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Entangling and disentangling many-electron quantum systems with an electric field
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We show that the electron correlation of a molecular system can be enhanced or diminished through the
application of a homogeneous electric field antiparallel or parallel to the system’s intrinsic dipole moment.
More generally, we prove that any external stimulus that significantly changes the expectation value of a one-
electron operator with nondegenerate minimum and maximum eigenvalues can be used to control the degree of a
molecule’s electron correlation. Computationally, the effect is demonstrated in HeH+, MgH+, BH, HCN, H2O,
HF, formaldehyde, and a fluorescent dye. Furthermore, we show in calculations with an array of formaldehyde
(CH2O) molecules that the field can control not only the electron correlation of a single formaldehyde molecule
but also the entanglement among formaldehyde molecules. The quantum control of correlation and entanglement
has potential applications in the design of molecules with tunable properties and the stabilization of qubits in
quantum computations.
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I. INTRODUCTION

The expectation values of two or more subsystems of a pure-
state quantum system can become inseparable in a process
known as entanglement. Formally, entanglement is present
between two subsystems of a pure-state quantum system when
the system’s density matrix cannot be expressed as a product
of the subsystems’ density matrices [1,2]. In a many-electron
quantum system there is a special type of entanglement known
as electron correlation which occurs when the pure-state many-
electron density matrix cannot be expressed as the product
of one-electron density matrices [3–5]. In addition to the
computation of electron correlation, a significant challenge
in quantum theory is the control of a molecule’s electron
correlation [6–9]. In this paper we show that the degree of
electron correlation and entanglement in quantum molecular
systems can be controlled through an external stimulus such
as an electric field.

Computationally, we show the application of an electric
field in the direction parallel to a molecule’s dipole moment
decreases the degree of electron correlation in the molecule,
and conversely, the application of an electric field in the
direction opposite to a molecule’s dipole moment increases the
degree of electron correlation in the molecule. More generally,
using the set of one-electron reduced density matrices (1-
RDMs) and notions of convexity, we prove mathematically that
any external stimulus that significantly changes the expectation
value of a one-electron operator with nondegenerate minimum
and maximum eigenvalues can be used to control the degree of
electron correlation in the molecule. The concept is illustrated
through calculations with the molecules HeH+, MgH+, BH,
HCN, H2O, HF, CH2O, and a fluorescent dye. Furthermore, we
show in calculations with formaldehyde (CH2O) that the field
can control not only the electron correlation of a formaldehyde
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molecule but also the entanglement among formaldehyde
molecules in an array. The control of a molecule’s correla-
tion and entanglement has potential applications to designing
molecules and materials with controllable properties as well
as modifying the degree of correlation between fundamental
units such as qubits in quantum computation.

II. THEORY

An electric field applied to a molecular system, whose
magnitude provides a continuous parameter for controlling the
strength of the dipole moment, can be employed to control the
degree of the molecule’s electron correlation. More generally,
we can show that any adjustable external stimulus that changes
the expectation value of a one-electron operator

1
Ô with

nondegenerate minimum and maximum eigenvalues can be
employed to control a molecule’s electron correlation. To
demonstrate this result, we will rely upon some key ideas from
convexity and reduced-density-matrix theory [10–12].

The 1-RDM of a pure N -electron state is computable from
the state’s N -electron wave function

1D
(
1,1̄

) = N

∫
ψ(123, . . . ,N )ψ∗(1̄23, . . . ,N

)

× d(23, . . . ,N ). (1)

Such a 1-RDM is said to be pure N -representable [13–17].
Although the set of pure N -representable 1-RDMs is not
convex, it is contained within the convex set of ensemble
N -representable 1-RDMs [14]. A 1-RDM is ensemble N -
representable if and only if it can be obtained from the
integration of at least one ensemble N -electron density matrix
[10,11,13]. Because the set is convex, all 1-RDMs within the
set can be expressed as convex combinations of its extreme
1-RDMs [12]. Coleman proved the key result that the extreme
1-RDMs are the pure-state 1-RDMs whose wave functions are
Slater determinants [11,13]. Formally, the convex set of ensem-
ble N -representable 1-RDMs is the convex hull of its extreme
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elements,P 1
N = Conv(SSlater) whereSSlater is the set of 1-RDMs

whose N -electron pre-images are Slater determinants.
The expectation value of the one-electron operator

1
Ô is

expressible in terms of the 1-RDM:

〈1
Ô〉(ε) = Tr[

1
Ô 1D(ε)], (2)

where ε is a controllable parameter such as an electric field
for controlling the expectation value of Ô. The ε controls
the expectation value of Ô by changing 1D(ε) which is the
1-RDM of the ground state of the system with the stimulus ε.
By convexity the minimum and maximum expectation values
occur at one or more extreme 1-RDMs. Importantly, from
Coleman’s theorem [13] we know that these 1-RDMs are
contained inSSlater, the set of uncorrelated 1-RDMs. From these
two observations we obtain the following theorem.

Theorem. If the operator
1
Ô has a nondegenerate ground

state, then there is a unique extreme 1-RDM in the uncorrelated
set SSlater for which the minimum expectation value of

1
Ô is

achieved.
Proof. Because the expectation value of a one-electron ob-

servable is an affine function of the 1-RDM, the minimization
of the expectation value over the convex set of 1-RDMs P 1

N

must occur at one or more extreme points. Because the operator
1
Ô is assumed to have a nondegenerate ground state, the

minimum must occur at a unique point. By Coleman’s theorem
the unique extreme point at which the minimum occurs must
be a 1-RDM with a Slater-determinant pre-image, that is a
1-RDM in the uncorrelated set SSlater. �

Similarly, if the operator
1
Ô has a nondegenerate maximal

state, then there is a unique extreme 1-RDM in the uncorrelated
set SSlater for which the maximum expectation value of

1
Ô is

achieved. Consequently, the expectation value of the operator
1
Ô can be controlled with ε to steer the 1-RDM towards the

uncorrelated extreme 1-RDM at which the expectation value
reaches its minimum or maximum value.

Controllable 1-electron observables that correspond to non-
degenerate 1-electron operators provide a general mechanism
through their response to an external stimulus such as an
electric field for modulating the electron correlation of a
molecular system. In the case of the dipole moment, as the
electric dipole moment is moved towards an extreme by the
electric field, the 1-RDM moves toward the extreme 1-RDM
corresponding to the Slater determinant with the minimum
or maximum observable. Typically, a molecule with a greater
polarizability will be more sensitive to the electric field, and
hence, will exhibit greater changes in its electron correlation.
Practically, the magnitude of the stimulus must be less than
the value required to change the electronic identity of the
molecule; in the case of the electric-field stimulus the field
must be less than the value required to ionize the molecule.
Figure 1 shows a schematic representation of the convex set of
1-RDMs. The color scheme of the set is chosen to represent
its convexity with the most blue color (minimum value) and
its yellow color (maximum value) occurring at extreme points
(extreme 1-RDMs) of the set. Changing the electric field steers
the 1-RDM, represented by the dot, towards increasing or
decreasing the dipole moment. In the direction towards the
boundary of the set of 1-RDMs, the electric field decreases the

1D

FIG. 1. A schematic representation of the convex set of 1-RDMs
is depicted. The color scheme of the set is chosen to represent its
convexity with the most blue color (minimum value) and its most
yellow color (maximum value) occurring at extreme points (extreme
1-RDMs) of the set. Changing the electric field steers the 1-RDM,
represented by the dot, towards increasing or decreasing the dipole
moment. In the direction towards the boundary of the set of 1-RDMs,
the electric field decreases the electron correlation while in the
opposite direction, the electric field increases the electron correlation.

electron correlation while in the opposite direction, the electric
field increases the electron correlation.

III. APPLICATIONS

After a discussion of computational methodology, we ex-
plore computationally the entangling and disentangling of
molecules with an electric field through computations with
two-electron systems HeH+ and MgH+ where only the two
valence electrons of MgH+ are correlated; molecules BH,
HCN, H2O, and HF; the formaldehyde molecule CH2O; and
an array of six formaldehyde molecules CH2O, as well as a
fluorescent dye mimic of VF2.1.H.

A. Computational methodology

Molecular electronic structure calculations were performed
on HeH+, MgH+, BH, HCN, H2O, HF, formaldehyde,
formaldehyde clusters, and a fluorescent dye. The two-electron
calculation of HeH+ was performed with full configuration
interaction (FCI), and the calculation of MgH+ was per-
formed with a complete active-space configuration interaction
(CASCI) using an active space of 2 electrons in 31 orbitals.
For the larger molecules we employed the parametric two-
electron reduced density matrix (2-RDM) method in which a
parametrization of the 2-RDM is directly computed without
the many-electron wave function [18–25]. The augmented
correlation-consistent polarized valence double-zeta (aug-cc-
pVDZ) basis set was employed for calculations of HeH+,
MgH+, BH, HCN, H2O, and HF, the correlation-consistent
polarized valence double-zeta (cc-pVDZ) basis set was em-
ployed for calculations of formaldehyde and the formaldehyde-
cluster [26,27], and the Dunning-Hay double-zeta basis set was
employed for the dye mimic [28].

The degree of electron correlation in the 1-RDM is quanti-
fied through the von Neumann entropy [29], equivalent to its
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first-order Rényi entropy [30],

S1 = −Tr[1D ln (1D)] (3)

or its second-order Rényi entropy [30–32].

S2 = − ln[Tr(1D2)]. (4)

As in Eq. (1), the 1-RDM is normalized to N . With this
normalization the von Neumann entropy of the 1-RDM is
a nonnegative quantity than vanishes only in the absence of
electron correlation. While the 1-RDM can also be normalized
to 1 in the definition of entropy, such a normalization produces
an entropy that is not zero in the absence of electron correlation
and that is not size-consistent upon the doubling of the quantum
system. Note that electron correlation, a form of entanglement,
is not the same as the electron correlation energy, and that
the relationship between these two quantities is nontrivial
[4,33,34]. Refer to Appendix A for a discussion of electron
correlation in terms of entanglement and Appendix B for
additional details and references on the use of von Neumann
entropy as a measure of electron correlation. The second-order
entropy provides experimentally accessible information [35].
In Sec. III B the notation �Sα will be used to indicate the
difference in the entropy in the presence and the absence of
an electric field ε, �Sα = Sα(ε) − Sα(0). The α-order Rényi
entropy of cluster formation is given by

Sα,f = Sα,cluster −
∑

i

Sα,i , (5)

where the summation is over the entropy of each of the
individual molecules. The summation is permissible due to the
additivity of the Rényi entropy for noninteracting constituents.
The entropy of formation quantifies the excess quantum cor-
relation that exists in the cluster due to the intermolecular
bonding. The von Neumann entropy is used to measure
both electron correlation and entanglement for each molecule
in Sec. III B while the second-order Rényi entropy is only
employed to measure electron correlation and entanglement
in the formaldehyde array.

B. Results

For both HeH+ and MgH+ the first-order Rényi entropy as
a function of the field strength along and against the dipole
moment is shown in Table I. As predicted by the theorem
in Sec. II, the electron correlation, measured by the entropy,
increases with the electric field in the direction against the
dipole moment and decreases with the electric field in the di-
rection of the dipole moment. While not shown, the Euclidean
distance from the center of the 1-RDM set showed similar
correlation trends as the entropy. The 1-RDM moves towards
a noninteracting extreme point of the set as the expectation
value of the one-body dipole moment increases. Figure 2 also
shows that for HeH+ the expectation value of the Coulomb
repulsion between a pair of electrons 1/r12 decreases with the
field strength in the direction of the dipole moment θ = 0 and
increases with the electric field in the direction opposite to that
of the dipole moment θ = π , which is consistent with previous
work showing a statistical relationship between r12 expectation
values and electron correlation [36].

TABLE I. Dipole moments and entropies of HeH+ and MgH+ in
the electric field (ε) are presented from p2-RDM calculations using the
augmented cc-pVDZ basis set. The entropy decreases with the electric
field in the direction of the dipole moment while the entropy increases
with the electric field in the direction against the dipole moment. The
changes in dipole moment and Rényi entropy are reported relative to
zero-field values. Dipole moments are expressed in units of Debye
(D), and the Rényi entropies are dimensionless.

ε(a.u.) |μ| S1 �|μ| �S1

HeH+ 0.015 1.9296 0.1316 0.1614 −0.0014
0.010 1.8705 0.1321 0.1023 −0.0009
0.000 1.7682 0.1330 0.0000 0.0000

−0.010 1.6795 0.1333 −0.0887 0.0003
−0.015 1.6389 0.1338 −0.1293 0.0008

MgH+ 0.015 4.7615 0.3449 1.1779 −0.0588
0.010 4.4078 0.3602 0.8242 −0.0435
0.000 3.5836 0.4037 0.0000 0.0000

−0.010 2.5031 0.4763 −1.0805 0.0726
−0.015 1.8224 0.5281 −1.7612 0.1244

Table II displays the change in the energies, dipole mo-
ments, and entropies of BH, HCN, H2O, and HF with electric-
field strength. The entropy decreases with the electric field in
the direction of the dipole moment while the entropy increases
with the electric field in the direction against the dipole
moment. Figure 3 shows an approximately linear relationship
between the change in the dipole moment and the change in
the first-order Rényi entropy relative to the Rényi entropy at
ε = 0. While the computed results are approximately linear
and monotonic, the theoretical results presented in the previous
section do not require this relationship to be linear or even
strictly monotonic.

Similar results are obtained for the molecule formaldehyde.
We apply a homogeneous one-dimensional electric field of
strength starting from 105−108 V/m, as used in the experiment
[37], and proceeding to 109 V/m. Table III shows that both

0 0.005 0.01 0.015
0.9435

0.944

0.9445

0.945

0.9455

0.946

0.9465

0.947

 = 0
 = 

FIG. 2. For HeH+ the expectation value of the Coulomb repulsion
between a pair of electrons 1/r12, reported in a.u. of energy, decreases
with the field strength in the direction of the dipole moment θ = 0
and increases with the electric field in the direction opposite to that
of the dipole moment θ = π .
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TABLE II. Dipole moments and entropies of molecular systems in
the electric field (ε) are presented from p2-RDM calculations using the
augmented cc-pVDZ basis set. The entropy decreases with the electric
field in the direction of the dipole moment while the entropy increases
with the electric field in the direction against the dipole moment. The
changes in dipole moment and Rényi entropy are reported relative to
zero-field values. Dipole moments are expressed in units of Debye
(D), and the Rényi entropies are dimensionless.

ε(a.u.) |μ| (D) S1 �|μ| (D) �S1

BH −0.015 0.1036 1.0330 −1.2682 0.0626
−0.005 1.0499 0.9903 −0.3219 0.0199

0.000 1.3718 0.9704 0.0000 0.0000
0.005 1.7156 0.9525 0.3438 −0.0179
0.015 2.6268 0.9205 1.2550 −0.0499

HCN −0.015 1.8065 1.4970 −1.2605 0.0132
−0.005 2.1001 1.4882 −0.9669 0.0044

0.000 3.0670 1.4838 0.0000 0.0000
0.005 3.1707 1.4791 0.1037 −0.0046
0.015 3.8377 1.4707 0.7707 −0.0131

H2O −0.015 1.3462 0.8144 −0.7215 0.0076
−0.005 1.9534 0.8091 −0.1143 0.0023

0.000 2.0677 0.8068 0.0000 0.0000
0.005 2.1985 0.8048 0.1308 −0.0020
0.015 2.2842 0.8017 0.2165 −0.0051

HF −0.015 1.6620 0.6404 −0.2564 0.0050
−0.005 1.8913 0.6368 −0.0271 0.0014

0.000 1.9184 0.6354 0.0000 0.0000
0.005 2.0155 0.6339 0.0971 −0.0015
0.015 2.0454 0.6317 0.1270 −0.0037

the first-order and second-order Rényi entropies decrease with
the electric field in the direction of the dipole moment while
they increase with the electric field in the direction against the
dipole moment. Importantly, the modulation of the electron
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FIG. 3. The dipole moment relative to its value at ε = 0 versus
the first-order Rényi entropy relative to its value at ε = 0 is shown
for each of the molecules (a) BH, (b) HCN, (c) H2O, and (d) HF.
The data indicate an approximately linear relationship. For BH the
Pearson correlation coefficient is 0.981 and the slope of the best-fit
line is −23.69 a.u. The Rényi entropies are dimensionless.

TABLE III. Changes in the dipole moments and entropies of
CH2O and (CH2O)6 are reported as functions of the electric field
ε relative to their values at zero field ε = 0. In both cases the entropy
decreases with the electric field in the direction of the dipole moment
but increases with the electric field in the opposite direction. Dipole
moments are expressed in units of Debye (D), and the Rényi entropies
are dimensionless. The zero-field dipole moments of CH2O and
(CH2O)6 are 2.4263 and 13.9403 D, respectively. The 1-RDMs were
computed from the a cc-pVDZ basis set using p2-RDM.

ε (a.u.) �|μ| (D) �S1 �S2

CH2O −0.015 −0.6337 0.0224 0.0007
−0.005 −0.0808 0.0081 0.0002

0.000 0.0000 0.0000 0.0000
0.005 0.3407 −0.0064 −0.0003
0.015 1.1097 −0.0208 −0.0007

(CH2O)6 −0.015 −3.8415 0.1517 0.0008
−0.005 −2.6110 0.0484 0.0003

0.000 0.0000 0.0000 0.0000
0.005 1.5238 −0.0384 −0.0002
0.015 4.2936 −0.1427 −0.0007

correlation by the electric field is applicable to not only
individual molecules but also clusters of molecules.

Clusters of formaldehyde molecules were employed in
cold-temperature experiments, first reported in 2003 [38] and
perfected in 2016 using an electrostatic Sisyphus trap [37].
We consider the two-dimensional lattice of six formaldehyde
molecules separated by 5.0 Å shown schematically in Fig. 4.
As for the single formaldehyde molecule, Table III reveals
that the Rényi entropies of the cluster decrease with the
electric field in the direction of the dipole moment while
they increase with the electric field in the opposite direction.
Significantly, as displayed in Fig. 5, the increase or decrease in
the entanglement of the cluster system is amplified compared
to that of the individual molecules at infinite separation.
The electric field controls not only the electron correlation
within the molecule but also the electronic entanglement of
formaldehyde molecules.

We also examined the effect of the electric field on the
electron correlation of larger molecules such as a fluorescent
dye mimic of VF2.1.H [40,41], which has been used for sensing
voltage in neurons [41]. Figure 6 displays the fluorescent dye
mimic of VF2.1.H [40,41]. Table IV presents the first-order
Rényi entropy as a function of the field in the directions parallel

FIG. 4. Schematic of the (CH2O)6 crystal from Jmol [39] is
shown. The oxygen atoms are marked in red, the carbon atoms in
gray, and the hydrogen atoms in black.
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FIG. 5. The first-order Rényi entropies S1 of the six noninteract-
ing molecules and the cluster are shown as functions of the electric
field in the direction of the dipole moment (θ = 0) and in the direction
opposite to the dipole moment (θ = π ). The cluster disentangles and
entangles more in the field than the six noninteracting molecules,
which indicates that the field cannot only decorrelate (correlate) the
individual molecules but also disentangle (entangle) the molecules
from each other. The Rényi entropies are dimensionless.

and antiparallel to the direction of the dipole moment. As
seen in the other molecular systems, the electron correlation,
measured by the entropy increases with the electric field in the
direction opposite to that of the dipole moment and decreases
with the electric field in the direction of the dipole moment. The
change in entropy reflects the movement of the 1-RDM towards
a noninteracting extreme point of its N -representable set as the
expectation value of the one-body dipole moment increases.

IV. DISCUSSION AND CONCLUSION

The degree of electron correlation and entanglement in
quantum molecular systems can be controlled through an

FIG. 6. A fluorescent dye mimic of VF2.1.H is shown.

TABLE IV. Changes in the dipole moments and entropies of a
fluorescent dye mimic of VF2.1.H are reported as functions of the
electric field ε relative to their values at zero field ε = 0. The entropy
decreases with the electric field in the direction of the dipole moment
but increases with the electric field in the direction against the dipole
moment. Dipole moments are expressed in units of Debye (D), and
the Rényi entropies are dimensionless.

ε(a.u.) |μ| �|μ| (D) S1 �S1

0.0100 42.4705 13.3129 12.3920 −0.1372
0.0075 40.2996 11.1419 12.4238 −0.1054
0.0050 38.6528 4.6908 12.4600 −0.0692
0.0010 29.3534 0.7957 12.5139 −0.0153
0.0000 29.1576 0.0000 12.5292 0.0000

−0.0010 26.6115 −2.5461 12.5451 0.0158
−0.0050 23.1638 −5.9938 12.6284 0.0992
−0.0075 18.3631 −10.7947 12.6960 0.1669
−0.0100 17.0677 −12.0899 12.7674 0.2382

external stimulus such as an electric field. We prove that any
external stimulus that significantly changes the expectation
value of a one-electron operator with nondegenerate minimum
and maximum eigenvalues can be used to control the degree
of electron correlation in the molecule. To obtain this result,
we employ the convexity of the set of 1-RDMs and Coleman’s
theorem that the extreme 1-RDMs of the set are the uncor-
related 1-RDMs whose N -electron wave functions are Slater
determinants. Using the electric field, for example, to steer
the 1-RDM in the direction of the extreme 1-RDM where the
dipole moment reaches its maximum value causes the quantum
system to decorrelate.

The control of quantum molecular systems was demon-
strated computationally with HeH+, MgH+, BH, HCN, H2O,
HF, CH2O, a fluorescent dye, as well as an array of six
CH2O. Using the first-order and second-order Rényi entropies
to quantify the degree of correlation, we observe that the degree
of correlation can be decreased or increased through the appli-
cation of a homogeneous electric field in the direction parallel
or antiparallel to the molecule’s intrinsic dipole moment. Using
other metrics to quantify the electron correlation, such as the
distance of the 1-RDM to the center of the convex set [42],
leads to the same conclusions. The calculations with an array
of formaldehyde molecules also show that the field can control
not only the electron correlation of a formaldehyde molecule
but also the entanglement among formaldehyde molecules in
an array. Thereby, the external stimulus can also be employed
to entangle or disentangle a set of molecules assembled by
intermolecular forces or an optical trap. The control of a
molecule’s correlation and entanglement by an electric field
has potential applications to designing molecules and materials
with targeted properties, modifying the degree of correlation
between fundamental units in quantum computation, and un-
derstanding the electric-field properties of biological systems,
especially membranes.
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APPENDIX A: ELECTRON CORRELATION AS
ENTANGLEMENT

Electron correlation is a form of quantum entanglement.
For a pure state the definition of entanglement is that the
density matrix cannot be written as a product of the density
matrices of its subsystems. In the case of electron corre-
lation the subsystem density matrices are the 1-RDMs in
their natural-orbital (eigenfunction) basis set. Therefore, an
N -electron quantum system is correlated if and only if its
N -electron density matrix cannot be written as a product of
the 1-RDMs in their natural-orbital basis set. This definition
of electron correlation in the terminology of entanglement is
equivalent to the conventional definition in which the wave
function is inexpressible as a single Slater determinant. While
entanglement is often associated with particles that are located
at a great distance from each other, such large separation is not
necessary for entanglement and not applicable in the case of
electrons bound to a molecule [43]. Appendix B also shows
that the cumulant of the 2-RDM is nonvanishing if and only if
the N -electron density matrix is correlated. Furthermore, the
von Neumann entropy of the 1-RDM is nonzero if and only if
the cumulant of the 2-RDM does not vanish. Therefore, the von
Neumann entropy of the 1-RDM is nonzero if and only if the
quantum system exhibits electron correlation (entanglement of
the N -electron density matrix with respect to the product of the
1-RDMs).

APPENDIX B: QUANTIFICATION OF ELECTRON
CORRELATION

The cumulant (or connected) part 2� of the two-electron
reduced density matrix (2-RDM) [5,44–46] is defined as

2�
ij

kl = 2D
ij

kl − 2 1Di
k ∧ 1D

j

l (B1)

in which 1D and 2D are the 1- and 2-RDMs, normalized to
N and N (N − 1), and ∧ is the antisymmetric tensor product
known as the Grassmann wedge product [5,47]. From the
cumulant’s definition in Eq. (B1) it can be shown that the trace

of the cumulant of the 2-RDM is nonpositive and equal to
[48–50]

Tr(2�) = −Tr(1D 1Q) � 0, (B2)

with 1Q(= 1I − 1D) being the 1-hole RDM in terms of the
1-RDM and the identity matrix 1I . Because 1D and 1Q are
positive semidefinite, the trace of the cumulant 2-RDM van-
ishes if and only if 1D and 1Q lie in orthogonal subspaces
which is equivalent to the N eigenvectors of the 1-RDM
(natural orbitals) being completely filled and the remaining
eigenvectors (natural orbitals) being completely empty or the
1-RDM being representable by an N -electron Slater determi-
nant. Consequently, we have that the trace of the cumulant
2-RDM vanishes if and only if the N -electron quantum system
is not correlated [48]. Furthermore, because the magnitude
of the trace of the cumulant 2-RDM reflects the degree to
which natural orbitals are shared by both particles and holes,
it provides a mechanism to quantify the degree of electron
correlation.

The trace of the cumulant can be related to the von Neumann
entropy [1,2,29,30] in Eq. (3) The natural logarithm of the
1-RDM can be expanded in a power series about the identity
matrix

ln(1D) = ln(1I − 1Q) (B3)

= −
∞∑

n=1

(1Q)n/n (B4)

≈ −1Q − O(1Q2). (B5)

Substituting Eq. (B5) into the von Neumann entropy in Eq. (3)
and using Eq. (B2) yields

S1 ≈ −Tr(2�) + O{Tr[1D(1Q)2]} � 0. (B6)

Hence, we observe that the von Neumann entropy is equal to
the negative of the trace of the cumulant 2-RDM through the
terms scaling linearly with the 1-hole RDM. Like the negative
of the trace of the cumulant 2-RDM, the von Neumann entropy
is a nonnegative quantity which vanishes only in the absence of
electron correlation. The von Neumann entropy of the 1-RDM
has been employed extensively in the literature [33,34,50–58]
as a measure of electron correlation.
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