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The relativistic multiconfiguration Dirac-Hartree-Fock and the nonrelativistic multiconfiguration Hartree-Fock
methods have been employed to calculate the magnetic dipole and electric quadrupole hyperfine structure constants
of zinc. The calculated electric field gradients for the 4s4p 3P o

1 and 4s4p 3P o
2 states, together with experimental

values of the electric quadrupole hyperfine structure constants, made it possible to extract a nuclear electric
quadrupole moment Q(67Zn) = 0.122(10) b. The error bar was evaluated in a quasistatistical approach—the
calculations were carried out with 11 different methods, and then the error bar was estimated from the differences
between the results obtained with those methods.
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I. INTRODUCTION

One of the most accurate methods to determine nuclear
quadrupole moments Q is to combine measured nuclear
quadrupole coupling constants, B = e2Qq/(4πε0)h (in fre-
quency units), with calculated or deduced electric field gradi-
ents (EFG), q [1]. The aim of the present work is to apply this
method to determine improved nuclear quadrupole moments
of zinc, the second most abundant essential trace element in the
human body, after iron [2]. For zinc, the standard value cited in
the 2008 review of Pyykkö [3] and the 2016 review of Stone [4]
is still the 1969 value obtained by Laulainen and McDermott
[5]: Q(67Zn) = 0.150(15) b (1 barn = 1 b = 10−28 m2).
This value is based on the experimental B63(3P o

1 ) = −34.46(3)
MHz for the 4s4p 3P o

1 state and a q value deduced from the
experimental magnetic dipole hyperfine coupling constants
A67(3P o

2 ) = 531.996(5) MHz [6] and A67(3P o
1 ) = 609.086(2)

MHz [7]. The experimental ratio B63/B67 = 1.8347(13) of
Laulainen and McDermott [5] corresponds to Q(63Zn) =
+0.275(30) b. [Incidentally, Laulainen and McDermott [5]
arrived at Q(63Zn) = +0.29(3) b.] Potential improvements
could be obtained by using the measurement of Byron et al. [7]
of B(3P o

1 ) = −18.782(8) MHz for the same 4s4p 3P o
1 state of

67Zn. Their 65/67 ratio was −0.1528(3) which, combined with
their Q(65Zn) of 0.024(2) b, corresponds to Q(67Zn) = 0.157
b. More recently the EFGs of Zn in solid Zn have been
calculated in a series of papers by Haas and collaborators
[8–10], who employed the density functional theory. In their
latest paper [10] using a recently developed hybrid density
functional theory approach, combined with the experimental
quadrupole coupling constants measured by Potzel et al. [11]
and corrected for thermal effects, they obtained a considerably
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smaller value of the quadrupole moment Q(67Zn) = 0.125(5)
b. The 5 mb error limit is considered as “may be optimistic” in
the 2017 compilation of Pyykkö [12].

In the present work magnetic hyperfine interaction con-
stants A and electric field gradients q necessary for an atomic
evaluation of the quadrupole moments were calculated for the
4s4p 3P o

1 and 4s4p 3P o
2 atomic states of the stable 67Zn isotope

using both the nonrelativistic multiconfiguration Hartree-Fock
(MCHF) method [13–15] and the fully relativistic multi-
configuration Dirac-Hartree-Fock (MCDHF) method [16–18].
MCHF is efficient in capturing electron correlation effects,
while MCDHF is necessary for correctly describing relativistic
contraction due to the mass variation, influencing the wave
function close to the nucleus. With this respect, the two
methods were complementary: a “DHF/HF factor” was used
to correct the nonrelativistic results for the relativistic effects
and a “triples correction” was used to correct the relativistic
results for the electron correlation effects arising from triple
substitutions, a calculation that became unfeasible in the
fully relativistic scheme. The present work is the followup
of the recent measurement of the hyperfine resonances of
the 4s4p 3P o

2 → 4s5s 3S1 transition by Wraith et al. [19] as
a detailed exposition of theoretical tools and computational
approaches, employed to calculate magnetic fields and electric
field gradients necessary for the evaluation of nuclear multipole
moments.

The paper is divided into six sections. Section II introduces
the essential elements of the multiconfiguration methods,
as well as of the theory of the hyperfine structure in the
nonrelativistic and relativistic frameworks. Nonrelativistic cal-
culations are presented in Sec. III, while Sec. IV focuses
on relativistic calculations. In Sec. V we summarize the
calculations, and we evaluate the nuclear quadrupole moment
Q(67Zn) on the basis of 11 independent determinations of the
electric field gradients. Section VI concludes the paper.

2469-9926/2018/97(6)/062505(12) 062505-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.97.062505&domain=pdf&date_stamp=2018-06-14
https://doi.org/10.1103/PhysRevA.97.062505


JACEK BIEROŃ et al. PHYSICAL REVIEW A 97, 062505 (2018)

II. THEORY

A. Multiconfiguration methods

In multiconfiguration methods [15], the wave function
� for an atomic state is determined as an expansion over
configuration state functions (CSFs),

� =
NCSFs∑
i=1

ci�i, (1)

where NCSFs is the number of CSFs in the expansion. The
CSFs are coupled antisymmetric products of one-electron
orbitals. The expansion coefficients ci and the radial parts of
the one-electron orbitals are determined in a self-consistent
procedure by finding stationary states of an energy functional
based on a given Hamiltonian. Once a radial orbital set has
been determined, configuration interaction (CI) calculations
can be performed in which the expansion coefficients only
are determined by diagonalizing the Hamiltonian matrix. CI
calculations are simpler and faster than the self-consistent
calculations and, for this reason, the number of CSFs can be
extended.

Fully relativistic MCDHF calculations give wave functions
for fine-structure states and are based on the Dirac-Coulomb
Hamiltonian [16,17]. The CSFs are obtained as jj -coupled and
antisymmetric products of Dirac orbitals. The wave-function
representation in jj coupling is transformed to an approxi-
mate representation in LSJ coupling using the methods and
program developed by Gaigalas and co-workers [20,21]. The
nonrelativistic MCHF calculations give wave functions for LS

terms and are based on the Schrödinger Hamiltonian [13,15].
The CSFs are obtained as LS-coupled, antisymmetric products
of nonrelativistic spin orbitals.

The two methods have different strengths and weaknesses
relative to the atomic system at hand. Zinc is a fairly relativistic
system for which relativistic contraction due to the mass
variation starts to get important, especially for the calculated
hyperfine constants. These effects are captured very efficiently
in the MCDHF method by the shape of the radial orbitals.
Although the MCHF method corrected for relativistic ef-
fects through the Breit-Pauli approximation produces reliable
atomic data for systems with relatively large nuclear charges
[22], it will never fully account for these corrections at the level
of orbital optimization [23]. At the same time, zinc is a large
system with many subshells, and electron correlation effects
captured by extended CSFs expansions are important for all
computed properties. Due to the restriction to LS symmetry,
the sizes of the CSF expansions for MCHF calculations grow
less rapidly than the corresponding expansions for the MCDHF
calculations. As a consequence, it is possible to include more
electron correlation excitations in MCHF calculations.

B. Hyperfine structure

The hyperfine contribution to the Hamiltonian is repre-
sented by a multipole expansion

Hhfs =
∑
k�1

T(k) · M(k), (2)

where T(k) and M(k) are spherical tensor operators of rank k

in the electronic and nuclear spaces. The k = 1 and k = 2
terms represent, respectively, the magnetic dipole (M1) and the
electric quadrupole (E2) interactions. In nonrelativistic calcu-
lations for an N -electron system, the electronic contributions
are obtained from the expectation values of the irreducible
spherical tensors [24,25]

T(1) = α2

2

N∑
j=1

{
2l(1)(j )

1

r3
j

− gs

√
10[C(2)(j ) × s(1)(j )](1) 1

r3
j

+gs

8

3
πδ(rj )s(1)(j )

}
(3)

and

T(2) = −
N∑

j=1

C(2)(j )
1

r3
j

. (4)

In the fully relativistic approach, the magnetic dipole electronic
tensor reduces to a single term [26,27]

T(1) = −iα

N∑
j=1

(αj · lj C(1)(j ))
1

r2
j

. (5)

The electronic contribution for the magnetic dipole interaction
is combined with the nuclear spin I = 5/2 and the measured
nuclear magnetic dipole moment μ = 0.875 479 μN [4] to
give the magnetic dipole hyperfine interaction constants A

for the 4s4p 3P o
1,2 states in 67Zn. The electric field gradient,

also denoted q [28], is obtained from the reduced matrix
element of the operator (4) using the electronic wave function
of the considered electronic state (see [27,29] for details). It
corresponds to the electronic part of the electric quadrupole
hyperfine interaction constant B. The latter, expressed in MHz,
can be calculated using the following equation:

B/MHz = 234.9646 (q/a−3
0 )(Q/b), (6)

where the EFG (q) and the nuclear quadrupole moment (Q) are
expressed in a−3

0 and barns, respectively. Instead of reporting
q, we will monitor in the present work the related B/Q ∝ q

ratio values (in MHz/b).

III. NONRELATIVISTIC CALCULATIONS

A. MCHF calculations

The MCHF calculations were performed using the Atomic
Structure Package (ATSP2K) [30]. As a starting point a Hartree-
Fock (HF) calculation was performed for 4s4p 3P o. The
HF calculation was followed by a sequence of calculations
describing valence-valence and core-valence electron correla-
tion effects. The CSF expansions for these calculations were
obtained by allowing single (S) and double (D) substitutions
from 2s22p63s23p63d104s4p 3P o to increasing active sets of
orbitals with the restriction that there is at most one substitution
from the core shells. The 1s shell is kept closed in all
calculations. These expansions are referred to as all singles
and restricted doubles (SrD) expansions. The active sets are
denoted by giving the highest orbital of each symmetry. For
example, {5s5p4d4f } denotes the orbital set that includes the
orbitals 1s,2s,3s,4s,5s,2p,3p,4p,5p,3d,4d,4f . In the MCHF
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TABLE I. MCHF calculations of A (MHz) and B/Q (MHz/b) of 4s4p 3P o
1,2 in 67Zn (Iπ = 5/2− and μexpt = 0.875 479(9) μN ). SrD denotes

all single and restricted double expansions to increasing active orbitals sets. SD denotes single and double expansions to the largest orbital
set. Single and restricted double (SrD) expansions, with at most one substitution from the core shells, allow the inclusion of valence (VV) and
core-valence (CV) effects (see text). Core-core correlation (CC) is included through unrestricted D substitutions. SD+T denote expansions where
the largest SD expansion has been augmented by expansions from T substitutions to increasing active orbital sets. The largest SD+T results
were scaled by the DHF/HF ratio factor in the line labeled MCHF × DHF/HF. HF = uncorrelated Hartree-Fock values; DHF = uncorrelated
Dirac-Hartree-Fock values; and NCSFs is the number of CSFs in the expansion.

3P o
1

3P o
2

Label NCSFs A (MHz) B/Q (MHz/b) A (MHz) B/Q (MHz/b)

HF 412.72451 −93.033 373.00296 186.066
DHF 473.40239 −100.373 419.93437 192.924

SrD (VV+CV)
5s5p4d4f 404 471.978 −120.16 429.223 240.33
6s6p5d5f 5g 1593 507.266 −136.52 459.667 273.04
7s7p6d6f 6g6h 3872 526.518 −142.07 476.132 284.15
8s8p7d7f 7g7h 7232 536.870 −146.85 484.970 293.70
9s9p8d8f 8g8h 11673 541.017 −148.95 488.430 297.90
10s10p9d9f 9g9h 17195 542.624 −148.27 489.789 296.55
11s11p10d10f 10g10h 23798 542.926 −148.44 490.022 296.89

SD (VV+CV+CC)
11s11p10d10f 10g10h 44546 521.477 −137.738 470.799 275.476

SD+T (VV+CV+CC)
5s5p4d4f 92810 533.150 −141.59 481.192 283.18
6s6p5d5f 5g 225457 540.485 −144.86 487.481 289.73
7s7p6d6f 6g 446457 544.960 −147.53 491.050 295.06
8s8p7d7f 7g 761267 551.678 −151.68 496.389 303.36
9s9p8d8f 8g 1175344 553.437 −152.988 497.691 305.976

MCHF × DHF/HF 634.802 −165.058 560.310 317.254

Expt. 609.086a 531.987b

aByron et al. [7].
bLurio [6].

calculations the HF orbitals were kept frozen and the remaining
orbitals were optimized together. The MCHF calculations were
followed by a CI calculation based on the largest orbital set. The
CI calculation describes valence-valence (VV), core-valence
(CV), and core-core (CC) correlation effects and includes
CSFs obtained by all single and double (SD) substitutions.
Whereas SD expansions describe the major corrections to the
wave function, it is known that CSFs obtained from triple
(T) substitutions are important for hyperfine structures [31].
The effects of the T substitutions were accounted for in CI by
augmenting the largest SD expansion with expansions obtained
by T substitutions to increasing orbital sets. All calculations
are summarized in Table I.

To correct for the relativistic contraction due to the mass
variation, Dirac-Hartree-Fock (DHF) calculations were also
performed and the final SD+T values were multiplied with the
DHF/HF ratio. This correction will be discussed in more detail
in the next section. From Table I we see that valence-valence
and core-valence effects, as described by SrD expansions,
increase the absolute values of all computed hyperfine pa-
rameters. The increase is around 30% for the A constant and
60% for the electric field gradient q ∝ B/Q. The changes are
well converged and are consistent with a contraction of the
wave function when accounting for core-valence correlation as
observed in [32,33]. The effect of unrestricted D substitutions,

resulting in CSFs describing also core-core correlation, is
to decrease the absolute values of the computed hyperfine
parameters. The CSFs resulting from the unrestricted double
substitutions can be shown to have small effects on the
hyperfine parameters by themselves. Instead, the effects are in-
direct, changing or effectively diluting the mixing coefficients
of the more important CSFs describing core-valence effects
[34–37].

Finally, the effect of the T substitutions is to in-
crease the absolute values of the hyperfine constants.
Again, the effect is mainly indirect, affecting the expan-
sion coefficients of the important singly excited CSFs:
2s22p63snl3p63d104s4p 3P o and 2snl2p63s23p63d104s4p 3P o,
describing spin polarization, 2s22p63s23p5nl3d104s4p 3P o,
and 2s22p5nl3s23p63d104s4p 3P o, the last two describing or-
bital polarization [37,38]. The latter effects will be analyzed in
more detail in Sec. III C below. The general convergence trends
and behavior with respect to different correlation effects are
consistent with the ones found for other similar systems [36].
It is interesting to note that the effects discussed above are
partly canceling. Thus it is better to include only the valence-
valence and core-valence effects than the valence-valence,
core-valence, and core-core effects. If the core-core effects are
included, then also the effects of the T substitutions should
be accounted for. The final A constants for the 4s4p 3P o

1,2
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TABLE II. HF 〈r〉nl vs DHF 〈r〉nκ orbital radii (a0). HF calculation for the 4s4p 3P o term. DHF calculation optimized on the 4s4p 3P o
0,1,2

states together. Notation: nl = HF orbital; nl+ = DHF orbital with negative κ (1s, 2s, 3s, 4s, 2p, 3p, 3d, 4p); nl− = DHF orbital with positive
κ (2p−, 3p−, 3d−, 4p−). The table illustrates the direct relativistic contraction of s orbitals due to mass variation.

1s 2s 2p 3s 3p 3d 4s 4p

nl 0.05108 0.22878 0.19951 0.69107 0.71948 0.87132 2.77730 3.80035
nl+ 0.05028 0.22498 0.19912 0.68097 0.71824 0.87909 2.72995 3.79473
nl− 0.19578 0.70820 0.87169 3.76246

states differ from the experimental values by 1.8% and 5.2%,
respectively.

B. DHF/HF correction

Table II presents expectation values 〈r〉nl and 〈r〉nκ of spec-
troscopic orbitals obtained in zeroth-order (no electron cor-
relation), nonrelativistic Hartree-Fock and relativistic Dirac-
Hartree-Fock approximations, where κ = −(l + 1) for j =
l + 1/2 and κ = +l for j = l − 1/2. For all spectroscopic
orbitals but 3d, the direct relativistic contraction due to the
mass variation dominates the indirect one, induced by the
relativistic charge redistribution [39]. The differences in radii
of correlation orbitals are more complex. They usually reflect
specific correlation effects, targeted in the self-consistent-field
optimization strategies [15]. For the M1 hyperfine interaction,
a detailed comparison of the nonrelativistic expectation values
of Eq. (3) and of the relativistic ones of Eq. (5) in terms of
single-electron orbital contributions is not easy. The global
effect in the single configuration approximation is to produce
large DHF/HF ratios of M1 and E2 hyperfine constants, as
illustrated by the first two lines of Table I. As can be seen,
the relativistic effect is much larger for the A constants than
for the EFG values, which can be explained by the contact
interaction that appears in the nonrelativistic expression for the
M1 interaction with the three-dimensional δ function [see the
last term of Eq. (3)]. Although the corresponding relativistic
expression of Eq. (5) does not contain a contact operator, the
tensorial structure of the relativistic operator indicates that it
is highly biased towards the behavior of the wave function
close to the nucleus where the relativistic contraction effects are
the most important. Relativistic effects in nuclear quadrupole
couplings have been investigated by Pyykkö and Seth [28],
who estimated relativistic correction factors C for EFGs due
to valence p electrons from one-electron matrix elements
q++, q+−, and q−−. The q−− combination has j = 1/2 for

l = 1 and corresponds to a spherical charge distribution. It will
therefore not contribute to the EFG, oppositely to q++ and q+−.
These C factors can be used to scale the nonrelativistic EFG
values. They have been estimated in the quasirelativistic (QR)
approximation (no fine-structure splitting) using hydrogenlike
(H) and Dirac-Fock (DF) expectation values, or Casimir’s n-
independent formulas (Cas). They are reported in the first three
lines of Table III. Beyond the QR approximation, correction
factors can be estimated for the fine-structure levels of light
atoms by taking the right combination of the C coefficients,
(−1/3 C++ + 4/3 C+−) and C++ for J = 1 and J = 2, re-
spectively, with C++ = 1.025 56 and C+− = 1.061 77 [28].
These factors are also reported in Table III and compared with
the DHF/HF ratios estimated from the EFG values reported in
Table I.

These ratios, obtained in the single configuration picture,
may be used to scale the multiconfiguration results, as it
is done in the line MCHF × DHF/HF of Table I, with the
underlying assumption that cross terms between relativistic
contraction and electron correlation are negligible. Looking at
the differences in ratios between different methods, we infer
that application of the DHF/HF corrective ratio induces an
uncertainty of at most 2%–3% for the electric field gradient
q of the J = 1 state. The uncertainty is smaller for the J = 2
state.

C. Contributions to A and EFG from different classes
of orbital substitutions

The uncertainties of the computed A constants and elec-
tric field gradients q are to a large extent determined by
the size of the cancellation effects [40,41]. In the non-
relativistic formalism the A constants are computed based
on the operator in Eq. (3) and are the sums of three
terms Al,Asd, Ac, orbital, spin-dipolar, and Fermi contact
term, respectively. At the HF level we have the follow-

TABLE III. Relativistic correction factors for EFG estimated with different methods. Quasirelativistic correction factors reported are taken
from Ref. [28] using Dirac-Fock (DF), hydrogenlike (H) expectation values or Casimir’s n-independent formulas (Cas) (see Ref. [28] for more
details). The J -dependent correction factors are either calculated following the procedure outlined in the Conclusion section of Ref. [28], or
from the DHF/HF ratio of EFG values (this work). “+” = p3/2 orbital; “–” = p1/2 orbital.

QR approach 1.05468 CQR(Cas) : Casimir’s n-independent formula [28]
1.05776 CQR(H) : H-like [28]
1.04970 CQR(DF) : DHF [28]

J = 1 1.07384 Calculated from [28] (−1/3 C++ + 4/3 C+−)
1.07890 DHF/HF ratio, this work (1st line of Table I).

J = 2 1.02556 Calculated from [28] (C++)
1.03686 DHF/HF ratio, this work (2nd line of Table I).
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TABLE IV. The effect on A and B/Q (∝ EFG) of 4s4p 3P o
1,2

from different classes of orbital substitutions. Analysis for the final
SD calculation. See text for details of the notation and for a discussion
about the importance of different classes.

3P o
1

3P o
2

Label A (MHz) B/Q (MHz/b) A (MHz) B/Q (MHz/b)

HF 412.72 −93.033 373.00 186.06
vv 411.07 −92.28 371.67 184.56
3dv 479.96 −109.23 433.48 218.46
3d 479.93 −112.88 434.33 225.76
3d3d 459.77 −106.35 416.60 212.71
3pv 470.26 −109.49 425.92 218.98
3p3d 469.76 −109.55 425.52 219.10
3p 477.31 −133.89 428.89 267.78
3p3p 475.54 −133.21 427.30 266.43
3sv 478.39 −133.58 429.93 267.16
3s3d 479.19 −133.96 430.54 267.92
3s3p 479.35 −134.17 430.60 268.34
3s 506.62 −134.16 457.86 268.32
3s3s 506.11 −134.07 457.38 268.15
2pv 509.65 −135.20 460.48 270.40
2p3d 509.88 −135.52 460.61 271.05
2p3p 509.72 −135.34 460.47 270.68
2p3s 509.71 −135.44 460.41 270.89
2p 512.05 −139.21 461.24 278.43
2p2p 509.03 −137.95 458.45 275.90
2sv 510.21 −138.12 459.55 276.25
2s3d 510.53 −138.08 459.86 276.16
2s3p 510.91 −138.08 460.24 276.16
2s3s 511.00 −138.06 460.33 276.13
2s2p 511.36 −138.15 460.66 276.30
2s 521.91 −137.89 471.20 275.78
2s2s 521.47 −137.73 470.79 275.47

ing (in MHz): Al = 33.06, Asd = 33.10, Ac = 346.56, and
Al = 33.06, Asd = −6.62, Ac = 346.56, for 4s4p 3P o

1 and
4s4p 3P o

2 , respectively. It is seen that the Fermi contact term
dominates, but this contribution is partly canceled by the spin-
dipolar contribution for the J = 2 state. Based on this simple
observation, we may expect that the computed A constant is
less accurate for the J = 2 state. To shed light on the sensitivity
of A and B/Q to electron correlation effects we analyze
the contributions to these parameters from different classes
of orbital substitutions. Given the {11s11p10d10f 10g10h}
orbital set, the A constants and B/Q ratio values are computed
from accumulated CSF expansions that result from allowing
single and double substitutions from deeper- and deeper-lying
orbitals of the 2s22p63s23p63d104s4p reference configuration.
The results are presented in Table IV. The accumulated CSF
expansions are denoted by the innermost orbitals from which
the substitutions are allowed. For example, 3d3d denotes the
accumulated CSF expansion that is obtained by allowing the
substitutions

vv → nln′l′, 3dv → nln′l′, 3d → nl, 3d3d → nln′l′,

whereas 3pv denotes the accumulated CSF expansion obtained
from the substitutions

vv → nln′l′, 3dv → nln′l′,

3d → nl, 3d3d → nln′l′, 3pv → nln′l′,

where nl, n′l′ ∈ {11s11p10d10f 10g10h}. By comparing the
results for 3d3d and 3pv we can infer how large the contri-
butions are from CSFs obtained from the 3pv → nln′l′ substi-
tutions. From Table IV one can see that CSFs obtained from
3dv → nln′l′ substitutions describing core-valence correla-
tion are very important for both A and B/Q. One can also see
that CSFs obtained from 3s, 2s → nl substitutions describing
spin polarization are important for the A parameters, whereas
CSFs obtained from 3d, 3p, 2p → nl substitutions describing
orbital polarization are important for the q parameters. One
further notes that the effects of CSFs from single substitutions
are often canceled by those of CSFs from double substitutions.
Of particular importance are the effects from 3d3d → nln′l′.
The corresponding CSFs do not directly contribute to the
hyperfine parameters, but they are important for the total wave
function, lowering or diluting the effects of the other CSFs
(compare the discussion in the previous section). The accuracy
of the calculated A constant and (B/Q) ratio values is to a
large extent determined by the fact that they result from a
summation of a number of canceling contributions. We refer
to chapter 8 of [14] for a general discussion about spin- and
orbital-polarization effects.

IV. MULTICONFIGURATION
DIRAC-HARTREE-FOCK/RCI CALCULATIONS

Two different approaches were used for the 4s4p 3P o
1,2

states. In the first approach, called OL1 (optimal level 1),
the wave functions for the 4s4p 3P o

2 state were optimized for
a single state, i.e., the 4s4p 3P o

2 level itself. In the second
approach (called OL4) the wave functions were generated
with the extended optimal level [42] form of the variational
functional, built from all four states of the 4s4p configuration
(4s4p 3P o

0 ,3P o
1 ,3P o

2 ,1P o
1 ). The full description of numerical

methods, virtual orbital sets, electron substitutions, and other
details of the computations can be found in [15,18,29,43–46].

A. Optimal level calculations for the 4s4p 3P o
2 state

As mentioned above, the first approach (OL1) targets the
optimization of the single-state 4s4p 3P o

2 wave function. The
spectroscopic orbitals 1s2sp3spd4sp were generated in Dirac-
Hartree-Fock (DHF) mode, i.e., without correlation (virtual)
orbitals, and were frozen through all further steps. Five layers
of virtual orbitals [45] of s,p,d,f,g,h angular symmetries
were sequentially generated by including single and double
substitutions (SD) for the first two layers and single and
restricted double substitutions (SrD) for the third, fourth, and
fifth layer.

The occupied shells were successively opened for substi-
tutions into the virtual set, starting with 4sp, followed by
3spd, and then by 2sp. The 1s shell was kept closed in
all calculations. The multiconfiguration self-consistent-field
optimization step was followed by configuration interaction
(RCI) calculations in which CSF expansions were appended
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FIG. 1. Hyperfine constant A(4s4p 3P o
2 ) (MHz) (curves in the

upper graph of the figure) and B/Q ratio (MHz/b) of the 4s4p 3P o
2

state (curves in the lower graph of the figure), obtained in several
approximations. Each integer value on the abscissa axis represents the
maximal principal quantum number of the virtual orbital set for a par-
ticular multiconfiguration expansion. The fractional values represent
approximations, where multiconfiguration expansions were appended
with subsets of SD or SDT expansions. The straight horizontal line
(red online) represents the experimental value A(3P o

2 ) = 531.987(5)
MHz. More details are provided in text.

with configurations arising from subsets of unrestricted single
and double (SD) substitutions, or with (subsets of) unrestricted
single, double, and triple (SDT) substitutions.

Figure 1 shows the dependence of the magnetic dipole
hyperfine constant A (MHz) (curves in the upper graph of the
figure) and the B/Q ratio (MHz/b), proportional to EFG, of
the 4s4p 3P o

2 state (curves in the lower graph of the figure)
on the size of the multiconfiguration expansion. All lines in
both graphs are drawn only for the guidance of the eyes.
The results of the calculations are represented by several
symbols described in the following paragraph. Each integer
value on the abscissa axis represents the maximal principal
quantum number of the virtual orbital set for a particular
multiconfiguration expansion. The fractional values represent
approximations, where CSF expansions were appended with
subsets of SD or SDT expansions. In these configuration
interaction calculations, these subsets were generated in the

following ways: the occupied orbitals were systematically
opened for SD and SDT substitutions; the size of the virtual
orbital set was systematically increased for SD substitutions,
until the expectation values saturated with respect to the size
of the virtual orbital set; and then the size of the virtual
orbital set was systematically increased for SDT substitutions.
The convergence of the SDT results was not reached since
larger SDT multiconfiguration expansions would exceed the
capacity of the computer systems at our disposal (6 × 96 CPU
at 2.4 GHz with 6 × 256 GB RAM).

A stepwise, systematic increase of different classes of
substitutions makes it possible to identify those classes which
bring about considerable contributions to the expectation
value(s), as well as to quantify these contributions. Those
with sizable contributions were later included in the final
configuration interaction calculations. Four curves in Fig. 1
represent the following correlation models:

(i) circles (black online) = single and restricted double
substitutions (SrD);

(ii) squares (green online) = unrestricted single and
double (SD) substitutions;

(iii) triangles (blue online) = single and double and triple
(SDT) substitutions;

(iv) crosses (magenta online) = results of the OL4
calculation, described in Sec. IV C below.

The curves with circles (black online) represent the initial
phase of the calculations, where the third, fourth, and fifth
layers of virtual orbitals were generated with single and
restricted double substitutions (SrD). These results were not
corrected for unrestricted double (SD), nor for triple (SDT)
substitutions. The curves with triangles (blue online) represent
the configuration interaction calculations, where unrestricted
double and triple (SDT) substitutions were included. However,
due to the limitations of available computer resources, the triple
substitutions were limited to substitutions from 4s,4p occupied
orbitals to one layer of virtual orbitals, or substitutions from
3s,3p,3d,4s,4p occupied orbitals to two layers of virtual or-
bitals. The oscillations of the blue curves is a clear evidence that
the triple substitutions were not saturated in these calculations.

The SD and OL4 curves, with squares (green online) and
crosses (magenta online) in both upper and lower graphs, re-
spectively, in Fig. 1 represent the values corrected for the triple
substitutions in a systematic manner: the triple substitutions
were accounted for with an additive correction computed with
the nonrelativistic Hartree-Fock program ATSP2K [30] (see
Sec. IV B below).

The straight horizontal line (red online) across the upper
part of the upper graph in Fig. 1 represents the experimental
magnetic dipole hyperfine constant A = 531.987(5) MHz for
the 4s4p 3P o

2 state of the 67Zn isotope [6].
The end products of the calculations described in the

present section are the magnetic dipole hyperfine constant
A = 509.861 MHz and the B/Q = 281.799 MHz/b ratio,
represented in Fig. 1 by the points at the right-hand side ends
of the curve with squares (green online) on the upper and
lower graphs, respectively. These values were obtained from
the configuration interaction calculation with single and double
substitutions from 2sp3spd4sp occupied orbitals to five layers
of virtual orbitals (the largest size of the virtual orbital set
generated in this approximation). These results, corrected for
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TABLE V. Corrections for triple substitutions, (SDT−SD), calcu-
lated for hyperfine constant A (MHz) and B/Q (MHz/b) in 4s4p 3P o

1,2

states.

A(J = 1) B/Q(J = 1) A(J = 2) B/Q(J = 2)

SD 521.4771 −137.7380 470.7987 275.4760
SD+T 553.4370 −152.9882 497.6906 305.9764
SDT−SD 31.96 −15.25 26.89 30.50

triple substitutions as described in the Sec. IV B below, were
considered final in the single-reference calculations described
in the present section. They are quoted in Table IX in the line
marked “MCDHF-SD-SR-OL1+t(MCHF).”

The scatter of points at the right-hand side end of the four
curves presented in the Fig. 1 and the oscillations of the
individual curves could serve as a guideline for estimating
the error bars of the theoretical EFG contribution to B, and
indirectly to Q ∝ B/q. In the present paper, however, the error
bars have been estimated with the somewhat more reliable
procedure described in Sec. V below.

B. Additive corrections for triple substitutions

If the contribution of triple substitutions is small, it may
be approximately assumed as an additive correction, approx-
imately independent of relativity, and may be computed in
the nonrelativistic framework as the difference between the
values obtained with and without triple substitutions, respec-
tively. As an example, the correction (31.96 MHz) for the
magnetic dipole hyperfine constant A(4s4p 3P o

1 ) in Table V
was evaluated as the difference between the value calculated in
the SD+T approximation (A = 553.4370 MHz) and the value
calculated in the SD approximation (A = 521.4771 MHz).
Analogous differences were assumed as triple contributions
for the A(4s4p 3P o

2 ) constant, as well as for the B/Q ratio
values for both states.

C. Extended optimal level calculations for the 4s4p 3P o
1 and

4s4p 3P o
2 states

The calculations described in this section were performed
in a similar manner as those presented in Sec. IV A, with one
significant difference: wave functions were optimized for all
four states of the 4s4p configuration (4s4p 3P o

0 ,3P o
1 ,3P o

2 ,1P o
1 )

in the extended optimal level (OL4) approach [42], with
equal weights. The calculations of hyperfine A and EFG
factors for 4s4p 3P o

1,2 states presented in this section are
computationally more demanding than those for 4s4p 3P o

2 state
presented in Sec. IV A. The 4s4p configuration splits into four
levels (3P o

0 , 3P o
1 , 3P o

2 , 1P o
1 ) and there are two levels of J = 1

symmetry. The singlet 1P o
1 state interacts considerably with

the triplet 3P o
1 state, and in such situations, optimization on

all close-lying levels often yields a better balance of states
involved in configuration mixings. However, the multicon-
figuration expansions are larger, and the self-consistent-field
process requires considerably more computer resources. The
end products of the calculations described in the present section
are the hyperfine A constants and B/Q ratios for the 4s4p 3P o

1,2
states, obtained from the configuration interaction calculation
with single and double substitutions from 2sp3spd4sp oc-

cupied orbitals to five layers of virtual orbitals (the largest
size of the virtual orbital set generated in this approximation).
These results, corrected for triple substitutions as described
in Sec. IV B above, were considered final in the extended
optimal level calculations and they are quoted in Table IX in
lines marked “MCDHF-SD-SR-OL4+t(MCHF)” (separately
for the 4s4p 3P o

1 state and 4s4p 3P o
2 state). The results of these

calculations for the 4s4p 3P o
2 state are also represented by

(magenta online) curves with crosses in Fig. 1.

D. Liu et al.’s approach

Other computation strategies have been attempted and it
is worthwhile to test their coherence. Liu et al. [47] focused
on the spin-forbidden transition 4s2 1S0 − 4s4p 3P o

1 and the
hyperfine-induced transition 4s2 1S0 − 4s4p 3P o

0 for ions be-
tween Z = 30 (Zn) and Z = 47 (Ag). These authors considered
the following active set sequence:

AS1 = {4s,4p,4d,4f },
AS2 = AS1 + {5s,5p,5d,5f,5g},
AS3 = AS2 + {6s,6p,6d,6f,6g},
AS4 = AS3 + {7s,7p,7d,7f,7g},
AS5 = AS4 + {8s,8p,8d,8f,8g}. (7)

Their electron correlation model took into account the VV
correlation, CV correlation through excitations of maximum
one core electron from the 3d, 3p, and 3s subshells, as
well as spin-polarization (SP) effects by including CSFs of
the forms 1s22s22p63s(ns)3p63d10, 1s22s(ns)2p63s23p63d10,
and 1s(ns)2s22p63s23p63d10. CC correlation was systemat-
ically neglected. The A and B values that they obtained
for the 4s4p 3P o

1 level of 67Zn are respectively A = 20.21
mK and B = −0.7539 mK, to be compared with the two
experimental results A = 20.317(7) mK [609.086(2) MHz]
and B = −0.6265(3) mK [−18.782(8) MHz] from Byron et al.
[7]. The corresponding results are denoted as MCDHF-SrDT-
SP-Liu.

E. Wave functions optimized for isotope shifts

Relativistic MCDHF wave functions have been recently op-
timized for estimating the electronic isotope shift parameters of
4s2 1S0 − 4s4p 3P o

1 and 4s4p 3P o
2 − 4s5s 3S1 by Filippin et al.

[48]. Oppositely to hyperfine parameters, a reliable calculation
of transition isotope shifts requires a correct balance of electron
correlation effects between the levels involved. These authors
attempted three different strategies, systematically omitting
core-core correlation in the variational process of orbital
optimization. It is indeed well known that CC correlation
effects are better balanced with the use of a common orbital
basis for describing both states involved in a given transition.
Neglecting CC enables to get separate orbital basis sets to allow
orbital relaxation. It is interesting to investigate the hyperfine
constants calculated with these computational strategies. In the
present work, we estimate the hyperfine structure parameters
using three approaches labeled hereafter M1, M2, and M3.

The first approach (M1) was inspired by the strategy of
Liu et al. [47], also omitting core-core correlation. Single
(S) and double (D) substitutions were performed on a single-
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TABLE VI. A (MHz), B/Q (MHz/b), and Q (b) values calculated with method M1 (see Sec. IV E), as functions of the increasing active
space for the 4s4p 3P o

1 and 4s4p 3P o
2 states in 67Zn I, Iπ = 5/2−, and μexpt = 0.875 479(9) μN . The Q values are extracted from the relation

Q = Bexpt/(B/Q), where the experimental values are Bexpt(3P o
1 ) = −18.782(8)a MHz and Bexpt(

3P o
2 ) = 35.806(5)b MHz.

4s4p 3P o
1 4s4p 3P o

2

Active space NCSFs A (MHz) B/Q (MHz/b) Q (b) NCSFs A (MHz) B/Q (MHz/b) Q (b)

MCDHF-SrDT-SP (VV+CV)
5s5p4d4f 1 592 558.02 −131.036 0.1433 2 122 483.71 254.975 0.1404
6s6p5d5f 5g 11 932 590.45 −146.084 0.1286 16 961 507.74 280.708 0.1276
7s7p6d6f 6g6h 48 574 610.80 −150.997 0.1244 71 610 529.87 290.233 0.1234
8s8p7d7f 7g7h 128 264 613.17 −152.617 0.1231 191 495 532.46 292.535 0.1220
9s9p8d8f 8g8h 267 998 617.02 −154.391 0.1217 402 586 536.97 296.441 0.1208
10s10p9d9f 9g9h 484 772 618.47 −154.071 0.1219 730 853 537.48 294.773 0.1215
Liu et al. [47] 605.9 −150.7 0.1247

Expt. 609.086(2)a 531.987(5)b

aByron et al. [7].
bLurio [6].

reference (SR) set. These SD-SR substitutions take into ac-
count valence-valence and core-valence correlations. A VV
correlation model only allows SD substitutions from valence
orbitals, while the VV+CV correlation model considers SrDT
substitutions (single plus restricted double and triple) from core
and valence orbitals, limiting the substitutions to a maximum
of one hole in the core. Separate orbital basis sets were
optimized for the two studied states 3P o

1,2. One difference
with respect to the procedure reported in [48] for isotope shift
parameters is that the 1s shell is opened in the present work
to include the spin-polarization effects that are relevant for
hyperfine structure calculations. The procedure can be outlined
as follows:

(1) Perform a calculation using a set consisting
of CSFs with two forms: [Ar]3d9nln′l′n′′l′′ J	 and
[Ne]3s23p53d10nln′l′n′′l′′ J	 with n,n′,n′′ = 4 and l,l′,l′′ =
s,p,d,f , plus 5s and 5p. These CSFs account for a fair amount
of the VV correlation, and for CV correlations between the 3p
and 3d core orbitals and the 5s, 5p and n = 4 valence orbitals.
Add spin polarization by including the following CSFs:

1s22s22p63s3p63d104s4p5s J	,
1s22s2p63s23p63d104s4p5s J	,
1s2s22p63s23p63d104s4p5s J	.
(2) Keep the orbitals fixed from step (1) and optimize

an orbital basis, layer by layer, up to an active space equal
to 10s10p9d9f 9g9h, described by CSFs with the J	 sym-
metry of the state. These CSFs are obtained by SrDT-SP
substitutions as in step (1) (at most one substitution from the
1s22s22p63s23p63d10 core [49]).

The corresponding results are presented in Table VI. The
MCDHF-SrDT-SP-Liu active space expansion used in [47]
optimized simultaneously the 3P o

1 and 3P o
2 levels. Therefore the

A, B/Q, and Q results obtained in the present work slightly
differ from those reported in [47] for J = 1.

The second approach (M2) considered single and restricted
double substitutions performed on an SR set (MCDHF-SrD-
SR). The VV correlation model only allows SD substitutions
from valence orbitals, while the VV+CV correlation model
considers SrD substitutions from core and valence orbitals,
limiting the substitutions to a maximum of one hole in the

core. Oppositely to Filippin et al. [48], core correlation is
included in the final step through a configuration interaction
calculation based on SD-SR expansions. The corrections for
triple excitations estimated in Sec. IV B (see Table V) are added
in the final step. This computational strategy can be outlined
by the following sequence:

(1) Run a calculation using an SR set consisting of CSF(s)
of the form 2s22p63s23p63d104s4p J	.

(2) Keep the orbitals fixed from step (1), and optimize an
orbital basis layer by layer up to an active space equal to
11s11p10d10f 10g10h, described by CSFs with the J	 sym-
metry of the state. These CSFs are obtained by SrD-SR substi-
tutions (at most one substitution from the 2s22p63s23p63d10

core).
(3) Perform a CI calculation on the CSFs expansion with

the J	 symmetry of the state, describing VV, CV, and CC
correlation obtained by SD-SR substitutions to the orbital basis
from step (2).

(4) Add a correction to the A and EFG values from step
(3), accounting for triple (t) substitutions and obtained from a
nonrelativistic MCHF computation.

Step (3), allowing the inclusion of core-core correlation
through CI, and step (4), specific to hyperfine constants, were
not considered in [48]. The corresponding results are denoted
MCDHF-SrD-SR/CI-SD-SR+t(MCHF) in the upper part of
Table VIII. The final line shows that opening 1s brings a
non-negligible contribution to the A values, which become
approximately 6 MHz larger for both states. This approach is
very similar to the method described in Sec. IV A. However, the
advantage of the M2 calculations is in the simultaneous gener-
ation of both 4s4p 3P o

2 and 4s4p 3P o
1 states at the optimal level

(OL) of the variational functional. For 4s4p 3P o
2 , the results are

indeed very similar to the MCDHF-SD-SR-OL1+t(MCHF)
values already reported in Table IX and discussed in Sec. IV A
dedicated to that level. For these M2 results, only the
4s4p 3P o

1 values are therefore reported in the final summary in
Table IX.

The third approach (M3) considered SrD substitutions
performed on a multireference (MR) set. The latter contains
the CSFs that have large expansion coefficients and account
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TABLE VII. MR configurations for the 4s4p 3P o
1 and 4s4p 3P o

2 states in 67Zn I. The MR-cutoff value εMR determines the set of CSFs in the
MR space. NCSFs is the number of CSFs describing each MR space.

State εMR MR configurations NCSFs

4s4p 3P o
1 0.01 [Ar]3d10{4s4p,4p4d}, [Ar]3d9{4s4p4d,4s4d4f,4p3,4p24f,4s24p} 31

4s4p 3P o
2 0.01 [Ar]3d10{4s4p,4p4d}, [Ar]3d9{4s4p4d,4s4d4f,4p3,4p24f,4s24p} 31

for the major correlation effects. For building this MR set, a
MCDHF calculation is first performed using a CSF expansion
based on SrDT substitutions from the 3d and the occupied
valence orbitals towards the 5s, 5p and n = 4 valence orbitals
(maximum of one hole in the 3d orbital).

Due to limited computer resources, such an MR set would
be too large for subsequent calculations. Hence, only the CSFs
whose expansion coefficients are, in absolute value, larger than
a given MR cutoff are kept, i.e., |cν | > εMR. The resulting
MR sets are outlined in Table VII. Only orbitals occupied
in the single configuration DHF approximation are treated
as spectroscopic, and the occupied reference orbitals are kept
frozen in the subsequent calculations.

The M3 procedure consists in the following sequence:
(1) Perform a calculation using an MR set consisting of

CSFs with two forms:

2s22p63s23p63d10nln′l′ J	 with n,n′ = 4 and l,l′ =
s,p,d,f + 5s and 5p, and 2s22p63s23p63d9nln′l′n′′l′′ J	 with
n,n′,n′′ = 4 and l,l′,l′′ = s,p,d,f + 5s and 5p. These CSFs
account for a fair amount of the VV correlation, and for
CV correlations between the 3d core orbital and the 5s, 5p
and n = 4 valence orbitals. Keep in the MR set the CSF
whose expansion coefficients are, in absolute value, larger than
εMR = 0.01.

(2) Keep the orbitals fixed from step (1), and optimize an
orbital basis layer by layer up to an active space equal to
11s11p10d10f 10g10h, described by CSFs with the J	 sym-
metry of the state. These CSFs are obtained by SrD-MR sub-
stitutions (at most one substitution from the 2s22p63s23p63d10

core). As observed for M2, spin polarization of the 1s shell is
not negligible. The results of these calculations are presented

TABLE VIII. A (MHz), B/Q (MHz/b), and Q (b) values calculated with methods M2 (upper part) and M3 (lower part), see Sec. IV E,
as functions of the increasing active space for the 4s4p 3P o

1 and 4s4p 3P o
2 states in 67Zn I. Iπ = 5/2− and μexpt = 0.875 479(9) μN . The Q

values are extracted from the relation Q = Bexpt/EFG, where the experimental values are Bexpt(
3P o

1 ) = −18.782(8)a MHz and Bexpt(
3P o

2 ) =
35.806(5)b MHz.

4s4p 3P o
1 4s4p 3P o

2

Active space NCSFs A (MHz) B/Q (MHz/b) Q (b) NCSFs A (MHz) B/Q (MHz/b) Q (b)

4s4p3d (DHF) 2 475.27 −100.437 0.1870 1 419.98 192.166 0.1863

MCDHF-SrD-SR (VV+CV)
5s5p4d4f 1 454 554.21 −129.614 0.1449 2 108 483.74 253.875 0.1410
6s6p5d5f 5g 5 857 590.45 −145.650 0.1290 5 790 509.32 280.362 0.1277
7s7p6d6f 6g6h 14 381 617.54 −152.198 0.1234 14 467 534.86 292.975 0.1222
8s8p7d7f 7g7h 27 052 627.21 −157.702 0.1191 27 426 542.93 303.008 0.1182
9s9p8d8f 8g8h 43 870 627.36 −159.448 0.1178 44 667 547.10 305.735 0.1171
10s10p9d9f 9g9h 64 835 631.06 −159.859 0.1175 66 190 550.27 306.528 0.1168
11s11p10d10f 10g10h 89 947 632.63 −159.987 0.1174 91 995 550.84 306.521 0.1168
+ 1s open 95 907 638.82 −159.974 0.1174 97 610 556.64 306.592 0.1168

CI-SD-SR (VV+CV+CC)
11s11p10d10f 10g10h 1 236 101 546.09 −129.845 0.1446 1 243 611 479.14 249.303 0.1436
+ t(MCHF) 9s9p8d8f 8g 578.05 −145.095 0.1294 506.03 279.803 0.1280

Multireference calculations
5s5p4d4f (MR) 903 541.40 −112.267 0.1673 1 231 414.61 198.252 0.1806

MCDHF-SrD-MR (VV+CV)
6s6p5d5f 5g 12 015 595.05 −148.023 0.1269 16 521 511.98 284.444 0.1259
7s7p6d6f 6g6h 32 172 621.07 −153.354 0.1225 45 722 535.07 294.919 0.1214
8s8p7d7f 7g7h 62 730 631.14 −159.206 0.1180 90 401 544.19 306.010 0.1170
9s9p8d8f 8g8h 103 689 630.28 −160.573 0.1170 150 558 548.36 308.353 0.1161
10s10p9d9f 9g9h 155 049 633.80 −160.991 0.1167 226 193 551.29 309.010 0.1159
11s11p10d10f 10g10h 216 810 635.32 −161.006 0.1167 317 306 551.96 308.985 0.1159
+ 1s open 232 787 641.60 −161.025 0.1167 339 230 557.60 309.005 0.1159

Expt. 609.086(2)a 531.987(5)b

aByron et al. [7].
bLurio [6].
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TABLE IX. Summary of the A (MHz), B/Q (MHz/b), and Q (b) values of 67Zn.

State A (MHz) B/Q (MHz/b) Q (b) Method

4s4p 3P o
1 634.802 −165.058 0.113790 MCHF-SD(T)

605.9 −150.7 0.1247 MCDHF-SrDT-SP-Liu
618.47 −154.071 0.121905 MCDHF-SrDT-SP
641.60 −161.025 0.116640 MCDHF-SrD-MR
578.05 −145.095 0.129446 MCDHF-SrD-SR/CI-SD-SR+t(MCHF)
577.886 −142.579 0.131730 MCDHF-SD-SR-OL4+t(MCHF)

609.086(2)a Expt.

4s4p 3P o
2 560.310 317.254 0.112862 MCHF-SD(T)

537.48 294.773 0.121470 MCDHF-SrDT-SP
557.60 309.005 0.115875 MCDHF-SrD-MR
509.861 281.799 0.127062 MCDHF-SD-SR-OL1+t(MCHF)
513.200 271.989 0.131645 MCDHF-SD-SR-OL4+t(MCHF)

531.987b Expt.

aByron et al. [7].
bLurio [6].

in the lower part of Table VIII and labeled MCDHF-SrD-MR
in Table IX.

V. EVALUATION OF THE NUCLEAR QUADRUPOLE
MOMENT OF Q(67Zn)

We report in the present section 11 calculated Q (and A)
values, obtained with the following approaches:

(i) MCHF-SD/CI-SDT+DHF/HF correction (3P o
1,2

levels), under label MCHF-SD(T), see Secs. III A
and III B;

(ii) MCDHF-SrDT-SP-Liu: from Liu et al. [47] (only
3P o

1 level), see Sec. IV D;
(iii) MCDHF-SrDT-SP: calculation based on Liu et al.’s

strategy (3P o
1,2 levels), see method M1 in Sec. IV E,

(iv) MCDHF-SrD-SR/CI-SD-SR+t(MCHF): single-
reference + MCHF triples correction (3P o

1 level [50]),
see method M2 in Sec. IV E;

(v) MCDHF-SrD-MR: multireference (3P o
1,2 levels), see

method M3 in Sec. IV E;
(vi) MCDHF-SD-OL1+t(MCHF): OL1 (J = 2) single-

reference + MCHF triples correction (only 3P o
2

level), see Sec. IV A;
(vii) MCDHF-SD-OL4+t(MCHF): OL4 (J = 0,1,1,2)

single-reference + MCHF triples correction (3P o
1,2

levels), see Sec. IV C;
where the shorthand notations above represent the following
computational methods:

MCHF multiconfiguration Hartree-Fock (non-relativistic)
CI-SDT configuration interaction Hartree-Fock

(non-relativistic)
DHF/HF multiplicative relativistic correction described in

Sec. III
MCDHF multiconfiguration Dirac-Hartree-Fock (relativistic)
SD single and double substitutions in the SCF process
SrD single and restricted double substitutions in the SCF

process

t(MCHF) additive correction for triple substitutions estimated
from MCHF calculation (see Sec. IV B).

SP spin polarization (method described in Liu et al. [47])
SR single-reference
MR multireference
OL1 optimal level calculation with optimization on one

level (J = 2)
OL4 optimal level calculation with optimization on four

levels

We adopted a convention used by chemists, where T in
parentheses (T) implies that triple substitutions are included in
a post-SCF approach (Møller-Plesset or CI or another method).
In our notation, t(MCHF) means an additive correction for
triple substitutions evaluated with the ATSP2K code [30]. The
calculated EFGs were combined with the measured B values
for the 4s4p 3P o

1 state [7] and for the 4s4p 3P o
2 state [6] of

the neutral Zn atom to yield 11 calculated values of Q(67Zn),
presented in the fourth column of Table IX.

Although these 11 values do not represent the sample in
the statistical sense, the scatter of the values gives us an
information about the dependence of the calculated values of
EFG on the choice of the method of calculation and provides a
basis for an estimate of the error bar for the determination of the
quadrupole moment Q(67Zn). The calculated values of EFG
are evenly distributed around their median, with a rather flat
distribution. Therefore, for an estimate of the accuracy, instead
of fitting a Gaussian curve, we assumed a more conservative
approach, whereby the error bar should span the range of all 11
values. For computing the final value of Q(67Zn), one might
consider taking the average of the results of the 11 calculations
(Q = 0.1208 b) or the median value thereof (Q = 0.1223 b);
both methods yield very close results, the difference being
negligible compared to the error bar resulting from the argu-
ments presented above. Assuming the above procedures and
estimates, we arrived at Q(67Zn) = 0.12 ± 0.01 b, obtained
from the 4s4p 3P o

1,2 states of zinc. The relative error bar (8%)
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is of the same order as the error bar (10%) associated with the
previous standard value, Q(67Zn) = 0.150(0.015) b, quoted
by Stone [4] and by Pyykkö [3], and based on measurements
performed by Laulainen and McDermott [5], but the Q(67Zn)
value itself is now downshifted by 20%. On the other hand, our
value is in very good agreement with Q(67Zn) = 0.125(5) b, of
Haas et al. [10], who used a hybrid density functional theory
approach.

An inspection of the results presented in Table IX leads
to the conclusions that the multireference MCDHF-SrD-MR
calculations overshoot the values of the magnetic dipole
hyperfine constant A by about 20–25 MHz, while single-
reference MCDHF-SD-SR-OL1+t(MCHF) and MCDHF-SD-
SR-OL4+t(MCHF) results for A are too small by nearly
the same amount. The best agreement with the experimental
A value was obtained in the calculation of Liu et al. [47],
which is understandable, since, as mentioned in Sec. IV D,
the main objective of Liu et al. was the magnetic dipole
hyperfine structure, and therefore they carefully treated the
spin-polarization effects. Incidentally, the nuclear quadrupole
moment Q(67Zn) calculated from their EFG value is in fact
quite close to the median value Q = 0.1223 b mentioned
above. The above-mentioned differences between calculated
and experimental values of the magnetic dipole hyperfine
constant A may be used as another tool to estimate the error
bar for determination of Q (see references [29,45,51] for a
review of tools). The error bar estimate from A is of the order
of 4%, smaller than that obtained from the sample of eleven Q

values. We assumed the larger of the two error bar estimates,
and finally we propose

Q(67Zn) = 0.122(10) barn. (8)

This value has been utilized to extract electric quadrupole
moments of odd-A nuclei in the range A = 63–79 across
the isotopic chain of zinc, following the measurements of
electromagnetic moments by Wraith et al. [19].

VI. CONCLUSIONS

The calculations of hyperfine shifts are inherently inac-
curate (or accurate to a few percent). We do have compu-

tational tools to estimate the accuracy of expectation values
[29,44,45], but they are more expensive computationally than
the calculations of expectation values themselves. Therefore
we rarely compute accuracy, because normally we compute the
expectation values themselves at the limits of our computing
resources, and this does not leave enough resources for com-
puting accuracy. Then we estimate the accuracy. Estimating
the accuracy of a single calculation of an EFG for a single
level is in fact not much more than guesswork. If magnetic
dipole hyperfine coupling constant A is known (i.e., measured
Aexpt exists), then the accuracy of EFG is sometimes assumed
from the difference Aexpt − Acalc. Another method is to carry
out calculations with several different methods and evaluate
the accuracy from differences between the results obtained
with those methods. In the present paper the latter approach
yields the larger error bar. The optimal method would be to
carry out measurements and calculations for several levels.
From this point of view, having hyperfine structure data for
several levels would give us a benefit of more tools to estimate
accuracy. Combined with the measured values of A and B for
these levels, we would obtain a statistical sample for both A

and EFG. It is not exactly statistical because calculations are in
principle not fully independent, but several levels is still better
than one or two levels.
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