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Ultrafast dynamical processes in photoexcited molecules can be observed with pump-probe measurements,
in which information about the dynamics is obtained from the transient signal associated with the excited state.
Background signals provoked by pump and/or probe pulses alone often obscure these excited-state signals. Simple
subtraction of pump-only and/or probe-only measurements from the pump-probe measurement, as commonly
applied, results in a degradation of the signal-to-noise ratio and, in the case of coincidence detection, the danger
of overrated background subtraction. Coincidence measurements additionally suffer from false coincidences,
requiring long data-acquisition times to keep erroneous signals at an acceptable level. Here we present a
probabilistic approach based on Bayesian probability theory that overcomes these problems. For a pump-probe
experiment with photoelectron-photoion coincidence detection, we reconstruct the interesting excited-state
spectrum from pump-probe and pump-only measurements. This approach allows us to treat background and
false coincidences consistently and on the same footing. We demonstrate that the Bayesian formalism has
the following advantages over simple signal subtraction: (i) the signal-to-noise ratio is significantly increased,
(ii) the pump-only contribution is not overestimated, (iii) false coincidences are excluded, (iv) prior knowledge,
such as positivity, is consistently incorporated, (v) confidence intervals are provided for the reconstructed
spectrum, and (vi) it is applicable to any experimental situation and noise statistics. Most importantly, by
accounting for false coincidences, the Bayesian approach allows us to run experiments at higher ionization
rates, resulting in a significant reduction of data acquisition times. The probabilistic approach is thoroughly
scrutinized by challenging mock data. The application to pump-probe coincidence measurements on acetone
molecules enables quantitative interpretations about the molecular decay dynamics and fragmentation behavior.
All results underline the superiority of a consistent probabilistic approach over ad hoc estimations.
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I. INTRODUCTION

Coincidence measurements are a widely used and powerful
experimental technique in physics and chemistry. For example,
in photoionization studies of gas phase molecules or clus-
ters, photoelectron-photoion coincidence (PEPICO) detection
provides essential insights into the ionization process, which
cannot be achieved by sole detection of ions or electrons [1–5].
Introduced in the 1960s [6], coincidence methods have rapidly
developed and are nowadays also applied in time-resolved
investigations of ultrafast dynamics in molecules or clusters.
In these dynamical studies PEPICO detection has proven to be
essential to learn about the underlying processes if competing
intramolecular relaxation pathways are active [3,7–9] or if
different species are present [10].

While the success of PEPICO detection is based on the
unambiguous recording of pairs of energy-resolved electrons
and the corresponding mass-resolved cations, the correct
pairwise assignment (true coincidence) may be affected by
certain experimental conditions: If a laser pulse triggers a
number of simultaneous ionization events arising from dif-
ferent neutral molecules, and if the detection probability is
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imperfect, the assignment of correlated electron-cation pairs
suffers and gives rise to so-called false coincidences [11]. In
principle, there are also false coincidences due to detector
noise or ionization events not caused by the laser pulse, but
these are sufficiently low to be neglected in the presented
experiment and are therefore not covered in this paper. The
issue of false coincidences is exemplified in Fig. 1, which
shows that even restricting the recording to single ionization
events, can yield a wrong correlated pair assignment due to low
detector sensitivity. Momentum imaging techniques, such as
cold target recoil ion momentum spectroscopy (COLTRIMS)
[12,13], are in principle able to account for false coincidences.
Based on exact spatial detection of all fragments and the
reconstruction of their initial momentum vectors after ion-
ization and fragmentation, these methods allow one to filter
for ionization events that fulfill momentum conservation, i.e.,
originate from one molecule. However, time-of-flight detec-
tion, which is applied in the presented experiment to detect
photoelectrons with high energy resolution, does not allow
for identification of false coincidences based on experimental
observables.

Misinterpretation can be avoided by the method of co-
variance mapping, which is based on the calculation of the
covariance for the photoelectron and mass spectra measured
with each laser shot [14–16]. However, covariance mapping
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FIG. 1. Three possible outcomes if one or two molecules get
ionized in a coincidence measurement. In the ideal case (a) one event is
generated and the created electron-ion pair is detected. If the detection
probability is less than one and one electron and one ion are detected it
can either be a true coincidence, if both stem from the same molecule,
example (b), or a false coincidence, if they originally belonged to
different molecules, example (c).

does not guarantee that the reconstructed spectrum is positive
and it is restricted to Poisson processes and leads otherwise to
systematic deviations [15,16]. Further limitations are outlined
in Ref. [14]. Of course, keeping the average number of
simultaneous ionization events far below one to avoid false
coincidences [11] also serves the purpose but requires long
data acquisition times for sufficient signal-to-noise ratios. This
restriction can be circumvented by the Bayesian approach,
which will be presented in this paper. Bayesian probability the-
ory is the consistent approach to reconstruct spectra from any
noisy experimental data [17] and the reconstructed spectra are
never negative. Moreover, the probabilistic approach provides
confidence intervals, which are crucial to assess the reliability
of structures in the reconstructed spectrum. Also, the issue of
false coincidences can be dealt with consistently. The Bayesian
approach can also overcome another problem that arises in
pump-probe PEPICO, which is related to the fact that two
large signals with significant statistical fluctuations have to be
subtracted. The situation is as follows: Time-resolved studies
are carried out as pump-probe experiments [10,18], where the
photoexcitation by a pump pulse triggers dynamical processes
in the electronic and nuclear structure of the molecule. A
time-delayed probe pulse photoionizes the molecule and the
transient change of photoelectron and -ion signals associated
with the excited states provide insight into the underlying
processes. Unfortunately, also pump and/or probe pulses on
their own, referred to as pump-only and probe-only pulses, can
lead to photoionization, resulting in a background signal that is
superimposed on the excited-state signal. If possible, the laser
intensity of the pump and the probe pulses is reduced to min-
imize this background signal. However, often the pump-only
and/or the probe-only signal significantly contribute to pump-
probe measurements, particularly if multiphoton transitions
are applied for pump excitation or probe ionization, or if high
photon energies are used for probing [19–21]. To obtain the true
excited-state transients, the pump-only and/or the probe-only
signals are separately measured and usually subtracted from
the pump-probe signals, resulting in increased noise in the
obtained spectra. The increase in noise is particularly severe
if the pump-probe signal cannot be spectrally separated from

the pump-only and probe-only signals, that is, if the respective
spectra overlap.

Additionally, it has to be considered that the pump-only, the
probe-only, and the pump-probe measurements have different
rates of ionization events (see Sec. III). Simple subtraction
of the signals leads to errors because the coincidence signals
depend on the ionization rates with the consequence that
pump-only and probe-only measurements are different from
the pump and probe contribution in the pump-probe mea-
surement. Moreover, we note that also population depletion
effects can change the rate of ionization events from certain
states, in particular if the probe pulses lead to ionization of the
ground state. For instance, photoexcitation by the pump pulse
reduces the ground state population of a molecule with the
consequence that the probe pulse ionization rate corresponding
to the ground state is reduced and thus lower than the ground
state signal of the probe-only measurement. In this work,
we apply Bayesian probability theory to infer the underlying
time-dependent excited-state dynamics in the presence of a
strong pump-only background and a negligible probe-only
signal, that is from pump-probe and pump-only measurements.
Depletion effects associated with excited states, similar to
the mechanisms described above, occur only if pump and
probe pulses overlap in time. Since we are interested in the
dynamics of the photoexcited states after the pump excitation
is completed, we focus on measurements with temporarily
separated pulses and therefore neglect depletion effects in the
current approach.

The application of the Bayesian formalism for background
subtraction was presented for astrophysical applications
[22,23] and for photo-induced x-ray emission spectroscopy
(PIXE) [24–29]. Compared to conventional subtraction of
the pump-only spectrum from the pump-probe spectrum, the
Bayesian approach provides several important advantages:
(i) It results in a significant increase of the signal-to-noise ratio.
(ii) It does not overestimate the pump-only contribution and
does never lead to negative spectra because the relative weight
of the pump-only contribution is self-consistently determined.
(As explained below, the experimental conditions are such that
the pump pulse excites ground state molecules and the probe
pulse ionizes exclusively excited states, with the consequence
that a pump-probe measurement yields always more or equal
ionization events compared to the pump-only measurement.
But more ionization events in the pump-probe measurement
can lead to fewer single coincidence events, and therefore to
overestimation of the pump-only contribution and to negative
difference spectra.) (iii) Spectral signatures based on false
coincidences are eliminated, allowing for higher signal rates.
(iv) It includes consistently all prior knowledge, such as
positivity, and (v) a confidence interval is obtained for the
estimated spectrum. (vi) It is applicable to any experimen-
tal situation and noise statistics. We provide our software,
including introductory examples, at https://github.com/fslab-
tugraz/PEPICOBayes/.

II. EXPERIMENT AND ASSUMPTIONS

The goal of the time-resolved PEPICO experiments is
to determine the time-dependent excited-state population
of a particular molecule. In a femtosecond pump-probe
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FIG. 2. Pump-probe ionization scheme to investigate excited-
state dynamics in molecules. Left: Ground-state molecules are ionized
by pump pulses alone (measurement α). Right: The combination
of pump and time-delayed (�t) probe pulses (measurement β)
results in pump-only (channel 1) and excited-state ionization events
(channel 2). Red arrows indicate the electron kinetic energy and
potential fragmentation is also depicted.

measurement a fraction of ground-state molecules is excited
by a pump pulse and subsequently ionized by a time-delayed
probe pulse. The time-resolved distribution of the electron
kinetic energy provides valuable information about dynamical
properties of the electronic structure. The simultaneous detec-
tion of the ion-mass allows to assign the electronic features
to a particular molecule. If multiphoton transitions are applied
for the excitation or ionization transition, the pump or probe
laser pulse, respectively, causes a strong background signal
for the pump-probe measurement. In this work, we consider
the case of a strong pump-only background. Due to the low
laser intensity of the probe pulse, ground-state molecules
are not ionized by the probe pulse alone and there is no
probe-only background. This situation is shown in Fig. 2
for a three-photon excitation to high-lying molecular states.
The excited state lies energetically close to the ionization
continuum, resulting in a certain probability for four-photon
ionization—the background signal—in addition to the three-
photon excitation (measurement α and channel 1 in Fig. 2).

In a separate pump-probe measurement (β) the pump
process is the same as in the pump-only case. It generates
excited states which in turn are ionized by a time-delayed
probe pulse. Consequently, the measured pump-probe spec-
trum (measurement β) consists of both pump-only ionization
events (channel 1) and pump-probe events (channel 2).

Photoelectrons and -ions are both detected with high ef-
ficiency by a time-of-flight spectrometer, where the electron
kinetic energy and the ion mass are measured [3,7]. In de-
pendence on the ionization path, cations produced in both

channels can be stable and detected as parent ions or undergo
fragmentation into neutral and ionic fragments. Coincidence
detection of electrons and ions allows us to obtain separate
electron spectra for each ion fragment. The excited electronic
state of the molecule at the moment of probe ionization is
identified by the measured electron kinetic energy, in combi-
nation with the energy of the ionizing photon and knowledge
of the vertical ionization energy of excited state. In addition to
the information of species and electronic state that is ionized,
the related ion mass of the PEPICO spectrum provides insight
into the fragmentation behavior. For example, the assignment
of the photoelectron kinetic energy to an excited electronic
state of the unfragmented molecule and coincidence detection
of an ion fragment shows that the molecule was intact at the
moment of ionization and fragmentation must have occurred
in the ionic state. This channel plays an important role in the
results on acetone, as presented below. PEPICO detection thus
allows us to disentangle different relaxation and ionization
pathways in photoexcited molecules [3,7,9].

For coincidence detection, only events are considered in
which one electron-ion pair is detected, assuming that both
result from the same molecule. If molecules are ionized within
one laser pulse, the possible options are (compare with Fig. 1):
No single electron-ion pair is detected, in this case the event
is rejected, or one electron and one ion are detected, which
can originate [Figs. 1(a) and 1(b)] from the same molecule
(true coincidence) or [Fig. 1(c)] from different molecules (false
coincidence). Since the pump-probe measurement (β) has a
higher ionization rate compared to the pump-only measure-
ment (α), the number of single coincidences in channel 1 differs
from that in the pump-only measurement. In other words, in a
pump-probe measurement the ions and/or electrons originating
from ionization of photoexcited molecules (channel 2) are
detected with a certain probability with electron-ion pairs
originating from the ground state (channel 1), in which case
the event is discarded. As a result, the number of registered
channel 1 events of a pump-probe measurement is always lower
than that of a pump-only measurement. Consequently, simply
subtracting the pump-only counts from the pump-probe counts
would lead to wrong results.

Moreover, the populations in the excited state can decay to
energetically lower states by fast and efficient nonadiabatic
processes [3,7,30]. The channel 2 signal in a pump-probe
measurement can therefore become significantly smaller than
the channel 1 background, in particular for long delay times.
Especially in this situation, simple subtraction of the pump-
only from pump-probe counts results in a very poor signal-to-
noise ratio.

Before applying the Bayesian formalism, which is presented
in Sec. IV, to real experimental data, it will be tested by means
of some challenging mock data in Sec. V. Then, the investiga-
tion of photoinduced relaxation dynamics of acetone molecules
is presented in Sec. VI to demonstrate the application of the
Bayesian formalism.

For the measurements we use a femtosecond pump-probe
setup, which has been described in detail previously [7,30].
Acetone molecules are excited by a three-photon transition
to high-lying Rydberg states (6p, 6d, 7s) at about 9.30 eV
[30]. Pump and probe pulses are obtained from a commer-
cial Ti:sapphire laser system (Coherent Vitara oscillator and
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Legend Elite Duo amplifier) and frequency doubled in BBO
crystals to obtain 3.1 eV photon energy (395-nm center wave-
length). The pump-probe cross correlation was (84 ± 1) fs full
width at half-maximum. Acetone molecules are introduced
into the vacuum chamber and ionized in the extraction region of
a time-of-flight spectrometer, which is operated in a magnetic
bottle configuration for electron detection and coincidence
detection of ions is achieved by a pulsed electric field. The
electron and ion flight times are first analyzed by a coincidence
algorithm producing the data sets D1 and D2 (see below),
from which the excited-state spectrum is reconstructed by
the Bayesian algorithm, based on pump-probe and pump-only
measurements.

III. SOME PRELIMINARY CONSIDERATIONS

First, we want to briefly introduce Bayesian probability
theory. We suggest Refs. [17,22,31–35] for a more detailed
introduction into Bayesian probability theory. As has been
aptly described by Jaynes [17], probability theory forms the
logic of science. Bayesian probability theory can be seen as the
generalization of Boolean algebra. It is based on propositions,
i.e., statements that are either true or false. For example, M

is shorthand for the proposition that the measured mass is
M , and one elementary event during measurement ρ states
that during one measurement of type ρ, only one elementary
event happens. As in Boolean algebra, proposition can be
combined by the logical OR (∨) and the logical AND (∧). The
proposition I stands for the so-called background information
that includes all additional information, which uniquely defines
the data-analysis problem. It includes the relation between
the desired spectra along with unknown parameters and the
experimental data, as well as the statistics of the experiment
and any sort of additional prior knowledge. For more details see
Refs. [17,22,31]. For notational ease, conjunctions are denoted
by commas; e.g., P (A ∧ B) → P (A,B). The quantity P (A|B)
stands for the conditional probability that proposition A is true,
provided B is true. Generally, Bayesian probability theory can
be fully derived by quantifying the principles of logical con-
sistency [36–38]. This leads to two basic rules, which will be
exploited intensively in this paper. The first one is the sum rule,

P (A ∨ B|C) = P (A|C) + P (B|C), if A ∧ B = 0, (1)

and the second one the product rule,

P (A,B|C) = P (A|B,C) P (B|C). (2)

Combining the two leads to the marginalization rule,

P (A|C) =
∑
Bi

P (A|Bi,C) P (Bi |C), (3)

provided the propositions Bi are pairwise exclusive
Bi ∧ Bj = 0, ∀i �= j, and the union of all proposition
is the true proposition ∨iBi = 1. But the most important
consequence of the product rule is Bayes’ theorem,

P (H |D,I) = P (D|H,I) P (H |I)

P (D|I)
, (4)

which constitutes the rule for learning from experimental data
D. The proposition H stands for unknown quantities, such as
the energy-resolved spectrum q(E) or unknown parameters,

e.g., the intensity of a Poisson distribution λ. In this context,
P (H |I) is called prior probability and represents the prior
knowledge about the unknown quantities H , conditional on ad-
ditional information, which might be present in the background
information I, such as additional parameters or the positivity
of the spectrum. The likelihood P (D|H,I), representing the
probability for the data D given H , includes all information
about the measurement itself. For example, when dealing with
Poisson processes, the unknown parameter is the true mean
H → λ and the measured quantity D → m are the counts,
which have the probability distribution P(m|λ) defined in
Eq. (11). Another ubiquitous example for a likelihood is ob-
tained in the case of additive noise. In this case, the underlying
true value of a physical quantity, x say, is distorted by some
noise η, resulting in the experimental data D → d = x + η.
In many cases η is Gaussian distributed and p(d|x,σ,I) is a
Gaussian in d − x with variance σ 2. Here d actually stands for
a continuous quantity and p(d|x,σ,I) is a probability density
function (PDF). Throughout this paper we will use lower case
p(.) for PDF. In the Bayesian frame, a continuous variable, x̂

say, is treated by propositions as follows. Let Dx stand for the
proposition: “the variable x̂ has a value betweenx andx + dx”;
i.e., x̂ ∈ (x,x + dx]. Then P (Dx) stands for the probability
that x̂ has a value in (x,x + dx]. This in turn is expressed by
P (Dx) = p(x)dx and defines the PDF p(x). In view of the con-
siderations above, the likelihood is also termed forward proba-
bility, because knowing H allows us to determine the probabil-
ity for D. For any experimental setting, for which the likelihood
can be specified, Bayes’ theorem allows us to solve the inverse
problem and determines the probability for unknown quantities
H . The denominator in Bayes’ theorem, also named data
evidence, ensures the correct normalization, and can be eval-
uated via the marginalization rule. It is common in Bayesian
probability theory to use a shorthand notation for propositions,
e.g., in the case of a discrete variable m the proposition
m̂ = m, which means the variable m̂ has the value m, is simply
expressed as m. Likewise, for a continuous variable, x say, the
proposition x̂ = x, which means the variable x̂ has the value
x, is simply expressed as x in PDFs. This allows a much more
concise notation and misinterpretations can easily by avoided.
In this notation, the marginalization rule can, e.g., have the form

P (A|I) =
∫

P (A|q,I) p(q)dq. (5)

For more details see Refs. [17,22,35] for a detailed introduction
into Bayesian probability theory. Readers, particularly
interested in the foundations of probability theory, may
want to look at the work of Kolmogorov or more recent
developments by Skilling and Knuth [37,38]. The difference
between Bayesian probability theory and the “frequentist”
point of view, can be found in Refs. [33–35].

Now we consider the following standard setup consisting
of two experiments on the same target: pump-only and
pump-probe, denoted by α and β, respectively. Each
experiment consists of Np measurements, a measurement of
the α experiment consists of one laser pulse, while in the β ex-
periment the measurement comprises a pump pulse and a probe
pulse. We refer to one measurement of the α or β experiment as
α or β measurement, respectively. During one measurement,
two types of elementary coincidence events are detected,
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either a molecule is ionized from its ground state (referred to
as channel 1) or from its excited state (channel 2). The latter is
only possible in the pump-probe measurement (β). We assume
that the number m of elementary events in a single laser pulse is
Poisson distributed with some mean λ. In this paper we assume
that the laser intensity is constant during the entire experiment
and hence, λ is the same for all laser pulses. Mikosch et al.
[15,16] proposed to describe the fluctuations of the laser
intensity by a Gaussian probability density function (PDF)
for the individual λ values. It is straight forward, but needs
a bit more mathematics, to allow for such fluctuating laser
intensities in the Bayesian analysis. We assume that in each
experiment, characterized by a defined delay time between

pump and probe pulse, λ is independent of the occupation of the
spectrum, which means that we neglect population depletion
effects. In one elementary event, the involved molecule can
have mass Mμ and the emitted electron energy Eν . For brevity
we will refer to this particular event as (μν). The ion masses
and the electron energies are discretized, μ,ν ∈ N, due to
the finite resolution of the time-of-flight spectrometer. We
will also use the symbol ρ, if we refer to the measure-
ments/experiments α or β, the symbol j for the channels 1 or
2, and x for the combination of both sets, i.e. x ∈ {1,2,α,β}.
Given an elementary event happens during measurement ρ ∈
{α,β}, the probability that it corresponds to (μν) is denoted
by

q(ρ)
μν = P (M = Mμ,E = Eν |one elementary event during measurement ρ,I). (6)

Moreover, we introduce

q(j )
μν = P (M = Mμ,E = Eν |one elementary event in channel j,I), (7)

the probabilities for (μν) when an elementary event happens in
channel j ∈ {1,2}. All probabilities are properly normalized,∑

μν

q(x)
μν = 1 ∀x ∈ {1,2,α,β}. (8)

We define the mean number of elementary events in a single
laser pulse of the channels and measurements as λx for all x ∈
{1,2,α,β}. In the pump-only measurement (α), all molecules
are in their respective ground state, therefore only channel 1 is
allowed,

q(α)
μν = q(1)

μν , (9)

and λα = λ1. If an elementary event (μν) happens in the pump-
probe measurement (β), the event can belong to channel 1 or 2,
with the respective probabilities p1 and p2 = 1 − p1. Hence,
we get

q(β)
μν = p1 q(1)

μν + p2 q(2)
μν . (10)

The number m(ρ) of elementary events, generated in measure-
ment ρ, is Poisson distributed,

P(m(ρ)|λρ) = (λρ)m
(ρ)

m(ρ)!
e−λρ . (11)

In the β measurement λβ = λ1 + λ2 and the m(β) events
are binomially distributed between channels 1 and 2. The
probability to have m(j ) events of channel j , out of a total
of m(β) events, is therefore

B(m(j )|m(β),pj ) =
(

m(β)

m(j )

)
(pj )m

(j )
(1 − pj )m

(β)−m(j )
. (12)

Then the probability to find m(j ) events of channel j in one
measurement is

P (m(j )|λβ,pj ,I)

=
∞∑

m(β)=0

P (m(j )|m(β),pj ,��λβ,I)P (m(β)|��pj ,λβ,I)

= P(m(j )|λβpj ). (13)

Irrelevant parameters behind the conditional bar have been
crossed out. The first factor is binomial and the second
factor is Poisson distributed. The result is, obviously, also a
Poisson distribution with mean λj = λβpj . We therefore have
equivalently, since λβ = λ1 + λ2,

pj = λj

λ1 + λ2
. (14)

Let N (ρ)
μν be the number of events (μν) in measurement ρ and

{N (ρ)
μν } the set of counts for all pairs (μ,ν). For better readability,

we will denote a set of the form {s(x)
μν } simply by s(x); e.g.,

N (ρ) = {N (ρ)
μν }. Then the joint probability for these counts is

P (N (ρ)|q(ρ),λρ,I)

=
∞∑

m(ρ)=0

P (N (ρ)|m(ρ),q(ρ),��λρ,I)P (m(ρ)|q(ρ),��λρ,I). (15)

The first factor is a multinomial and the second a Poisson
distribution. In total we obtain

P (N (ρ)|q(ρ),λρ,I) =
∏
μν

P
(
N (ρ)

μν |λρq
(ρ)
μν

)
, (16)

which states that each count N (ρ)
μν is independently Poisson

distributed with its individual mean λρq
(ρ)
μν . For the two

measurements we have to use the corresponding probabilities
given in Eqs. (9) and (10). The mean values of the Poisson
distributions for the two measurements are therefore〈

N (α)
μν

〉 = λ1q
(1)
μν〈

N (β)
μν

〉 = λβq(β)
μν

= (λ1 + λ2)
(
p1q

(1)
μν + p2q

(2)
μν

)
= λ1q

(1)
μν + λ2q

(2)
μν . (17)

Hence, one is prompted to simply subtract the counts of
coincidence measurements to get rid of the background signal
(λ1q

(1)
μν ) in measurement β. The difference �Nμν := N (β)

μν −
N (α)

μν of two Poisson numbers obeys the Skellam distribution
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[39], with mean and variance resulting in

〈�Nμν〉 = 〈
N (β)

μν

〉 − 〈
N (α)

μν

〉 = λ2q
(2)
μν ,

〈(�Nμν)2〉 = 〈
N (β)

μν

〉 + 〈
N (α)

μν

〉
. (18)

Obviously, the difference of the counts is an unbiased estimator
of the sought-for quantity q(2)

μν . However, in regions of the
spectrum, where the background dominates, i.e., λ1q

(1)
μν �

λ2q
(2)
μν , the variance will in general be much greater than the

difference of the counts, which will usually lead to nonphysical
negative results and large uncertainties.

So far, we have exploited all events, detected during the indi-
vidual measurements. Now we turn to the single coincidence
evaluation, where only those measurements are recorded, in
which exactly one electron-ion pair (μ,ν) has been detected. As
we will see below, using only the single coincidence events out
of the measured data influences the statistics. There is a further
problem that needs to be addressed: The detectors are not
perfect, which results in false coincidences. To begin with, we
will ignore this problem and consider the single coincidences
detection method for perfect detectors. The probability that
exactly one event, with indices (μν) say, happens can be
computed from Eq. (16), by setting all N

(ρ)
μ′ν ′ = 0, except for

N (ρ)
μν = 1. This leads to

P (ρ)
μν := (

λρq
(ρ)
μν e−λρq

(ρ)
μν

) �=μν∏
μ′ν ′

e
−λρq

(ρ)
μ′ν′

= λρq
(ρ)
μν e

−λρ

∑
μ′ν′ q

(ρ)
μ′ν′

= λρq
(ρ)
μν e−λρ . (19)

In this type of coincidence measurement, there are two possible
outcomes: A coincidence is detected with probability P (ρ)

μν or
not detected with the complementary probability 1 − P (ρ)

μν . The
latter case covers the cases that there was no coincidence or
more than one. It is therefore a Bernoulli type of experiment
and the probability that the number of single coincidences is
n(ρ)

μν given a total of Np measurements is binomial,

P
(
n(ρ)

μν

∣∣Np,P (ρ)
μν ,I

) = B
(
n(ρ)

μν

∣∣N (ρ)
p ,P (ρ)

μν

)
. (20)

The expectation value of the weighted difference between the
counts, measured in experimentβ and experimentα, with equal
numbers of measurements in both experiments, is given by〈

n(β)
μν − χn(α)

μν

〉 = Np

(
P (β)

μν − χP (α)
μν

)
= Npe−λ1

[
λ1q

(1)
μν (e−λ2 − χ ) + λ2q

(2)
μνe

−λ2
]
.

(21)

The simple subtraction, namely setting χ = 1, is not an
unbiased estimator for q(2)

μν anymore and would lead to erro-
neous results. By choosing the weight χ = e−λ2 , this can be
overcome. But, as pointed out before, this weighted subtraction
does not take into account false coincidences due to imperfect
detectors and can lead to nonphysical negative results and large
uncertainties.

Summarized, we have the following data analysis problem:
(1) In the measurement, ions and electrons are created in

pairs in the two independent channels 1 and 2. The number

of electron-ion pairs in each channel follows a Poissonian
distribution with the parameters λ1 and λ2.

(2) Furthermore, each electron-ion pair is assigned with an
electron energy ν and an ion mass μ according to a multinomial
distribution containing the spectra q(1)

μν and q(2)
μν we want to

determine.
(3) Experimentally we can measure channel 1 in the pump-

only measurement or the combination of channels 1 and 2 in
the pump-probe measurement.

(4) To reconstruct the spectra we need the connection
between ions and electrons and therefore use only single
coincidence measurements, where exactly one electron-ion
pair is detected.

(5) Due to imperfect detectors with a detection probability
less than unity false coincidences arise in the coincidence
method.

A powerful and, as a matter of fact, the only consis-
tent approach to take all experimental features, uncertainties,
and additional prior knowledge into account is provided by
Bayesian probability theory [17,35].

IV. BAYESIAN DATA ANALYSIS

We will now use Bayesian probability theory to calculate
the PDF for q(2) = {q(2)

μν }, the spectrum of channel 2, given the
measured dataset D1, which contains the count rates n(α) =
{n(α)

μν } and n(β) = {n(β)
μν }. As set out in the previous section,

n(ρ)
μν counts how often the pair (Eν,Mμ) was detected as single

coincidence event during the experiment ρ. But in contrast
to the previous section, there may be false coincidences
involved. In this paper we only use single coincidence events
for estimating q(2), which is justified by the fact that especially
these events include relevant information about the spectrum.
The case of detecting more than one electron-ion pair does
not allow us to link an electron to the ion it originates from
and the Bayesian approach would be different. In addition to
D1, we also use a second dataset D2 containing N

(α)
Ne,Ni

and

N
(β)
Ne,Ni

, which counts how many measurements lead to the
detection of Ne electrons and Ni ions during the experiments
α and β, respectively. In this case, it is expedient to use all
detected events, not just single coincidences. More details
will be given below. This dataset will be used to determine
the unknown parameters π := {λ1,λ2,ξi,ξe}. λ1 and λ2 were
already introduced in the previous section, and ξi and ξe

are the detection probabilities for ions and electrons, respec-
tively. In a first step we introduce the unknown parameters
π using the marginalization rule of Bayesian probability
theory,

p(q(2)|D1,D2,I)

=
∫

dπ p(q(2)|D1,D2,π,I)p(π |D1,D2,I). (22)

The integration over π means integrating out each parameter
included in π . The domain of each integration parameter,
and therefore the integration region, should be clear from the
context. We keep this abbreviated notation during the whole
derivation. The dataset D2 contains no detailed information
concerning electron energy and ion mass and can therefore be
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omitted in the first factor. Similarly, in the second factor, the
dataset D1 carries negligible information about the parameters
λj and ξe, ξi , and will be suppressed as well. Then, therefore,
we have

p(q(2)|D1,D2,I) =
∫

dπ p(q(2)|D1,π,I)p(π |D2,I).

(23)

There appear two new probability distributions, one for q(2)

given the measured coincidences D1 and the parameters π and
one for the parameters π given the measurements D2.

A. Reconstructing the spectrum q(2)

The first PDF in Eq. (23) can be calculated using again the
marginalization rule to introduce q(α) and q(β),

p(q(2)|n(α),n(β),π,I)

=
∫

dq(α)dq(β) p(q(2)|q(α),q(β),π,I) p(q(α)|n(α),π,I)

×p(q(β)|n(β),π,I), (24)

with dq(ρ) = ∏
μν dq(ρ)

μν . In the last two factors, which repre-
sent p(q(α),q(β)|n(α),n(β),π,I), we have exploited the fact that
the two experiments α and β are not correlated. Knowing the
spectra q(α) and q(β), the spectrum of channel 2 is uniquely
determined due to Eqs. (10) and (14), resulting in

p(q(2)|q(α),q(β),π,I)

= δ

(
q(2) −

(
λ1 + λ2

λ2
q(β) − λ1

λ2
q(α)

))

=
(

λ2

λ1 + λ2

)N
δ(q(β) − p1q

(α) − p2q
(2)), (25)

with N = NμNν , where Nμ and Nν are the total numbers of
bins of {Mμ} and {Nν}, respectively. Hence, we can readily
integrate out q(β). For a better readability, the superscript ρ

will be omitted in the following considerations. It can easily
be included again at the end. At this point it is crucial to recall
that qμν is the probability that an electron with energy Eν

and an ion of mass Mμ are created in an elementary event
(ionization of one molecule). The link to the experimental
observations, however, is q̃(ρ)

μν , the probability that—given a
single coincidence is detected—the measured electron has
energy Eν and the detected ion has mass Mμ. There is a simple
relation between the two probabilities qμν and q̃μν , which is
derived in Appendix 1,

q̃μν = qμν + κ q•νqμ•
1 + κ

, (26)

with κ = λξ̄eξ̄i , where ξ̄e = (1 − ξe) and ξ̄i = (1 − ξi), and
the marginal probabilities qμ• = ∑

ν ′ qμν ′ and q•ν = ∑
μ′ qμ′ν .

We abbreviate this bijection by q̃ = Q̃(q). The interpretation
is quite intuitive: The false coincidences are represented by
the term κ q•νqμ•. False coincidences require that electron
and ion detection fails, which explains the factor ξ̄i ξ̄e. If the
detectors are perfect, κ becomes zero and there are no false
coincidences and q̃μν = qμν holds. The additional factor λ is
due to the fact that at least a second elementary event is needed

to observe false coincidences. In the case of a false coincidence
event corresponding to (μν), an electron with energy Eν

is required, for which the probability is given by q•ν . This
marginal probability corresponds to elementary events with
electron energy Eν and any mass Mμ′ . Similarly the probability
for detecting a mass Mμ, irrespective of the electron energy
associated with the elementary event, is given by qμ•. This
explains the factor q•νqμ•. The denominator 1 + κ is required
for the normalization of q̃μν . Summation over μ or ν reveals
that the marginal probabilities are identical, i.e., q̃μ• = qμ•
and q̃•ν = q•ν . This is very reasonable, as the probability
distribution of the measured electron energies Eν is the same
as the electron energy distribution in the elementary events,
because it does not depend on the correct or false assignment
of corresponding masses.

The PDF p(q̃|n,π,I) can easily be calculated using Bayes’
theorem,

p(q̃|n,π,I) = 1

Z
P (n|q̃,π,I) p(q̃|π,I). (27)

According to Appendix 2 the likelihood function P (n|q̃,π,I)
is multinomial. We use a Dirichlet prior [35] for q̃

p(q̃|I) = 1

B({cμν})
∏
μν

q̃
cμν−1
μν δ(S̃ − 1), (28)

with S̃ = ∑
μν q̃μν , and the normalization B({cμν}) being the

multivariate β function. We can always choose the prior to be
uninformative (flat), by setting all cμν = 1. The posterior is a
Dirichlet PDF as well,

p(q̃|n,π,I) = 1

B({nμν + cμν})
∏
μν

q̃
nμν+cμν−1
μν δ(S̃ − 1).

(29)

Based on the usual transformation rule for PDFs,

p(q|n,π,I) = p(q̃|n,π,I)

∣∣∣∣dQ̃(q)

dq

∣∣∣∣, (30)

we show in Appendix 3 that Eq. (30) eventually becomes

p(q(ρ)|n(ρ),π,I)

= (1 + κρ)−(Nμ−1)(Nν−1)

B
({

n
(ρ)
μν + c

(ρ)
μν

}) ∏
μν

(Q̃μν(q(ρ)))n
(ρ)
μν +c

(ρ)
μν −1

× δ

(∑
μν

q(ρ)
μν − 1

)
. (31)

Here we have reintroduced the superscript ρ and defined κρ =
λρξeξ i . Finally, the sought probability distribution in Eq. (24)
becomes

p(q(2)|n(α),n(β),π,I)

=
(

λ2

λ1 + λ2

)N ∫
dq(α)dq(β) p(q(α)|n(α),π,I)

×p(q(β)|n(β),π,I)δ(q(β) − p1q
(α) − p2q

(2)). (32)

The integral is a convolution, which describes the subtraction
of the two spectra q(α) and q(β).
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B. The PDF for the parameters λ1, λ2, ξi , and ξe

We still need to determine the PDF p(π |D2,I) in Eq. (23).
For estimating the parameters π = {λ1,λ2,ξi,ξe} we will use
the second dataset D2. The superscript ρ will be omitted in the
following considerations. The dataset D2 contains {NNe,Ni

},
the total numbers of measurements, in which Ne electrons
and Ni ions were detected, irrespective of electron energy
or ion mass. For instance, N1,1 is the total number of single
coincidences measured in the experiment, which consists of
Np measurements. The sum over all {NNe,Ni

} is the number of
measurements Np,

Np =
∑
Ne,Ni

NNe,Ni
. (33)

For better readability we introduce a more compact notation.
We enumerate the possible count-pairs (Ne,Ni) by an integer l,
where l = 0 stands for the pair (0,0), l = 1 for (0,1), l = 2 for
(1,0), and so on. Then {NNe,Ni

} → {Nl}. Moreover, we measure
{Nl} in the pump-only (α) and the pump-probe (β) experiment,
denoted by N (ρ) = {N (ρ)

l }. Now we can proceed with Bayes’
theorem,

p(π |N (α),N (β),I) = 1

Z
P (N (α),N (β)|π,I) p(π |I)

= 1

Z
P (N (α)|λ1,λ2,ξi,ξe,I)

×P (N (β)|λ1,λ2,ξi,ξe,I)

×p(λ1,λ2,ξi,ξe|I). (34)

In the last step we have exploited the fact that the
two experiments are uncorrelated. For real applica-

tion we can use uniform priors for ξe and ξi and
Jeffreys’ prior [40] for λj , i.e., p(λ1,λ2,ξi,ξe|I) ∝ 1

λ1λ2
,

resulting in

p(π |N (α),N (β),I) = 1

Z′ P (N (α)|λα,ξi,ξe,I)

×P (N (β)|λβ,ξi,ξe,I)
1

λ1λ2
, (35)

with λα = λ1 and λβ = λ1 + λ2. Next, we consider the like-
lihood P (N (ρ)|λρ,ξi,ξe,I) term. In Appendix 4 we have
computed the probability Pl = PNeNi

that in one measurement
the count-pair is (Ne,Ni). This probability actually depends
on ρ via λρ . Clearly, the probability P (N (ρ)|λρ,ξi,ξe,I) is
multinomial,

p(N (ρ)|λρ,ξe,ξi,I) = N (ρ)
p !∏l∗

l=0 N
(ρ)
l !

l∗∏
l=0

(
P

(ρ)
l

)N
(ρ)
l . (36)

In principle, l∗ = ∞, but, as argued before, it is expedient to
adjust the experiment such that λ is O(1). Then P

(ρ)
l rapidly

decreases with l (see Appendix 4) and it suffices to restrict to
l < l∗, with a moderate value for l∗. All other events belonging
to l � l∗ are combined in one auxiliary event l∗, with

N
(ρ)
l∗ = N (ρ)

p −
l∗−1∑
l=0

N
(ρ)
l , P

(ρ)
l∗ = 1 −

l∗−1∑
l=0

P
(ρ)
l . (37)

C. Evaluating the probability density for q(2)

We now have determined the probability distribu-
tion p(q(2)|D1,D2,I). The result can be summarized as
following:

Summary of the definitions and the derived probabilities.

Reconstruction of the spectra of channels 1 and 2 out of a pump-only (α) experiment producing only the spectrum of channel 1 and of a
pump-probe (β) experiment producing a mixture of the spectra of channels 1 and 2. The important variables are

q (x) ... Spectra of the channels, respectively, experiments, x ∈ {1,2,α,β}. q (x) = {q (x)
μν }, where μ depicts the measured ion masses and ν

the electron energies. Nμ and Nν are the numbers of elements in {μ} and {ν}, respectively, and N = NμNν .

π … Summarizes the parameter λ1, λ2, ξi , and ξe, where λ1 and λ2 are parameters of the Poisson distributions determining the measured
count rates and ξi and ξe are the detection probabilities of ions and electrons, respectively.

D1 ... Dataset containing the count rates n(ρ) = {n(ρ)
μν }, ρ ∈ {α,β}, of the coincidence events.

D2 ... Dataset containing the total numbers of measurements N (ρ) = {N (ρ)
Ne,Ni

} in which Ne electrons and Ni ions were detected.

The probability for the spectra q (2) is

p(q (2)|D1,D2,I) =
∫

dπ p(q (2)|D1,π,I)p(π |D2,I).

For the first probability distribution we derived in Sec. IV A:

p(q (2)|D1,π,I) =
(

λ2

λ1 + λ2

)N ∫
dq (α)dq (β) p(q (α)|n(α),π,I) p(q (β)|n(β),π,I)δ(q (β) − p1q

(α) − p2q
(2)) with

p(q (ρ)|n(ρ),π,I) = (1 + κρ)−(Nμ−1)(Nν−1)

B
({

n
(ρ)
μν + c

(ρ)
μν

}) ∏
μν

(Q̃μν(q (ρ)))n
(ρ)
μν +c

(ρ)
μν −1δ

(∑
μν

q (ρ)
μν − 1

)
,
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pi = λi

λ1 + λ2
, Q̃μν(q (ρ)) = q (ρ)

μν + κρ q (ρ)
•ν q (ρ)

μ•
1 + κρ

and κρ = λρ(1 − ξe)(1 − ξi).

For the second probability distribution we derived in Sec. IV B,

p(π |D2,I) ∝ P (N (α)|λα,ξi,ξe,I) P (N (β)|λβ,ξi,ξe,I)
1

λ1λ2
with

p(N (ρ)|λρ,ξe,ξi ,I) = N (ρ)
p !∏l∗

l=0 N
(ρ)
l !

l∗∏
l=0

(
P

(ρ)
l

)N
(ρ)
l , λα = λ1 and λβ = λ1 + λ2.

For the explanation of N (ρ)
p ,N

(ρ)
l and P

(ρ)
l , see Sec. IV B.

A suitable technique for sampling from a probability distri-
bution is Markov Chain Monte Carlo (MCMC), which is based
on constructing a Markov chain that has the desired distribution
as its equilibrium distribution. The technique is standard in
Bayesian probability theory [35] (and references therein). In
particular, we are interested in the mean and the variance of
q(2). But we could as well determine the expectation value of
an arbitrary function of O(q(2)) by evaluating the integral

〈O(q(2))〉 =
∫

dq(2)O(q(2))p(q(2)|D1,D2,I). (38)

Even more general expectation values depending on the pa-
rameters θ = {q(α),q(2),λ1,λ2,ξi,ξe} can be calculated using

〈O(θ )〉 =
∫

dθO(θ )f (θ ), (39)

with

f (θ ) =
(

λ2

λ1 + λ2

)N∫
dq(β)p(q(α)|n(α),π,I) p(q(β)|n(β),π,I)

δ(q(β) − p1q
(α) − p2q

(2))p(π |D2,I). (40)

We have used the Metropolis Hastings algorithm to generate
the Markov chain {θk}. We start with a parameter set θk=1 and
every new parameter set k + 1 can be proposed by varying
parameters in the old parameter set k. The new parameter set
k + 1 is accepted with the probability

Pacc = min

{
1,

f (θk+1)

f (θk)

}
. (41)

It occurs that the first 10–20% of a Markov chain have to
be discarded to ensure that the rest of the Markov chain is
independent of the initial state θk=1, and therefore the Markov
chain is thermalized to the desired distribution. For calculating
confidence intervals for expectation values, such as that in
Eq. (39), the states in the Markov chain have to be uncorrelated,
which can be ensured by taking only every Nrunth state of
the Markov chain. Nrun can be controlled by evaluating the
autocorrelation function or using techniques like binning and
jackknife. Finally, the observable can be estimated by

O := 〈O(θ )〉 ≈ 1

NMarkov

∑
k

O(θk). (42)

The confidence intervals are estimated from

�O := σO√
NMarkov

, (43)

for which it is crucial that the NMarkov elements of the Markov
chain are uncorrelated. The variance

σ 2
O = 〈O(θ )2〉 − 〈O(θ )〉2 (44)

can in turn be estimated from the Markov chain. Alternatively,
the uncertainty �O can be determined from independent
MCMC runs.

V. MOCK DATA ANALYSIS

In this section we demonstrate the performance of our
algorithm. It is recalled that the reconstruction of q(2) is
hampered by two disturbing influences: false coincidences and
pump-only background. The false coincidences are due to the
presence of fragment molecules and imperfect detectors, so
that the detected electron-ion pair does not necessarily belong
to the same molecule. To test the reconstruction power of our
approach, we will treat these influences separately. First, we
study the case of false coincidences without background signal
q(1), i.e., we use λ1 → 0. The same problem has been addressed
by Mikosch and Patchkovskii [15]. They suggest to use a
steplike spectral function for the parent and a series of Gaussian
peaks for the spectral function of the fragment. These spectra
are depicted as solid lines in Fig. 3. The left (right) column
belongs to the parent (fragment) spectrum. On purpose, the
problem is aggravated by exponentially distributed step heights
to study the impact of false coincidences on the reconstructed
spectrum if the parent-to-fragment ratio varies over several
orders of magnitude. For comparison with the results of
Mikosch and Patchkovskii, we use the same test spectra and the
same parameters, namely ξe = ξi = 0.5 and λ=1.5. In general,
the probability distribution for the energies Eν corresponding
to ion mass Mμ is given by the conditional probability

qν|μ = qμν

qμ•
. (45)

In the present test case we have two different ion masses
(parent and fragment), for which we assume according to
Ref. [15] the probabilities qμ=1• = 0.986 and qμ=2• = 0.014
for the two species. The spectrum of the parent (fragment)
molecules is qp = qμ=1ν (qf = qμ=2ν). The product rule
[inversion of Eq. (45)] yields

qμν = qν|μ qμ•. (46)

The mock data are generated as follows. In total we generate
Np measurements. For each measurement a random number
m is drawn from a Poisson distribution with mean λ = 1.5.
Next, m index pairs (μν) are generated according to the
probability qμν . Then, with probability ξi the ion with mass
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FIG. 3. Test calculation with mock data. The black lines are the spectra used to generate the data (similar to Mikosch and Patchkovskii
[15]) and the blue lines including error bands (±σ ) are the reconstructed spectra. The parameters are ξe = ξi = 0.5, λ=1.5, and Np = 106. The
blue lines in (a) and (b) show a parent and a fragment spectrum obtained by the Bayesian approach but without taking false coincidences into
account. In (c) and (d) the false coincidences are treated in the correct way and the spectra can be reconstructed. The reconstruction works even
better if the number of data points and therefore Np = 107; see spectra (e) and (f).

Mμ is “detected” and added to the list of detected masses.
Likewise, with probability ξe the electron with energy Eν is
“detected” and added to the list of detected electron-energies.
From this list we obtain the datasets D1 and D2 on which our
approach is based. The results of the Bayesian reconstruction
are shown in Fig. 3. In the first row [Fig. 3(a)] we used
our algorithm ignoring the presence of false coincidences by
setting κ = 0. Therefore, the result is similar to that obtained
by Mikosch and Patchkovskii [15]. The parent spectrum shows
peaklike features from the fragment spectrum at the lower
plateaus. Also the fragment spectrum includes contributions
from the parent spectrum and has therefore a higher magnitude
for the gaussian peak at the highest plateau in the parent
spectrum.

Taking the false coincidences properly into account yields
the results depicted in the second row [Fig. 3(b)]. We see
that the approach is able to reassign the false coincidences
to the spectrum they belong to. Only at the lowest plateau,
the error bars in the parent spectrum are comparable to the
signal size, which just indicates that there are not enough data
points. Increasing the number of data points produces result in
Fig. 3(c). Now also the lowest plateau in the parent spectrum
is reconstructed satisfactorily.

We see that the Bayesian approach is well suited to reassign
false coincidences. Next we will test how the approach can
handle the background subtraction. To this end we use the frag-
ment spectrum from above (Gaussian peaks) as background
spectrum and the parent spectrum from above (steps) as signal
spectrum. This allows us to easily identify residual background
structure in the reconstructed spectrum. We choose the parame-
ters λ1 = λ2 = 1.5, ξi = ξe = 0.5, and Np = N (α)

p = N (β)
p =

107. First we analyze the PDF p(π |D2,I) of Eq. (35) for the
parameters. The mean values and the 95% confidence intervals
are shown in Table I. Obviously, all parameters are well

TABLE I. Estimated parameters π̂ with 95% confidence intervals
corresponding to the reconstructed spectra in Fig. 4. The desired
values π are all within the confidence intervals.

π π̂

λ1 1.5 1.4996 ± 0.0014
λ2 1.5 1.5018 ± 0.0020
ξi 0.5 0.4998 ± 0.0004
ξe 0.5 0.4997 ± 0.0004
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FIG. 4. Simulated test spectra. The subplots (a) and (b) represent the mock data for the pump-only (background) and the pump-probe
(background + signal) measurement, respectively. The reconstructed background and signal are shown in (c) and (d). The black solid lines
show the underlying test-spectra. The blue jagged line along with the shaded regions represent the reconstructed signal and the error band (±σ ).
The parameters are λ1 = λ2 = 1.5 and ξi = ξe = 0.5.

estimated by the algorithm since the desired values are within
the 95% confidence intervals of the parameter’s distributions.
The results of the reconstruction of the spectrum is depicted in
Fig. 4. The simulated data n(α) and n(β) are given in the upper
part, and the “true” and the reconstructed background and
signal spectra in the lower part of the figure. The background
spectrum has a maximal standard error of σmax ≈ 10−4 at the
tops of the background peaks. Therefore, it is reasonable that
the signal spectrum in the center of the steps can only be
reconstructed reliably if it is larger than this noise level of
10−4. We want to comment that the noise level can always
be reduced by increasing the number of measurements Np.
Consequently, the reconstruction works very well in the first
three plateaus. There the highest signal-to-background ratio of
2.4% is at E = 125. Even at plateau four, where the signal
is merely 1.8 × 10−5, the reconstruction is satisfactory within
the error band. At the last plateau, however, which merely
has a size of 1.8 × 10−6, the center of the step cannot be
reliably reconstructed. At this point, a few comments are in
order: Intuitively, the reader might be slightly disappointed
about the fact that there is still background structure in the
reconstructed signal in the last two steps. First of all, one
has to be aware of the logarithmic scale and the fact that
we are talking about the reconstruction of a signal that is
only 0.02% of the background. What we see in Fig. 4 is

the best and most unbiased form-free reconstruction based on
the data and the background information possible. We might
nevertheless be disappointed, because we know that the true
signal is flat and the structure we see has the form of the
background. This disappointment is based on additional prior
knowledge about signal and background structure, that we have
withheld the Bayesian analysis. Generally speaking, as long as
we are seriously disappointed about a reconstruction, we have
missed to incorporate parts of the background information.
A form-free reconstruction is only reasonable if we have
no prior knowledge about the spectrum, whatsoever. Even
if we only know that the spectrum has to be smooth, and
should not jump discontinuously between neighboring bins,

TABLE II. Estimated parameters λ1, λ2, ξi , and ξe for the
acetone measurements at different pump-probe delay times with 95%
confidence intervals.

π̂ (12.5 fs) π̂ (300 fs) π̂ (900 fs)

λ1 0.3214 ± 0.0021 0.3562 ± 0.0024 0.3387 ± 0.0023
λ2 0.6446 ± 0.0046 0.1162 ± 0.0024 0.0679 ± 0.0020
ξi 0.2483 ± 0.0015 0.2215 ± 0.0016 0.2265 ± 0.0017
ξe 0.3735 ± 0.0021 0.3677 ± 0.0024 0.3647 ± 0.0024
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FIG. 5. Photoelectron-photoion coincidence spectra obtained by pump-probe multiphoton ionization of acetone molecules with a pump-
probe delay time of 12.5 fs. The x coordinates denote the measured electron kinetic energy E. Graphs (a) and (b) show pump-only (black
dashed lines) and pump-probe (red solid) spectra measured in coincidence with the parent and fragment, respectively. Graphs (c) and (d) depict
the reconstructed spectra obtained with the Bayesian formalism (orange solid), together with the difference spectra obtained by subtraction of
the pump-only from the pump-probe experiments (black solid), also for the parent (c) and fragment (d). The shaded orange area indicates the
error band (±σ ), as obtained from the Bayes method. Graphs (e) and (f) show selected energy regions of (c) and (d), where the deviation of the
difference spectra and the Bayesian spectra is significant, for the scaling of the y axes of the two spectra as described in the text.

this represents prior knowledge that can be included, e.g., by
a spline-based reconstruction or derivative priors [35].

VI. APPLICATION TO EXPERIMENTAL DATA

In this section we apply the Bayesian formalism, which
we have derived and tested for reliability in the previous
sections, to pump-probe photoionization spectra of isolated
acetone molecules. In recent studies of nonadiabatic relax-
ation processes triggered by photoexcitation of high-lying
molecular Rydberg states, we were able to observe the time-
dependent population transfer through internal conversion
from the photoexcited states to a series of lower Rydberg
states, revealing insight into the coupling of excited molecular
states [7,30] and the corresponding fragmentation behavior [3].

The analysis of the pump-probe PEPICO spectra, however,
is difficult in this case because of the following reasons:
(i) The applied three-photon excitation scheme results in a
strong pump-only background, and (ii) the pump-probe signal
cannot be spectrally separated from the pump-only signal.
The application of a first and simplified version of the Bayes
algorithm allowed us to assign photoelectron bands and to
model the population transfer [30], which was limited by
uncertainties about false coincidences. To demonstrate the
superiority of the presented Bayesian approach, we show in
the following PEPICO measurements on acetone molecules
for selected pump-probe time delays. The Bayesian analysis
of the spectra provides information about the relaxation and
fragmentation dynamics that are enabled by the significant
increase of the signal-to-noise ratio and the exclusion of false
coincidences.
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FIG. 6. Same as described in the caption of Fig. 5 for a pump-probe delay time of 300 fs.

Table II lists the mean numbers of ionization events, λ1

and λ2, as well as the detection probabilities ξi and ξe for
selected pump-probe time delays of 12.5, 300, and 900 fs,
as estimated from the corresponding data sets D2. Minor
variations of the estimated parameter λ1 result, due to statistical
correlations in the parameter estimation, in variations of ξi and
ξe, although these values should remain constant. The decrease
of λ2 represents the decay of Rydberg state population [30].

Furthermore, we tested by mock data analysis that the
fluctuations of λ1 and λ2 due to instabilities of the laser in
our experiments have no influence on the conclusions drawn
from the experimental data.

Figures 5–7 show time-resolved PEPICO measurements for
the different time delays. Each of the three figures consists of
six graphs showing photoelectron (PE) spectra detected in co-
incidence with parent (acetone) and fragment (acetyl) cations,
as obtained in pump-probe and pump-only measurements
(panels a and b), as well as a comparison of spectra that were
reconstructed by the Bayesian algorithm to difference spectra
obtained by a simple subtraction of pump-only and pump-
probe measurements (panels c–f). In the following we briefly
review the assignment of PE bands in the spectra and previous
interpretations of the relaxation and fragmentation dynamics,

as discussed in more detail in Refs. [3,7,30]. Photoexcitation
to high-lying Rydberg states (6p, 6d, 7s; PE peak at 2.7 eV)
results in fast (320 fs) relaxation of the photoexcited population
to lower Rydberg states and even faster population decay
(80–130 fs) out of these states. These nonadiabatic internal
conversion processes are mediated by Rydberg-valence cou-
plings. The accompanying conversion of electronic energy to
vibrational energy was found to cause fragmentation in the
ionic state, that is after ionization, to acetyl ions and neutral
methyl radicals, if the amount of converted energy exceeds
(0.79 ± 0.04) eV. These relaxation dynamics give rise to the
following PEPICO structures: The dominant parent PE band
between 2 and 3 eV (panels a) results from photoionization
of the photoexcited states and higher Rydberg states that are
populated by internal conversion but for which the activation
energy for fragmentation has not been reached. The fragment
spectra (panels b), by contrast, consist of several PE bands up to
2 eV, representing the Rydberg manifold down to the 3p states,
for which sufficient energy is converted for fragmentation. As
information about the excited-state dynamics is contained in
the signal associated with channel 2 (cf. Fig. 2), we now turn to
the graphs in panels c–f of Figs. 5–7, where the Bayesian results
(orange lines) are compared to difference spectra (pump-probe
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FIG. 7. Same as described in the caption of Fig. 5 for a pump-probe delay time of 900 fs.

minus pump-only, black). Note that the difference spectra are
obtained in absolute counts, as displayed on the left ordinate,
while for the reconstructed Bayesian spectra the expectation
value λqμν is plotted on the right ordinate. The reason for
plotting these quantities is that the counts nμν are an adequate
estimator for λqμν under certain conditions. For instance, in
the case of perfect detectors (ξe = ξi = 1) we can set nμν to
be proportional to the probability of the true coincidences in
Eq. (A2) and for small λ the equation nμν ∝ λqμν follows.
Since there is no consistent way to relate these quantities, we
scale the y axis of the two spectra to each other, guided by our
eyes, such that we obtain apparent overlap. The significant
increase of the signal-to-noise ratio and the exclusion of
false coincidences allows some interpretations, which were
previously impossible and will be discussed in the following.

For the shortest pump-probe delay of 12.5 fs (Fig. 5)
strong signals are observed because the pump and probe pulses
overlap in time and the higher light intensity results in a
strong increase of the highly non-linear ionization process.
At this delay, the agreement of the Bayesian spectra with the
difference spectra is fair. Although the Bayesian and difference
spectra cannot be compared quantitatively, scaling the spectra
as shown in Figs. 5(c) and 5(d) indicates significant deviations,

for the parent spectrum predominantly below 1.5 eV [Fig. 5(e)]
and for the fragment spectrum above 2.2 eV [Fig. 5(f)].
We attribute the differences to false coincidences, which are
not included in the Bayesian spectrum. While this effect is
particularly pronounced at the shortest delays due to the strong
signal, corresponding to high λ values, it can also be observed
in the 300 fs delay parent spectrum at 0.8 eV [corresponding to
the 3p states, Fig. 6(e)]. A high accuracy of the parent signal
is a prerequisite for the determination of the fragmentation
ratio, which is of importance in photofragmentation studies
and could not previously be determined in the mentioned
spectral regions because the influence of false coincidences
was not clear. For the 12.5 fs delay measurement at 0.8 eV
electron energy the deviation is most significant: Based on the
Bayesian analysis the fragmentation probability is (91 ± 2)%,
while the difference spectrum suggests a much lower value
of 74% (both values are obtained by integrating the fragment
and parent spectra between 0 and 1.5 eV). We note that these
quantitative conclusions are obtained by consistently relating
parent and fragment signals obtained within the same method,
that is difference-parent to difference-fragment and Bayes-
parent to Bayes-fragment. Consequently, it is not possible
to quantitatively compare, for example, the Bayes-fragment
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spectrum to the difference-fragment spectrum, whereas the
Bayesian fragment-to-parent ratio can well be compared to
that of the difference method. The reliable Bayesian result
shows that the nonadiabatic relaxation process from the pho-
toexcited Rydberg states (6p, 6d, 7s) to the 3p Rydberg
states leads to almost complete fragmentation. The significant
deviation demonstrates that a correction for false coincidences
is required to obtain a reliable fragmentation probability, in
particular, at these high λ values. Similarly, although less
pronounced, in the 300 fs delay measurement (Fig. 6) the
Bayesian analysis yields a fragmentation probability for the 3p

state of (92 ± 2)%, which in this case even agrees with the
value of 90% obtained by signal subtraction.

A similar deviation, although connected to a different
interpretation, is obvious in the 12.5 fs measurement in the
fragment signal between 2.2 and 3.0 eV [Fig. 5(f)]. Although
the fragment signals obtained by the Bayesian formalism
(orange) and by the difference approach (black) overlap up
to 2.2 eV [Fig. 5(d)], they deviate above 2.2 eV [Fig. 5(f)].
The corresponding parent signals (Bayes and difference), in
contrast, overlap between 2.2 and 3.0 eV [Fig. 5(c)]. This in-
dicates that the true probability for fragmentation, as obtained
from the Bayesian analysis, is actually lower as suggested by
the difference spectra, leading to the following interpretation:
The PE band between 2.2 and 3.0 eV corresponds to ionization
of Rydberg states that are populated directly by photoexcitation
or by nonadiabatic relaxation, although with too little en-
ergy conversion for fragmentation [3]. Nevertheless, a certain
fragment signal is present in this energy range, although
at significantly different intensity, as predicted by Bayesian
analysis compared to simple signal subtraction. This difference
is important because the fragment signal can be caused by a
subsequent fragmentation channel [2] and the fragment signal
strength is consequently a measure for the contribution of
this fragmentation channel. In subsequent fragmentation the
molecule is photoionized to the cationic ground state, which
would not lead to fragmentation, but subsequently absorbs
a further photon in the ionic state, which deposits sufficient
energy for fragmentation [2]. According to the Bayesian spec-
trum [Fig. 5(f)], the fragmentation probability is (6.7 ± 1.6)%,
compared to 20% as obtained by the difference spectrum.
Again, the incorrectly high fragment difference signal can be
attributed to false coincidences, in this case of a fragment
ion and an electron that belongs to a parent ion. We note
that, first, although this subsequential pathway was identified
in a previous experiment [3], the corresponding branching
ratio could not be determined. Second, the branching ratio
sensitively depends on the laser intensity and pulse duration,
as it is proportional to the probability of photon excitation in
the cationic state.

Next, we turn to another problem that is encountered
when the pump-only spectrum is simply subtracted from the
pump-probe spectrum. Because the pump-only measurement
(α, cf. Fig. 2) overestimates the pump-only signal contribution
(channel 1) of a pump-probe measurement (β), the difference
spectrum can become smaller than the actual signal from the
excited state. This effect can be clearly seen in Figs. 7(c) and
7(e). At these long delay times the excited-state population has
vastly decayed, resulting in a weak remaining parent signal,
as correctly reconstructed by the Bayesian algorithm. The

difference spectrum, by contrast, shows a significantly poorer
signal-to-noise ratio and averages approximately to zero.

Finally, the poor signal-to-noise ratio of the difference
spectra at the longest time delays prevents the identification of
persistent signals, that can clearly be identified in the Bayesian
analysis. The signals in the 900 fs (Fig. 7) and 1500 fs (not
shown) parent spectra between 1.5 and 3 eV [Fig. 7(e)] and
the fragment signal between 0 and 3 eV [Figs. 7(d) and
7(f)] are both clear indicators for a fraction of the population
that does not decay from the excited Rydberg states. These
nondecaying signals are consistent with previous two-photon
excitation experiments [7] and could now also be identified in
three-photon excitation experiments.

VII. SUMMARY AND OUTLOOK

We have demonstrated how Bayesian probability theory can
be used to analyze pump-probe photoionization experiments
with photoelectron-photoion coincidence detection. The in-
trinsic problems of pump-only and/or probe-only background
signals and false coincidences originating from multiple ion-
ization events can consistently be overcome. Most importantly,
data acquisition times can be reduced significantly by the
Bayesian analysis, as the correction for false coincidences
allows for much higher ionization rates, and because it provides
higher signal-to-noise ratios.

Based on challenging mock data we have demonstrated and
quantified the reliability of the Bayesian method for spectral
reconstruction. The application of the method to time-resolved
PEPICO studies provided insights into the nonadiabatic re-
laxation dynamics of isolated acetone molecules. Quantitative
statements about fragmentation probabilities only became
possible because false coincidences are taken into account
correctly. The signal-to-noise ratio improvement was demon-
strated by comparison to simple difference spectra and allowed
us to identify ionization signals with a constant character,
which could not be identified before in these data. Finally,
also the problem of overestimating pump-only contributions in
difference spectra, which is avoided in the Bayesian approach,
could be demonstrated.

The Bayesian approach is highly flexible and is not at all
restricted to the assumption made in the present paper. It is
straightforward to adjust it to different experimental condi-
tions, such as fluctuating laser intensities, or to incorporate
additional assumptions about the desired spectrum, such as
smoothness, or more complicated fragmentation and excitation
channels.

In view of time-resolved photoionization experiments, the
application of probe photon energies of about 15 to 20 eV
is appealing because it exceeds the ground state ionization
potential of most molecules and therefore allows to observe and
follow the decaying photoexcited population all the way to the
ground state. Femtosecond laser pulses in this energy range
can be obtained from high-order harmonic generation [20].
The related high probe-only background can be superimposed
on the excited-state signal, leading to significant spectral
distortions [19,20]. The presented Bayesian approach can be
adapted to such experimental conditions and will lead to similar
improvements as presented in the present work.
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APPENDIX

1. Probability for a single coincidence

Here we compute the probability P (SC,Eν,Mμ|qμν,λ,I)
that a single coincidence (SC) is detected in a single mea-
surement, where the electron has energy Eν and the ion has
mass Mμ. From the experimental observation we cannot tell
true from false coincidences. As a first step we introduce the
number m of elementary events that occur in one measurement
via the marginalization rule

P (SC,Eν,Mμ|q,λ,I)

=
∞∑

m=1

P (SC,Eν,Mμ|m,q,λ,I)P (m|λ,I). (A1)

The sum begins with m = 1, otherwise there cannot be a coin-
cidence. There are two possibilities: (a) it is a true coincidence
SCt or (b) it is a false one SCf . In the first case, the proposition
says: One of the events has (μν), and both electron and ion are
detected. At the same time there are m − 1 events with arbitrary
(μ′ν ′) for which the electrons and ions are not detected. The
probability that the generated electron is detected is ξe and
the complement ξe is the probability that it is not detected.
The analog quantities for the ions are ξi and ξ i . Taking into
account that there are m possibilities where the detected event
may happen, we find

P (SCt ,Eν,Mμ|m,q,λ,I)

= m ξeξiqμν(ξeξ i)
m−1,

P (SCt ,Eν,Mμ|q,λ,I)

= qμν ξeξi

∞∑
m=1

m(ξeξ i)
m−1 λm

m!
e−λ

= λ ξeξi qμν e−λ(1−ξeξ i ). (A2)

In the other case of false coincidences, the detected particles
stem from two different events, one with μν ′ which yields the
mass and one with μ′ν from which the electron is detected.
The partner index can have any value, since it is not detected.
In this case there are m possibilities for the position of the first
event and m − 1 for the second. After introducing the marginal
probabilities

q•ν :=
∑
μ′

qμ′ν, qμ• :=
∑
ν ′

qμν ′ , (A3)

we have

P (SCf ,Eν,Mμ|m,q,λ,I)

=
∑
μ′ν ′

�(m � 2) m(m − 1) ξeξiqμν ′qμ′ν(ξeξ i)
m−1

= �(m � 2) m(m − 1) ξeξiqμ•q•ν(ξeξ i)
m−1, (A4)

P (SCf ,Eν,Mμ|q,λ,I)

= qμ•q•ν ξeξi

∞∑
m=2

m(m − 1)(ξ eξ i)
m−1 λm

m!
e−λ

= λ ξeξiqμ•q•νλξeξ ie
−λ(1−ξ eξ i ), (A5)

where � is a generalization of the Heaviside step function for
boolean arguments, as is used in some programming languages,

�(b) =
{

1 if b = True
0 if b = False. (A6)

In total we obtain

P (SC,Eν,Mμ|q,λ,I)

= λξeξi(qμν + λq•νqμ•ξeξ i)e
−λ(1−ξeξ i ). (A7)

Marginalization over μν yields the probability for a single co-
incidence during a measurement, irrespective of the measured
electron energy and ion mass

qsc := P (SC|q,λ,I)

=
∑
μν

P (SC,Eν,Mμ|q,λ,I)

= λξeξI (1 + λξeξ i) e−λ(1−ξeξ i ). (A8)

However, given that we only consider single coincidences, the
probability for an outcome μν in this coincidence is

q̃μν = P (Eν,Mμ|SC,q,λ,I)

= P (Eν,Mμ,SC|q,λ,I)

P (SC|q,λ,I)

= qμν + λξeξ iq•νqμ•
1 + λξeξ i

. (A9)

This is the required relation between the experimentally mea-
sured spectrum (distorted by false coincidences) {q̃μν} and the
underlying true spectrum {qμν}.

2. Likelihood

The sought likelihood function is multinomial if the total
number of single coincidence events Nsc is given:

P (n|q̃,Nsc,I) = �

(∑
μν

nμν = Nsc

)
Nsc!

∏
μν

(q̃μν)nμν

nμν!
,

(A10)

with the definition of �(.) given in Eq. (A6). Since Nsc is
unknown, but the number of measurements Np is given, we
have to introduce Nsc by the marginalization rule and obtain

P (n|q̃μν,Np,I) =
∑
Nsc

P (n|q̃,Nsc) P (Nsc|Np,qsc,I)

=
∑
Nsc

�

(∑
μν

nμν = Nsc

)
Nsc!∏
μν nμν!

×
∏
μν

(q̃)
nμν

μν P (Nsc|Np,qsc)
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= N∗
sc!∏

μν nμν!

∏
μν

(q̃μν)nμν P (N∗
sc|Np,qsc),

(A11)

with N∗
sc = ∑

μν nμν . We remark that the probability that in
Np measurements Nsc single coincidences are detected is the
outcome of a Bernoulli experiment which is described by a
binomial distribution,

P (Nsc|Np,qsc) = B(Nsc|Np,qsc). (A12)

Normalization leads to the sought likelihood.

3. The Jacobian determinant

Here, we will use Eq. (26) to map the posterior p(q̃|n,π,I)
of Eq. (29) to the PDF p(q|n,π,I) in terms of the true spectrum
q. The posterior

p(q̃|n,π,I) = M(q̃) δ(S̃ − 1) (A13)

consists of a multinomial part M(q̃) and a δ function. The
desired transformation follows from

p(q|n,π,I) = p(Q̃(q)|n,π,I) det

[
dQ̃(q)

dq

]

= M(Q̃(q))δ
(
S̃ − 1

)
det

[
dQ̃(q)

dq

]
. (A14)

First we compute the Jacobian of the transformation

dQ̃(q)

dq
= (1 + κ)−1

(
δμμ′δνν ′ + κ�

μμ′
νν ′

)
, with

�
μμ′
νν ′ = δμμ′q•ν + δνν ′qμ•. (A15)

Then the determinant reads

det

[
dQ̃(q)

dq

]
= (1 + κ)−NμNν det(11 + κ�). (A16)

One can easily prove that with M
μμ′
νν ′ = qμ•q•ν we find

�2 = � + 2M,

�M = 2M,

�n = � + (2n − 2)M, (A17)

tr(�) = Nμ + Nν,

tr(M) = 1.

We can use these relations to calculate the logarithm of the
remaining determinant:

ln[det(11 + κ�)]

= tr[ln(11 + κ�)]

=
∞∑

n=1

(−1)n+1

n
κntr(�n)

=
∞∑

n=1

(−1)n+1

n
[κn(Nμ + Nν − 2) + (2κ)n]

= (Nμ + Nν − 2) ln(1 + κ) + ln(1 + 2κ). (A18)

Hence,

det(11 + κ�) = (1 + κ)Nμ+Nν−1 1 + 2κ

1 + κ
, (A19)

and eventually we obtain

det

[
dQ̃(q)

dq

]
= (1 + κ)−(Nμ−1)(Nν−1) 1 + 2κ

1 + κ
. (A20)

Finally we also want to express the δ function in Eq. (A14)
in terms of the variables q. To this end, we express S̃ as function
of S = ∑

μν qμν

S̃ =
∑
μν

q̃μν =
∑
μν

qμν + κqμ•q•ν
1 + κ

= S + κS2

1 + κ
. (A21)

The argument of the δ function δ(S̃ − 1) has a unique zero at
S = 1. Considered as function of S, we therefore have

δ(S̃ − 1) = δ(S − 1)∣∣ dS̃
dS

∣∣ = 1 + κ

1 + 2κ
δ(S − 1). (A22)

Combination with Eq. (A20) and insertion in Eq. (A14) finally
yields

p(q|n,π,I) = M[Q̃(q)] δ(S − 1) (1 + κ)−(Nμ−1)(Nν−1).

(A23)

4. Probabilities for the count-pairs (Ne,Ni )

We consider the pump-only or the pump-probe experiment
and ask for the probability P (Ni,Ne|λ,ξi,ξe) that during a
single measurement Ne electrons and Ni ions are detected,
irrespective of their energy or mass, given the mean number λ

of elementary events during one pulse and given the detection
probabilities ξe and ξi . First we introduce the number m of
elementary events via the marginalization rule, exploiting the
fact that detection of electrons and ions is uncorrelated, i.e.,

PNiNe
:= P (Ni,Ne|λ,ξi,ξe)

=
∞∑

m=0

P (Ni |m,ξi,I)P (Ne|m,ξe,I)P (m|λ,I). (A24)

The probability P (Ni |m,ξi,I) is binomial, since for each of
the m ions there is a probability ξi that it will be detected. The
same holds true for the number of detected electrons, i.e.,

p(Ni |m,ξi,I) = B(Ni |ξi,m),

p(Ne|m,ξe,I) = B(Ne|ξe,m). (A25)

The number of elementary events m is Poisson distributed with
mean λ,

p(m|λ,I) = P(m|λ). (A26)

The easiest way to compute the desired probabilities is via the
generating function, which is defined as

�(x,y) :=
∞∑

Ne=0

∞∑
Ni=0

xNeyNi PNeNi

=
∞∑

m=0

e−λ λm

m!

∞∑
Ne=0

(
m

Ne

)
(xξe)Neξ

m−Ne

e

×
∞∑

Ni=0

(
m

Ni

)
(yξi)

Ni ξ
m−Ni

i
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=
∞∑

m=0

e−λ λm

m!
[(xξe + ξe)(yξi + ξ i)]

m

= e−λ eλ(xξe+ξe)(yξi+ξ i ). (A27)

The probabilities PNeNi
are then readily obtained as coefficients

of the Taylor expansion

PNe,Ni
=

(
∂
∂x

)Ne

Ne!

(
∂
∂y

)Ni

Ni!
�(x,y)

∣∣∣∣
x=0,y=0

. (A28)

Straightforward evaluation of the derivatives, us-
ing, e.g., MATHEMATICA, yields for the lowest

terms,

P00 = e−λ(1−ξ eξ i ), P10 = λξeξ i P00,

P01 = λξeξi P00, P11 = λξeξi(1 + κ) P00,

P20 = λ2

2
ξ 2
e ξ

2
i P00, P02 = λ2

2
ξ

2
eξ

2
i P00,

P30 = λ3

3!
ξ 3
e ξ

3
i P00, P03 = λ3

3!
ξ

3
eξ

3
i P00,

P21 = λ2

2
ξ 2
e ξiξ i (2 + κ) P00, P12 = λ2

2
ξeξ eξ

2
i (2 + κ) P00,

(A29)
with κ = λξeξ i .
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