum frictional process. Finally,
in Sec. IV, we merge the insights of the previous two sections
and explicitly calculate the quantum frictional force on an atom
moving above a superlattice.

II. QUANTUM FRICTION

Physically, quantum friction can be derived from the
Lorentz force: If we choose the z axis to be perpendicular
to the surface (see Fig. 1), the force lies in the (x,y) plane
against the direction of motion. This means that if the atom
moves at constant height za above a flat surface with constant
velocity v, then F = Fv/v (v = |v|) [2]. In our description,
the atom is described in terms of a time-dependent dipole
operator d̂(t): For simplicity, we further assume a rigid dipole
configuration d̂(t) = dq̂(t), where d is the static dipole vector
and q̂(t) describes the dipole’s internal dynamics. For systems
at temperature T = 0, it has been shown [2,27] that the
quantum frictional force F is given as

F = −2
∫ ∞

0
dω

∫
d2k

(2π )2
k Tr[S(k · v − ω; v) · GI (k,za,ω)].

(1)
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FIG. 1. A schematic description of the system considered in
this work. An atom (or microscopic object) moves at constant
velocity and constant height above a half-space made by periodic
sequence of alternating conductive (εA) and dielectric (εB) layers
with corresponding thicknesses dA and dB. The spectrum of vacuum
fluctuations is structured through the properties of the multilayered
structure and gives rise to a nonequilibrium atom-surface interaction,
which opposes the motion of the atom. This quantum frictional force
is affected by the appearance of electromagnetic resonances due to
the interlayer interaction of plasmon-polaritons at the dielectric-metal
interfaces and can be tailored by acting on the geometry and the
material properties of the individual layers.

Here, k is the component of the wave vector parallel to
the surface, G is the Fourier transform with respect to the
planar coordinates of the electromagnetic Green’s tensor. The
tensor

S(ω) = 1

2π

∫ ∞

−∞
dτ eiωτ 〈d̂(τ )d̂(0)〉NESS (2)

represents the power spectrum corresponding to the dipole-
dipole correlator for the system’s nonequilibrium steady state
(NESS) and describes the strength of the fluctuations affecting
the atomic system. The subscripts I and R appearing in the
previous and the following expressions denote the real and the
imaginary part of the quantities they are appended to (e.g.,
GI = Im{G}, GR = Re{G}, etc.). Assuming that q̂(t) can be
described in terms of a harmonic oscillator, the power spectrum

can be written as [28]

S(ω; v) = h̄

π
θ (ω)αI (ω; v) + h̄

π
J (ω; v), (3)

where α(ω; v) is the velocity-dependent dressed atomic polar-
izability (see Appendix A). The first term on the right-hand
side (r.h.s.) corresponds to the result one would obtain using
the so-called local thermal equilibrium (LTE) approximation.
Within this approximation, it is assumed that the atom is
in equilibrium with its immediate surroundings, allowing
the application of the fluctuation-dissipation theorem [29].
The locally equilibrated atom is subsequently coupled to the
substrate material. However, a full nonequilibrium description
yields the additional term J (ω; v), which substantially con-
tributes to the quantum frictional process (see Appendix A
and Refs. [27,28,30]).

The physics of quantum friction is connected to that
of the quantum Cherenkov effect through the anomalous
Doppler effect [2,4,31]. In simple terms, we have that, through
the Doppler shift appearing in Eq. (1), this process brings
negative frequencies of the electromagnetic spectrum into
the integration region, which is physically relevant for the
interaction. Previous work has shown that, depending on
the atom’s velocity, quantum friction is characterized by the
combination of a nonresonant and a resonant contribution.
The resonant part occurs when the system’s resonances, such
as atomic transition frequencies or polaritonic surface modes
existing at the vacuum-substrate interface, participate in the
interaction. Usually, they become relevant only for velocities
high enough to generate a Doppler shift, which displaces the
resonances into the aforementioned relevant frequency range.
As a rough rule of thumb, this occurs for v/za > ωr, where ωr

is the resonance frequency under consideration. Similarly, the
nonresonant part gives the dominant contribution for the force
at low velocities and is directly related to the low-frequency
optical response of the substrate. Specifically, this region is
strongly affected by the dissipative behavior of the material(s)
composing the substrate. In this nonresonant regime the force
is to a good approximation described by

F ≈ − 2
h̄

π

∫
d2k

(2π )2
k θ (k · v)

∫
d2k̃

(2π )2

∫ k·v

0
dω Tr[α0 · σ I (k̃,za,[k + k̃] · v − ω)]Tr[α0 · σ I (k,za,ω)]

− 2
h̄

π

∫
d2k

(2π )2
k

∫
d2k̃

(2π )2
θ (k̃ · v)

∫ [k+k̃]·v

k·v
dω Tr[α0 · σ I (k̃,za,[k̃ + k] · v − ω) · α0 · σ I (k,za,ω)]. (4)

Here, the dyadic α0 = dd describes the static polarizability
for our model. In the above expression we have also used that,
due to the properties of the trace and of the polarizability, we
can replace the Green’s tensor by its (symmetric) diagonal
part, σ (k,za,ω). Since quantum friction strongly decays with
increasing atom-surface separation (see also Sec. IV), the
dominant contribution of the above expressions come from
the system’s near-field region. In this region σ (k,za,ω) can be

written as

σ (k,za,ω) ≈ rp(ω,k)diag

[
k2
x

k2
,
k2
y

k2
,1

]
ke−2kza

2ε0
. (5)

Here, ε0 is the vacuum permittivity, k = |k|, and rp(ω,k) is
the reflection coefficient of the substrate for the p-polarized
electromagnetic radiation.
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The previous equations show that the quantum frictional
interaction is mainly connected with the p-polarized electro-
magnetic field (the s-polarized field gives a small contribution
of the order v2/c2, with c the speed of light) and is dominated
by wave vectors k � 1/za and frequencies 0 < ω � v/za . It
is interesting to note that, if in this regime we can write
r

p

I (ω,k) ≈ 2(ωε0)nρn(k), Eq. (4) gives a velocity dependence
F ∝ v2n+1, while the distance dependence is related to the
detail of the generalized resistivity ρn(k). For n = 1 one
speaks of ohmic materials, while n < 1 and n > 1 indicate,
respectively, subohmic and superohmic behavior. This feature
has been connected to the non-Markovian properties of the
electromagnetic atom-surface interaction [2,27] and explains
why many of the authors have obtained F ∝ v3 for the low-
velocity asymptotic expression of the quantum frictional force
on an atom moving above a substrate made of a homogeneous
(ohmic) material [5]. Since the nature of the planar medium
determines the functional dependence of the force, tailoring
the properties of the substrate allows for a control of the
interaction.

III. ELECTROMAGNETIC SCATTERING NEAR
NANOSTRUCTURES

The above expressions highlight the dependence of the
quantum frictional force on the optical response of the substrate
and show the important role of the reflection coefficients of the
substrate. The literature offers many different approaches for
calculating these quantities for nanostructures. However, most
of the papers focus on frequency ranges, wave vectors and, in
general, material characteristics, which are not those that are
relevant for the evaluation of the quantum frictional force. In
order to define the notation and give a consistent framework
to our considerations, we present in this section an analysis,
which focuses on these aspects.

We start by considering the expression for the reflection
coefficients of a flat surface. In general, they can be written as
[32]

rσ (ω,k) = δσ Zσ
0 (ω,k) − Zσ

m(ω,k)

Zσ
0 (ω,k) + Zσ

m(ω,k)
, (6)

where the index σ = s,p denotes the polarization state of
light and we have introduced δs/p = ∓. Further Zσ

m(ω,k)
and Zσ

0 (ω,k) denote, respectively, the surface impedance for
the substrate material and the material surrounding it (for
simplicity, in the subsequent discussions, we assume this
material to be vacuum). The surface reflection coefficients are
sensitive to the substrate material properties and the geometry
of the system. For our forthcoming analyses, it is interesting
to consider first the case of a slab of thickness D suspended in
vacuum and made by a homogeneous material characterized
by the spatially local complex permittivity function ε(ω) [33].
In this case Eq. (6) simplifies as follows [34]:

rσ
slab(ω,k) = rσ

bulk(ω,k)
1 − e2ikzD

1 − [
rσ

bulk(ω,k)eikzD
]2 , (7)

where kz =
√

ε(ω)ω2

c2 − k2 (Im{kz} � 0, Re{kz} � 0), and
rσ

bulk(ω,k) is the interface reflection coefficient given by
the usual Fresnel expressions [35]. For a spatially local,

10−1
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ω
/ω
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kD/2
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FIG. 2. Dispersion relations of the symmetric and antisymmetric
surface plasmon-polariton modes of a slab of thickness D consisting
of a material described by a Drude model without dissipation, i.e.,
ε(ω) = 1 − ω2

p/ω
2. For kD/2 � 1 both modes merge to the surface

plasmon polariton at ωsp for a half-space problem.

isotropic, and homogeneous substrate material we have that
the impedance in Eq. (6) can be written as

Zs
m(ω,k) ≡ Zs

bulk(ω,k) =
ω2

c2√
ω2

c2 ε(ω) − k2
, (8a)

Zp
m(ω,k) ≡ Z

p

bulk(ω,k) =
√

ω2

c2 ε(ω) − k2

ω2

c2 ε(ω)
, (8b)

while Zσ
0 (ω,k) can be obtained for our vacuum by setting

ε(ω) ≡ 1. The exponential in Eq. (7) represents the phase
that is accumulated via the propagation and decay through
the slab. The coefficient rσ

slab(ω,k) is characterized by two
resonances, physically related to the interaction between the
surface polaritons existing on either side of the slab [36,37].
This is best seen in the near-field region, where just one of the
two polarizations contributes to the scattering process and the
reflection coefficients rσ

bulk(ω,k) take on the form

r
p

bulk(ω,k) ≈ ε(ω) − 1

ε(ω) + 1
, rs

bulk(ω,k) ≈ 0. (9)

The dispersion relations of the above-mentioned polaritonic
modes are given by the solutions of (see also Fig. 2)

ε(ω) = −
{

coth
(

kD
2

) → symmetric

tanh
(

kD
2

) → antisymmetric.
(10)

The two coupled surface polaritons are labeled symmetric and
antisymmetric in relation to the properties of the electric fields
they are associated with. Due to the different field distributions
within the slab, the symmetric polariton has a lower energy
(or frequency) than antisymmetric, with the uncoupled surface
polariton’s energy lying in between both. The splitting between
of the symmetric and the antisymmetric surface polariton
increases as 1/kD and it is, therefore, more pronounced for thin
slabs, for which the coupling between the surface excitations is
stronger. If different dielectric materials were used below and
above the slab, additional leaky modes would come into play
as elaborated in Ref. [38]. The solutions of Eq. (10) are clearly
visible in the imaginary part of the reflection coefficient as
shown in Fig. 3, where they are also compared to the resonance
of a semi-infinite homogeneous substrate. In Fig. 3 we consider
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FIG. 3. Frequency dependence of the imaginary part of the reflec-
tion coefficient in the near-field limit. Two geometries with the same
Drude material [Eq. (11)] are considered: A semi-infinite bulk (dotted
red line) and a finite slab (solid black line). As parameters we chose
typical values for gold [40] ωp = 9 eV and γ = 35 meV, ε∞

A = 1,
a slab thickness of D = 2 nm ≈ 10−3 c/ωp and k = ωp/c. For the
half-space case, a resonance appears at the frequency ωsp ≈ ωp/

√
2,

while for the slab two resonances are visible, one above, the other
below ωsp.

a metal described by the Drude model

ε(ω) = ε∞ − ω2
p

ω(ω + iγ )
, (11)

where ε∞ > 0 describes the response of the material at large
frequencies, γ denotes a phenomenological damping constant,
and ωp the plasma frequency. In this case the resonances in the
reflection coefficient are associated with the so-called surface
plasmon polaritons. For a bulk-vacuum interface, in the near-
field limit, the resonance is located at ωsp = ωp/

√
1 + ε∞,

while in the case of the slab they depend on the wave vector
and both tend to ωsp for kD → ∞.

Notice that, in Fig. 3 the behavior at low frequencies (i.e.,
frequencies much smaller than the resonance frequency) is
similar for both the bulk and the slab and describe an ohmic
response of both structures. Indeed, in this region, assuming
that the material composing the slab or the bulk is ohmic, an
expansion of the imaginary part of the reflection coefficient
gives

r
p

I (ω,k)
ω�ωsp≈ ωε0

{
2ρ for bulk
2ρ coth[Dk] for slab . (12)

Here, ρ represents the material resistivity [ρ = γ /(ε0ω
2
p) for

the Drude model]. Notice that, since k > 0, the imaginary
part of the reflection coefficient at low frequencies increases
with thinner slabs. In addition, we would have obtained the
same result even if the ohmic layer were deposited above a
dielectric bulk instead of being suspended in vacuum. These
results can be understood in relation to the behavior the
symmetric polaritonic resonance, which in case of metals
is sometimes called short-range plasmon polaritons [37,39].
The field corresponding to the symmetric mode is indeed
more confined within the slab material and thus exhibits a
stronger dissipative response than both the single-interface
resonance (bulk reflection coefficient) and the antisymmetric
mode (which is sometimes also referred to as the long-range
plasmon polaritons [37,39]). For a superlattice structure made
by a semi-infinite stack of alternating layers of two different
materials (labeled A and B hereafter) with respective thickness
dA and dB [41], the expressions for the reflection coefficients
become more involved. To calculate them we need to replace

the surface impedance in Eq. (6) with that of the superlattice,
Zσ

sup(ω,k). This can be calculated through the transfer matrix
formalism [42]. Within this approach, one propagates the elec-
tromagnetic field through each layer and fulfills the boundary
conditions at each interface. For instance, the propagation
through the layer A is given by(

E
c B

)σ

z=z−
0 +dA

= Mσ
A(dA)

(
E
c B

)σ

z=z−
0

, (13)

where z−
0 indicates the position directly in front of the interface.

The transfer matrix through the local material A reads

Mσ
A(dA) =

(
cos

(
kA
z dA

)
iδσ sin

(
kA
z dA

)
Zσ

A

iδσ sin
(
kA
z dA

)/
Zσ

A cos
(
kA
z dA

)
)

.

(14)

For nonlocal materials the transfer matrix takes a different
form and explicit expressions can be found in Ref. [43]. If
we stack the layers A and B we can describe the propagation
through the combined block of thickness dsl = dA + dB with
the transfer matrix T = MBMA or = MAMB, depending on
the stacking sequence [23]. Using the Bloch theorem [44] for
periodic structures, we obtain [45]

Zσ
sup(ω,k) = Tσ

12

exp(iβσ dsl) −Tσ
11

= exp(iβσ dsl) −Tσ
22

Tσ
21

(15)

The Bloch wave vector βσ can be related to the other parame-
ters of the system through the implicit dispersion relation

cos(βdsl) = cos
(
kA
z dA

)
cos

(
kB
z dB

) − 1

2

(
εAkB

z

εBkA
z

+ εBkA
z

εAkB
z

)

× sin
(
kA
z dA

)
sin

(
kB
z dB

)
. (16)

Since most of our considerations will address thep polarization
(see the discussion above), we drop hereafter the superscript
(analogous expressions hold for the s polarization). In addition,
we focus on systems composed of alternating conducting and
dielectric layers, where the stacking sequence starts with a
conducting layer.

Similarly to the coupled surface polaritons found in the
slab, an ensemble of excitations linked to the interaction
among all the interface modes of the stacking sequences
appears in the superlattice system. We refer to this ensemble
as collective interface plasmon polaritons (CIPPs) and their
electromagnetic behavior at the vacuum-superlattice interface
is, to some extent, similar to that of bulk plasmons occurring
in the nonlocal description of metals [36,46,47].

Indeed, nanostructuring adds to the optical response of the
medium certain features, which are mathematically reminis-
cent of spatial nonlocality, although the individual constituents
are described in terms of a spatially local permittivity [48].
However, in contrast to bulk plasmons in nonlocal metals,
the CIPP fields inside the nanostructured materials are always
transverse. In the near-field approximation their dispersion
relations are solutions of (see Ref. [36])

εA(ω)

εB(ω)
= −C(k,β) ±

√
C2(k,β) − 1, (17)
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FIG. 4. Top: Dispersion relation of the ω− branch on a double
logarithmic scale. The thick black solid lines mark the edges of the
branch with βdsl = 0, π . Some intermediate values for the Bloch
vector are also represented (dashed gray lines). The shaded area refers
to a region, where the modes become overdamped. For different values
of β, the value of k0(β), below which the modes become overdamped,
varies and shifts to lower k for higher β. Bottom: Negative imaginary
part of the ω− modes. A clearly visible jump occurs for k ∼ k0(β) and
the damping increases from γ /2 to γ . Inset: Dispersion relation of
the ω± branches, again with the different lines referring to different
values of β, in analogy to the top panel.

where

C(k,β) = cosh(kdA) cosh(kdB) − cos(βdsl)

sinh(kdA) sinh(kdB)
. (18)

Adopting the notation used in Ref. [36], we write C(k,β) ∓√
C2(k,β) − 1 = exp[±ψ(k,β)]. Upon using the Drude model

as in Eq. (11) for material A (metal) and a dielectric constant
for material B [49], the explicit dispersion relation reads

ω±(k,β) = − iγ

2
+

√
ω2

p

ε∞
A + εB exp[∓ψ(k,β)]

− γ 2

4
. (19)

The ω± denote two different branches of possible solutions
of Eq. (17). Similar to the result of Eq. (10) for slabs, the
two branches can be associated with symmetric (ω−) and
antisymmetric (ω+) modes. In fact, depending on the number
of supercells, a finite superlattice structure exhibits many
distinct symmetric and antisymmetric modes parametrized by
discrete values of the Bloch vector [50]. When the periodic
pattern is repeated an infinite number of times, the distinct
lines of a finite superlattice structure blur into a continuum
[36] (see Fig. 4). Within such a limit, the real part of the
Bloch vector βR continuously varies within the Brillouin zone
[0,π/dsl], while the imaginary part βI has to be positive in
order to obtain a decaying field away from the surface. For
nondissipative material, as a function of the Bloch vector each
branch spans two areas on the (k,ω) plane, which characterize
the continua of the symmetric and antisymmetric modes. These

areas are bounded by the curves obtained from Eq. (19) for
β = 0 and β = π/dsl. Due to damping within the metallic
material some of the low-frequency modes belonging to the
symmetric ω− branch become overdamped for small wave
vectors. This occurs for the ω− branch for (kdsl � 1; see Fig. 4)

k < k0(β) = γ

ωp

√
εB

1 − cos(βdsl)

2dAdB
. (20)

In this overdamped region, the modes exhibit a purely imag-
inary frequency. For example, the lower boundary of the ω−
branch obtained for β = π/dsl tends to −iγ for k < k0(π/dsl).
For β = 0, the frequencies is pure imaginary only for k = 0,
indicating that the frequency of the modes near the upper bound
of the ω− branch and the lower bound of the ω+ branch have
a nonvashing real part for all wave vectors.

Composite nanostructures such as those discussed above
are often described through the so-called effective medium ap-
proximation (EMA) [51]. This approach relies on the fact that
for wavelengths larger than the characteristic geometric length
scale of the system (in our case, the thickness of the supercell
dsl), the electromagnetic field cannot resolve the details of the
system. Instead, the electromagnetic field effectively averages
the structural details so that the nanostructures can be described
through an effective dielectric function. This approach dras-
tically simplifies the description of complex nanostructures,
revealing features, which are often obscured by an involved
mathematical machinery. Depending on the geometry of the
composite system, the resulting effective dielectric function
may indeed exhibit properties that are different from those
of the constitutive elements. For instance, for our superlattice
structures, the EMA describes the system as an uniaxial crystal
with a dielectric tensor εEMA(ω) = diag[ε⊥(ω),ε⊥(ω),ε‖(ω)]
whose entries are given by [20,45]

ε⊥(ω) = εA(ω) f + εB(ω) (1 − f ), (21a)

ε‖(ω) =
[

f

εA(ω)
+ 1 − f

εB(ω)

]−1

, (21b)

where f = dA/dsl gives the filling factor of material A. Equa-
tions (21) correspond to the propagation of the electromagnetic
field parallel (ε‖) or orthogonal (ε⊥) to the optical axis of the
crystal, in our case the z axis. Compared to an isotropic bulk
material, in an uniaxial crystal the dielectric response differs
along the different principal axes. Specifically, in uniaxial
crystals with the optical axis perpendicular to the surface,
ordinary waves are associated with the s polarization, whereas
extraordinary waves are associated with the p polarization
[52]. For such systems, the surface impedances are sensitive
to the anisotropy and are given by [53]

Zs
EMA(ω,k) =

ω2

c2√
ω2

c2 ε⊥(ω) − k2
(22a)

Z
p

EMA(ω,k) =
√

ω2

c2 ε‖(ω) − k2

ω2

c2

√
ε⊥(ω)ε‖(ω)

. (22b)
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FIG. 5. Limiting behavior of the superlattice’s reflection coef-
ficient (p polarization) versus the full calculation. The imaginary
part of the reflection coefficient is plotted as a function of ω. The
conducting material’s dielectric function, εA(ω), is described by a
Drude model with the same parameters as in Fig. 3. The dielectric is
vacuum (εB = 1), while the filling factor and the wave vector are set to
f = 0.2 and k = 10−1c/ωp. The full tranfer-matrix-based calculation
exhibits features, which can be directly connected to the continuum
of modes in the ω± branches. For frequencies ω higher than the lower
bound of the ω− branch, the EMA calculation (dashed black line)
shows a very good agreement with the transfer-matrix approach (solid
red line). At small frequencies ω, the full transfer-matrix calculation
is equivalent to the behavior of the very first conducting layer of the
structure (gray dotted line). The shaded areas represent the hyperbolic
regime with Re{ε⊥(ω)}Re{ε‖(ω)} < 0.

In the near field, the corresponding reflection coefficients
take on the form

r
p

EMA(ω,k) ≈ εeff (ω) − 1

εeff (ω) + 1
, rs

EMA(ω,k) ≈ 0, (23)

where we have introduced the effective dielectric function as
the geometric mean of the perpendicular and parallel compo-
nents of the dielectric according to εeff (ω) = √

ε‖(ω)ε⊥(ω).
If we now consider the case where |εA(ω)| � |εB(ω)|

we can, for a certain frequency range, reduce this effective
dielectric function to

εeff (ω) ≈
√

f

1 − f
εA(ω)εB(ω) =

√
dA

dB
εA(ω)εB(ω). (24)

If in this limit εB > 0 is a constant [49], then εeff (ω) ∝ √
εA(ω).

In essence, this yields a criterion when the EMA provides a
significant deviation from the ordinary optical response of a
bulk system made purely by the material A. To see this more
clearly, consider, as an example, an ohmic material, which at
low frequencies behaves as εA(ω) ≈ i(ωε0ρ)−1 (e.g., a Drude
metal for ω < γ ). Within the effective medium description, for
the reflection coefficient we then have

rI (ω,k) ≈ √
ωε0

√
2

ρ

εB

dB

dA
. (25)

Therefore in the case of a metal-dielectric superlattice struc-
ture, the EMA predicts that for ω < γ the behavior of the
reflection coefficient is no longer ohmic but subohmic.

Figures 5 and 6 display the above features and certain
structures related to the CIPP modes. Using the different ap-
proaches described above (Bloch waves and EMA), both plots

10−5

10−3

10−1

101

10−6 10−4 10−2 100

γ

r I
(ω

)

ω/ωsp

Bloch
EMA
Slab

∝ √
ω

∝ ω

∝ ω

FIG. 6. Analogous comparison as in Fig. 5 but this time for k =
10−3c/ωp. The EMA holds over a larger frequency range and for
lower frequencies ω. A subohmic behavior (rI ∝ √

ω) is visible in
the Bloch-wave calculations. At low frequencies, the EMA breaks
down and effectively only the first slab is responsible for the scattering
properties of the entire structure.

display the frequency dependence r
p

I (ω,k) for two distinct
values of the wave vector, one above and one below the value
k0(π/dsl) that delineates the overdamped region. Notice that
the EMA agrees with the full calculation only above a certain
frequency. The breakdown of the approximation occurs for
frequencies around the lower boundary of the ω− branch. This
can be understood by recalling that in this region βdsl ≈ π

(see Fig. 4), while previous work [45] has shown that the
expressions in Eqs. (21) are only compatible with βdsl � 1.
In both plots, we can see that for ω < γ the EMA description
enters the subohmic regime discussed above. This behavior is
also featured by the full calculation as long as γ lies above
the lower boundary of the ω− branch. Indeed, in Fig. 6, due
to the choice of the wave vector, the ω− branch is stretched
to lower frequencies ω and the lower bound is not marked
by a distinct edge as that appearing in Fig. 5. The subohmic
feature of the superlattice occurs in the region where the modes
of the ω− branch becomes overdamped, connecting it to the
collective low-frequency behavior of the (nonresonant) CIPP.
Conversely, the shoulder appearing in Fig. 5 can be interpreted
as resulting from the coalescence of all the (infinite) CIPP
resonances occurring in the semi-infinite superlattice.

The EMA also provides the framework for another inter-
esting aspect of superlattice structures (or in general uniaxial
crystals), namely the appearance of hyperbolic dispersions
[20]. Indeed, depending on the sign of Re{ε‖,⊥}, isofrequency
surfaces in the three-dimensional (3D) wave-vector space
can be either ellipsoids or hyperboloids. The latter occurs
when Re{ε‖}Re{ε⊥} < 0 and, depending on which of the
permittivities is negative, one distinguishes between hyper-
bolic material of type I (Re{ε‖} < 0 and Re{ε⊥} > 0) or of
type II (Re{ε‖} > 0 and Re{ε⊥} < 0). Distinct from a usual
dispersion, in hyperbolic materials a large number of wave
vectors can be connected with a narrow range of frequencies
leading to a significant increase in the system’s density of
states [20]. In Figs. 5 and 6 the shaded areas indicate where
our superlattice behaves as a hyperbolic material. For a metal,
modeled by a Drude model, with low damping (γ � ωp) and
a dielectric with constant εB > 0, the frequencies where the
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FIG. 7. Wave-vector dependence of the imaginary part of the p

polarized reflection coefficient for ω = √
2 × 10−4ωsp. The material

parameters were chosen analogous to Fig. 3 with dA = dB = 10 nm
(∼6 × 10−3 c/ωp). The results for the full Bloch-wave calculation
(red line), the EMA (black dash-dotted line) and the slab description
(dashed gray line) are normalized by the imaginary part of the
reflection coefficient for a metallic half-space. The full calculation
is well described by the EMA at low k (near orthogonal incidence)
and it recovers the slab and the bulk results for k > kt and k > 1/dA,
respectively.

relative sign flips are given by

ωh1 ∼ ωp

√
f

f ε∞
A + (1 − f )εB

, (26a)

ωh2 ∼ ωp

√
1 − f

f εB + (1 − f )ε∞
A

, ωh3 ∼ ωp√
ε∞

A

. (26b)

We notice that, under the condition of validity of the EMA,
this behavior is essentially related with the location of the ω±
branches, establishing a direct connection with the CIPP [54].
Interestingly, this offers another perspective on the features
we observe in rI (ω). Indeed, if we exclude the subohmic
region, where the material dissipation is relevant, the shoulders
appearing in the plots (in particular in Fig. 5) can be seen
as a manifestation of the hyperbolic behavior of the semi-
infinite superlattice. In fact, due to the change in sign of the
permittivities, in this region Im{εeff (ω)} and therefore rI (ω)
can be substantially different from zero even for a vanishingly
small material damping. This additional loss channel can be
understood by the deep penetration of the CIPPs, which allows
us to accumulate even very small losses throughout the whole
semi-infinite superlattice substrate.

The above plots also highlight the relevance of the wave
vector regarding the validity of the EMA, showing that the
smaller the value of k (near to orthogonal incidence) becomes,
the better is the quality of the EMA. Importantly, both Figs. 5
and 6 reveal that at low frequencies, below the area described
by the ω− branch of the CIPP, the EMA description ceases to
be valid. In this case, the optical response of the superlattice
structure essentially reduces to that of the first metallic layer
in the system, recovering the ohmic behavior of a single
slab. Physically, this can be understood as the result of a
shorter penetration of the field into the structure: The EMA
breaks down for penetration depths, which are shorter than the
thickness of the supercell (the field is no longer able to resolve
deeper-lying layers).

This is also visible in Fig. 7 where the wave-vector de-
pendence of the reflection coefficient r

p

I (ω,k) is depicted for

a fixed frequency: For small wave vectors, the full result is
indeed well represented by the EMA, while for large wave
vectors we recover the slab’s reflection coefficient. When this
occurs, the transition between the ohmic and the subohmic
behavior is characterized by the wave vector kt (ω), which for
small frequencies can be written as

kt ≈ √
ωε0

√
2ρεB

dAdB
, (27)

and can be obtained by comparing the results in Eqs. (12)
and (25). For k < kt the superlattice is well described by the
reflection coefficient provided by the EMA, while for k > kt

the slab description and eventually the bulk description for
k > 1/dA.

IV. QUANTUM FRICTION WITH
SUPERLATTICE STRUCTURES

The analyses presented in the previous sections allow for
a quantitative assessment of quantum friction as well as for a
deeper qualitative understanding of the behavior of the force in
systems involving semi-infinite superlattice substrates. Even
if most of the following analytical expressions rely on the
near-field approximation, the numerical calculations consider
the entire retarded interaction and are thus exact. For the
conducting layer, in addition to the Drude model in Eq. (11)
with the parameters used to describe gold (ωp = 9 eV, ε∞ = 5
and γ = 1.1 × 10−5ωp [58]), we also consider doped silicon

εdop(ω) = εSi(ω) − ω2
pSi

ω(ω + iγSi)
. (28)

In the previous model, the free charge carriers are described
by an additional Drude term, while the intrinsic permittivity of
silicon is given by

εSi(ω) = ε∞
Si −

(
ε0

Si − ε∞
Si

)
ω2

0

ω2 − ω2
0

(29)

with ε∞
Si = 1.035, ε0

Si = 11.87 and ω0 ≈ 4.34 eV [59]. Due
to the variability of the doping, we gain access to a wide
range of values for the resistivity, ρdSi = γSi/(ε0ω

2
pSi), while

maintaining the same basic material description. The dielectric
material B is instead chosen to be intrinsic silicon with the
permittivity given in Eq. (29) or, for simplicity, vacuum (i.e.,
εB = 1). Other experimentally relevant dielectrics are titanium
dioxide [55], silicon dioxide [56], or silicon nitride [57]. In
general, however, the expressions presented in the previous
section indicate that the value of the permittivity function
for the dielectric layer mostly produces a shift or a rescaling
of the features induced by the conducting material [see for
example Eqs. (19) and (25) as well as Fig. 9 and the expression
below].

Let us start our analysis by focusing on the nonresonant
regime, where the force is essentially connected to wave
vectors k � 1/za and frequencies 0 < ω � v/za . In Sec. III we
have shown that, depending on the frequencies and the wave
vectors, the optical response of superlattice structures effec-
tively changes, featuring behavior typical of a homogeneous
bulk, a thin slab or, using the EMA description, an uniaxial
crystal. Similarly we can expect that, as a function of the atom’s
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velocity and distance from the surface, the quantum frictional
force explores all the previously discussed regimes.

At very low velocities and very short distances, despite
the fact that a wide range of frequencies can participate in
the interaction, from the point of view of quantum friction
the semi-infinite superlattice behaves as an ohmic medium,
indicating a force, which is proportional to v3. The analysis of
the previous section suggests indeed that, as long as ktza � 1,
the superlattice is equivalent to a metallic bulk or at most a
metallic slab. In fact, in agreement with the behavior depicted
in Fig. 7, for za � dA we recover the expression for the force
acting on an atom moving above a homogeneous substrate
composed of an ohmic material [28]

F̄ ∼ F̄bulk
v�c≈ − 864

5π3
h̄α2

0ρ
2 v3

(2za)10
. (30)

As explained above, the v3 scaling is rooted in the linear-in-
frequency (ohmic) behavior of the imaginary part of reflection
coefficient at small frequencies ω (see Fig. 5). The z−10

a

dependence results, instead, from a combined dependence on
k and ω of the total Green’s tensor. For ohmic materials the
proportionality to the square of resistivity ρ can be directly
understood from the functional behavior of Eq. (4). In Eq. (30)
and in all subsequent analytical expressions the bar (e.g., F̄ )
indicates the average over all dipole angles. For simplifying
the evaluation, however, our numerical analysis considers the
case d = √

α0/3 (1,1,1), where α0 = Tr[α0/3].
When the distance increases, keeping the low-velocity limit,

the optical response is still ohmic at low frequencies but with
a resistivity that effectively increases according to Eq. (12).
In this regime, despite the fact that the force still remains
proportional to v3, the semi-infinite superlattice is effectively
represented by its first layer and its thickness, dA, appears as
an additional length scale of the system. This modifies the
functional dependence of quantum friction on the atom-surface
separation and for za � dA we obtain

F̄ ∼ F̄slab ≈ F̄bulkCslab(za/dA). (31)

The monotonous and positive function Cslab(x), whose explicit
form is given in Appendix A, is such that Cslab(x → 0) =
1, recovering the limit of Eq. (30), and Cslab(x � 1) ∝ x2.
Importantly, Eq. (31) scales as z−8

a for za � dA. Therefore the
force decays slower with za than in Eq. (30), leading to an
enhancement of several orders of magnitude with respect to the
bulk result (see Fig. 8). In simple terms, this geometry-induced
modification and the corresponding increase in the value of the
force can be understood as a consequence of the fact that, while
the intrinsic resistivity of the material is constant, the layer’s
resistance effectively increases as its thickness is reduced.

With a further increase in the atom-surface separation, the
changes in the behavior of the quantum frictional force acting
on an atom moving at constant velocity above the semi-infinite
superlattice become more profound, as the interaction starts to
perceive the substrate as being well-described by the EMA.
According to Eq. (27), in the nonresonant regime we roughly
expect such change of behavior to occur when

vza � dAdB

2ρε0εB
, (32)

100
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u
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Bloch Slab EMA

FIG. 8. Quantum frictional force on an atom moving above
a superlattice (red solid line) as a function of the atom-surface
separation. The force is normalized to the bulk result [Eq. (30)]. At
large separations, the superlattice can be approximated by an EMA
description (dotted black line), which yields a z−9

a law. At small
distances, instead, the superlattice can essentially be replaced by the
topmost (conducting) layer (gray dashed line). The result for a metallic
slab features the transition to bulk behavior, z−8

a → z−10
a occurring

as soon as za � dA. As material parameters we used doped silicon
with ωpSi = 0.0725 eV, γSi = 0.0247 eV and dA = dB = 1 nm (∼
7 × 10−12 c/ωpSi).

which also indicates the necessity of sufficiently large veloci-
ties (for v → 0 the recover the ohmic behavior). In this region
we have that

F̄ ∼ F̄EMA ≈ −h̄α2
0

6ρ

π2ε0εB

dB

dA

v|v|
(2za)9

. (33)

We first notice that the force no longer grows quadratically
but linearly with the resistivity of the material. The effective
subohmic description introduced by the EMA does not only
lead to a change in the velocity dependence of the force
(v3 → v2, as discussed in Sec. II), but also to an additional
modification of its functional dependence on the atom-surface
separation.

Figure 8 depicts the quantum frictional force for fixed
velocity as a function of the atom-surface separation za . We
observe that with the superlattice structuring, we access the
three different regimes discussed above: At short distances,
we recover the bulk expression F ∝ z−10

a given in Eq. (30);
for intermediate separations za � dA, the slab regime where
F ∝ z−8

a occurs; finally, for sufficiently large separations, the
EMA regime is reached, yielding F ∝ z−9

a .
The velocity dependence of the quantum frictional force

is presented in Fig. 9. At sufficiently low velocities, we
recover the v3 law, which is connected to ohmic response of
the superlattice and this essentially originates from its first
layer. However, for increasing velocities a broader range of
frequencies contributes to the interaction and eventually the
region where the structure changes its behavior from ohmic
to subohmic becomes relevant. This corresponds to a change
of the velocity dependence of the force from v3 to v2. In
agreement with Eq. (33), Fig. 9 also shows that, when the
material between the metallic layers is silicon (εB > 1), quan-
tum friction is weaker than the force obtained when vacuum
is chosen as interjacent medium. However, as predicted by
Eq. (32), the transition to the v2 behavior occurs at lower
velocities.

Finally, it is interesting to consider the characteristic of the
resonant contribution to quantum friction in systems involving
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FIG. 9. Velocity dependence of the quantum frictional force,
normalized to the value of the slab configuration at v = 10−5 c. The
atom moves above a superlattice with doped silicon as conducting
layer and intrinsic silicon (dashed red line) [see Eq. (29)] or vacuum
(solid red line) as dielectric layer. The distance is fixed at za ≈
70 c/ωSi

p (∼1 μm for the materials considered). The other parameters
are the same of in Fig. 8. In both cases, the full calculations via the
Bloch-wave approach features a transition from v3 behavior at low
velocities (dashed black line), typical of ohmic materials, to the v2

dependence characteristic of the subohmic behavior (rI ∝ √
ω) of the

EMA (dotted gray line).

semi-infinite superlattices. As described in Sec. III and shown
in Fig. 5, for certain parameters we observe large values of
rI due to the coalescence of the resonances occurring in the
ω± branches. This behavior, which is connected with the
hyperbolic dispersion of the structure, is particularly evident
for a superlattice composed of low-damping materials, where
the subohmic regime is less pronounced. For these frequencies,
even if the material has very weak dissipation, the continuum of
modes in the ω− branch (and similarly but at higher frequencies

FIG. 10. Resonant enhancement of quantum friction due to the
CIPP modes. The quantum frictional force acting on an atom moving
above superlattice structures is enhanced due to the interaction with
the coalescence of the CIPP resonances in the ω− branch [Eq. (19)]. In
order to clearly reveal the effect of CIPP modes, we have chosen a large
atomic transition frequency (ωa = 10.2 eV, as, e.g., for hydrogen)
and a Drude metal with low-damping constant γ = 1.1 × 10−5ωp

with ωp = 9 eV (further parameters are ε∞
A = 5, dA = dB = 1 nm,

and za = 10 nm). For comparison, in addition to the full Bloch-wave
calculations (red solid line), the plot shows the asymptote for small
velocities (gray dotted line) and the calculations for a Drude bulk
substrate (dashed black line). The offset for low velocities between
the bulk substrate and the superlattice results can be understood by
the different za dependence as displayed in Fig. 8. Inset: The full
Bloch-wave calculation is normalized by its low-velocity limit, which
coincides with the result of the slab configuration.

for the ω+ branch) effectively behaves as an energy sink,
which, through a nonradiative coupling with the atom, can
efficiently transport energy away from the surface through the
superlattice. Depending on the velocity and the distance of
the atom, this frequency region can give rise to a resonant
contribution, which leads to an additional increase of the force.
The interaction generating the CIPP also shifts this frequency
range to a frequency below ωsp, lowering the corresponding
resonant velocity threshold and adding a certain degree of
tunability via the thickness of the layers. In Fig. 10, we indeed
observe a steady increase of the quantum frictional force that
occurs at a relatively low velocity. Due to the broadband
nature of the ω− band, this resonant contribution differs from
that generated by an isolated resonance (see for example
Refs. [2,28]) and the system features a smoother transition
out of the nonresonant regime.

V. CONCLUSIONS

Modern technologies allow for the structuring of materials
at the size of nanometers, prompting novel applications in
several areas of physics. In this work, we have shown that
such nanostructuring can be very interesting with regards to
nonequilibrium atom-surface interactions and in particular for
controlling the strength and the functional dependencies of
the quantum frictional force on an atom moving at constant
velocity and height above multilayered structures. Indeed,
when these structures consist of a semi-infinite superlattice
of alternating metallic and dielectric layers, the spectrum of
vacuum fluctuations is considerably modified relative to that
of an homogeneous medium and can be tuned by changing
the thickness and the material properties of the layers. In
these systems, the frequency spectrum is characterized by
the appearance of coupled interface plasmon-polariton (CIPP)
modes: They arise from the electromagnetic interaction among
the charge-carrier densities existing at the metal-dielectric
interfaces and can be considered as the generalization of the
surface plasmon-polariton resonances appearing at metallic
surfaces. Mathematically, for semi-infinite superlattices, the
CIPP modes manifest themselves as two continua character-
ized by well-prescribed symmetries of the associated elec-
tromagnetic field. Their behavior is also connected with the
properties of the superlattice to exhibit hyperbolic dispersions.
We have seen that CIPP modes affect the quantum frictional
forces in different ways depending on the speed of the atom
and on its distance from the surface. At low velocity, the
force is strongly connected with the low-frequency behavior
of the surface’s p-polarized reflection coefficient, rp(ω,k). In
superlattices, depending on the wave vector, we have observed
a change in behavior of the imaginary part of the reflection
coefficient, from ohmic (rp

I ∝ ω) to subohmic (rp

I ∝ √
ω).

The former can be ascribed to the electromagnetic response
of the first metallic layer in the stacking sequence, while the
latter is related to an overdamped (nonresonant) subset of the
CIPP modes. We have shown that, for the quantum frictional
force, this behavior can lead to enhancements of several
orders of magnitude relative to the case of a homogeneous
bulk substrate, as well as to a modification of the power
law describing its functional dependence on the atom-surface
separation (z−10

a → z−8
a → z−9

a , see Fig. 8). Similarly, the
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velocity dependence changes from ∝ v3, typical of the ohmic
response, to ∝ v2 induced by r

p

I ∝ √
ω (see Fig. 9). The

threshold distances and velocities, where these transitions
take place, depend on the material properties and geometrical
parameters of the system [Eq. (32)]. Finally, at higher velocities
resonant phenomena can become important. An analysis of
the relevant expressions shows that the velocity threshold,
when this occurs, is usually rather high due to the large
typical values of the involved resonance frequencies. However,
we have shown that in superlattice systems, by reducing
the layers’ thickness, the interaction among all the surface
plasmon polaritons at the different material interfaces lead to
a displacement of the continuum of CIPP resonances to lower
energy, allowing for a more accessible resonant enhancement
of the quantum frictional force (see Fig. 10). This behavior
has been further connected with the hyperbolic properties of
the semi-infinite superlattice. Indeed even for low dissipative
materials, the increase in the density of states connected with
the hyperbolic dispersion creates an additional channel through
which energy can be carried deep into the substrate.

These results highlight once more the role of geometry
and material properties in fluctuation-induced phenomena and
indicate a pathway for future experimental investigations of
nonequilibrium atom-surface effects. While the geometry can
be used to control (enhance or suppress) the interaction by
changing the functional dependence of the quantum frictional
force, the material properties offer a direct access to the pro-
portionality constants. As an example, using high-resistivity
materials such as GaAs (ρGaAs ≈ 109 �cm) in a superlattice
structure (vacuum as a dielectric, for simplicity) with 10 nm
thick layers, our analysis predicts a quantum friction force of
F ≈ −15 fN acting on a 87Rb atom moving at a height of
za = 0.1 μm above the multilayer surface with a velocity of
v = 5 × 10−4c. This value of the quantum frictional force cor-
responds to an acceleration of about 1011 m/s2, which is within
the presently available experimentally measurable accuracy.
An experimental confirmation of quantum frictional forces
would be of high fundamental interest and can provide a deeper
understanding of the underlying physics of nonequilibrium
quantum-fluctuation-induced phenomena.

ACKNOWLEDGMENTS

We would like to thank D. Reiche, D. Huynh, and Ch.
Egerland for useful and fruitful discussions. In addition, we ac-
knowledge support by the Deutsche Forschungsgemeinschaft
(DFG) through project B10 within the Collaborative Research
Center (CRC) 951 Hybrid Inorganic/Organic opto-electronic
Systems (HIOS). F.I. further acknowledges financial support
from the DFG through the DIP program (Grant No. SCHM
1049/7-1).

APPENDIX: DEFINITIONS AND
LOW-VELOCITY LIMIT

The definition of the quantum frictional force essentially
depends on two susceptibilities, the atomic polarizability,
characterizing the moving microscopic object, and the Green’s
tensor that characterizes the electromagnetic properties of the
nanostructured substrate. In general, the Green’s tensor can

be written as the sum of the vacuum contribution G0 and a
scattered contribution g. While the expression for the former
can be found in textbooks (see for example Ref. [35]), for flat
surfaces g the latter takes the form [60]

g(k,za,ω) = e−2κza κ

2ε0

[
rp(ω,k)p+p− + ω2

c2κ2
rs(ω,k)ss

]
.

(A1)

Here, we have introduced κ =
√

k2 − ω2/c2 (Re{κ} > 0 and
Im{κ} < 0). Further, k2 = k2

x + k2
y and rσ are the reflection

coefficients for the two polarizations, σ = s,p, and

s = k
k

× z
z
, p± = k

κ

z
z

∓ i
k
k
. (A2)

In these expressions, z represents the vector in z direction
(perpendicular to the surface of the substrate). In terms of
the Green’s tensor we can also define the velocity-dependent
polarizability tensor

α(ω,v) = α0ω
2
a

ω2
a − ω2 − �a(ω; v) − iωγa(ω; v)

, (A3)

where the dyadic α0 = dd is the static polarizability and have
introduced the abbreviations

�a(ω) = ω2
a

∫
d2k

(2π )2
Tr[α0 · GR(k,za,ω + k · v)], (A4a)

and

γa(ω) = ω2
a

ω

∫
d2k

(2π )2
Tr[α0 · GI (k,za,ω + k · v)], (A4b)

which, respectively, describe the induced frequency shift and
damping. The polarizability also appears in the expression
of the nonequilibrium correction to the fluctuation-dissipation
theorem

J (ω; v) =
∫

d2k
(2π )2

[θ (ω + k · v) − θ (ω)] (A5)

×α(ω; v) · GI (k,za,ω + k · v) · α∗(ω; v),

which occurs in Eq. (3).
Altogether, the above expressions allow the evaluation of

the nonrelativistic value of the quantum frictional force given
in Eq. (1). The structure of Eq. (3) indicates that the quantum
friction force can be decomposed into a contribution related to
the local thermal equilibrium (LTE) approximation and a full
nonequilibrium correction. This separation is also visible in the
low-velocity approximation of the force given in Eq. (4), where
the first term on the r.h.s. is the result within the LTE, F LTE,
while the second, FJ , is entirely due to the tensor J (ω; v).

Equation (4) also shows that the low-velocity behavior
of the force is connected to the low-frequency features of
the nanostructures’ optical response and eventually with the
low-frequency expansion of the imaginary part of the reflection
coefficients. We have seen in the main text that for metal-
dielectric superlattice structures, at sufficiently small atom-
surface separations, the optical response is dominated by the
first (metallic) layer. Effectively, the quantum frictional force
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felt by the atom is the same as that produced by a metallic slab,
i.e., Fsup ≈ Fslab. Using the expressions in Eq. (12) this allows
for the following estimates. For the LTE term, we obtain

F LTE
slab

F LTE
bulk

= CLTE
slab

(
za

D

)

v→0≈
∫ ∞

0 dk k6e−2kza coth(kD)∫ ∞
0 dk k6e−2kza

×
∫ ∞

0 dk k2e−2kza coth(kD)∫ ∞
0 dk k6e−2kza

, (A6)

where F LTE
bulk is the LTE contribution to the quantum frictional

force in the case of a homogeneous semi-infinite substrate. Its
value

F̄ LTE
bulk ≈ −21

20

90

π3
h̄α2

0ρ
2 v3

(2za)10
(A7)

has already been calculated in Ref. [28], where the bar indicates
the average over the dipole angles. The function that gives the
correction induced by the finite thickness is defined as

CLTE
slab

(
za

D

)
=

[
1 − 2

ζ
(
7, za

D

)
(D/za)7

][
1 − 2

ζ
(
3, za

D

)
(D/za)3

]
, (A8)

where

ζ (s,x) =
∞∑

n=0

1

(n + x)s
(A9)

is the Hurwitz zeta function. Upon applying the same strategy
to the nonequilibrium contribution we obtain an analogous
expression that reads as

F̄ J
bulk ≈ −87

80

72

π3
h̄α2

0ρ
2 v3

(2za)10
(A10)

and the corresponding correction function

CJ
slab

(
za

D

)
=

[
1 − 2

ζ
(
5, za

D

)
(D/za)5

]2

. (A11)

Adding the two contributions, we can define the total correction
function introduced in Eq. (31)

Cslab

(
za

D

)
= F LTE

bulk CLTE
slab

(
za

D

) + FJ
bulkCJ

slab

(
za

D

)
F LTE

bulk + FJ
bulk

, (A12)

which clearly inherits the properties of the functions defined
above. For za � D we have that

F̄ ≈ F̄slab
za�D≈ − h̄α2

0ρ
2

D2π3

v3

(2za)8
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