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Optimal control of superconducting gmon qubits using Pontryagin’s minimum principle:
Preparing a maximally entangled state with singular bang-bang protocols
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We apply the theory of optimal control to the dynamics of two “gmon” qubits, with the goal of preparing
a desired entangled ground state from an initial unentangled one. Given an initial state, a target state, and a
Hamiltonian with a set of permissible controls, can we reach the target state with coherent quantum evolution,
and, in that case, what is the minimum time required? The adiabatic theorem provides a far from optimal solution in
the presence of a spectral gap. Optimal control yields the fastest possible way of reaching the target state and helps
identify unreachable states. In the context of a simple quantum system, we provide examples of both reachable
and unreachable target ground states, and show that the unreachability is due to a symmetry. We find the optimal
protocol in the reachable case using three different approaches: (i) a brute-force numerical minimization, (ii) an
efficient numerical minimization using the bang-bang ansatz expected from the Pontryagin minimum principle,
and (iii) direct solution of the Pontryagin boundary value problem, which yields an analytical understanding of
the numerically obtained optimal protocols. Interestingly, our system provides an example of singular control,
where the Pontryagin theorem does not guarantee bang-bang protocols. Nevertheless, all three approaches give
the same bang-bang protocol.

DOI: 10.1103/PhysRevA.97.062343

I. INTRODUCTION

The coherence times of quantum devices are rapidly
increasing [1,2], promising novel quantum machines and
technologies [see, e.g., Refs. [3–6]]. Optimal control plays a
crucial role in driving machines governed by classical laws of
physics, enhancing their performance and efficiency. Given
the finite coherence times of quantum devices, optimal control
may be even more important for quantum technologies,
as slow performance may make certain coherent processes
altogether impossible. How can we optimally manipulate
systems and devices governed by coherent quantum dynamics
(see Ref. [7] for a review)? What are the characteristics of
optimal quantum control protocols?

Despite a long history, especially in the few-body context
[8,9] (see also Refs. [10,11]), several practical and fundamental
questions remain unanswered [7,12]. With numerous novel
applications to many-body dynamics [13–15], cold atoms
[16–18], and quantum information processing (e.g., topolog-
ical quantum computing [19–21] and variational quantum
algorithms [22–28]), quantum optimal control has emerged
as an exciting frontier in nonequilibrium quantum dynamics.
The objectives of quantum optimal control are diverse. We may
want to steer the quantum states to a certain desired target state
from a fixed initial state, prepare states with certain figures of
merit (e.g., squeezed states) [29,30], cool down the quantum
systems [31–35], or generate a unitary evolution operator (e.g.,
a quantum gate) independently of the initial state [36–42].

One particular application of optimal control is finding
shortcuts [43] to the adiabatic evolution without any modifica-
tion to the form of the Hamiltonian: starting from the ground
of a Hamiltonian (for certain values of the coupling constants),

how should we change these tunable coupling constants, within
a permissible range, to reach another ground state (correspond-
ing to different values of the coupling constants) as fast as
possible? Constraining the range of the coupling constants is
one (not unique but experimentally motivated) way of fixing
the energy scale of the Hamiltonian, which is important for
making the problem well defined (an unphysical arbitrary
increase of the energy scale can make all processes arbitrarily
fast). Even in this simplest case, many questions remain
unanswered. Of particular interest is the shortest possible time
to reach the target state from a given initial state. This time scale
sets a permissible-Hamiltonian-dependent measure of distance
between the initial and the target state, the properties of which
are relatively unexplored.

Focusing on a simple highly tunable two-qubit system [44]
relevant to new superconducting devices, here we explore the
properties of optimal control for transforming the quantum
state from a given initial state. We consider, as an example,
the creation of an entangled singlet state. Due to the purely
quantum nature of these states and their sensitivity to environ-
mental perturbations, it is difficult to prepare them directly.
In order to prepare entangled states, one typically initiates the
quantum system in an easy-to-create direct product state and
uses quantum evolution to transform the state to an entangled
one. A simple method for such state transformation is based
on the quantum adiabatic theorem: Using a tunable device the
Hamiltonian of which (for different parameters) supports both
trivial and entangled ground states, we can reach the entangled
state by slowly changing the device parameters. Here, we
are interested in creating the entangled state in the context of
shortcuts to adiabaticity. Optimal control has also been applied
to the creation of two-qubit entangled states in the general
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context of perfect entanglers, i.e., unitary operators that map
various direct-product states to the entangled Bell states
[45–47].

According to the adiabatic theorem, preparation of the target
ground state is achieved once the process takes much longer
than a characteristic time scale set by the energy gap between
the ground state and the first excited state. The long time scales
required by the adiabatic theorem are undesirable. As only the
final state is of interest, we do not need to constrain the system
to remain in the instantaneous ground state, making these time
scales unnecessary. This is the essence of the optimal-control
approach to finding shortcuts to adiabaticity. In the absence of
this constraint, can we reach the target ground state exactly in
a finite time? In that case, what is the best way of changing the
Hamiltonian parameters, i.e., the optimal protocol. What is the
shortest time required?

Here we address these questions using a two-step approach.
We choose a measure of distance (based on the wave-function
overlap) between the final and the target states. For a given total
time, we find the protocol which minimizes this distance. We
then keep increasing the total time until the optimal distance
vanishes. Our permissible Hamiltonians are characterized by
two bounded control knobs. A priori, our scheme is not
concerned with a trajectory on the ground-state manifold
and the system can be arbitrarily excited with respect to the
instantaneous ground state. Interestingly, we find that in a
case where the adiabatic transformation fails due to a level
crossing, controlled nonadiabatic dynamics is also incapable
of preparing the target state. While optimal control relies on
nonadiabatic dynamics and should be naively insensitive to
the properties of an adiabatic trajectory between the initial and
target states, the same symmetry that protects a level crossing
and prevents an adiabatic passage forbids the more general
transformation by nonadiabatic evolution.

In another case where the two ground states are not sepa-
rated by a level crossing, we find that our optimal nonadiabatic
protocol prepares the target state exactly with a sequence of
square pulses, known as a bang-bang protocol. The general
problem of finding such protocols is of considerable interest
(particularly in the many-body context) and as we see in
this simple model the knowledge of the bang-bang form
of the protocol may significantly reduce the computational
complexity of the problem. While, generically, bang-bang
protocols are expected from the Pontryagin theorem [48,49],
we can have singular controls that may not be bang-bang.
Interestingly, in our model, we do find a singular interval.
Nevertheless, the optimal solution turns out to be bang-bang.

II. MODEL AND SETUP

Consider a system described by a Hamiltonian with tunable
parameters and an initial state that is the ground state of this
Hamiltonian for certain values of these parameters. When
attempting to transform this state by Hamiltonian evolution,
the desired final state may be reachable or unreachable. In the
special case where the initial and final states are both ground
states of a gapped Hamiltonian, the adiabatic theorem implies
that the desired state can be reached at least in the infinite time
limit.

Consider as an example the case of preparing the maximally
entangled singlet state of two qubits,

|ψtarget〉 = 1√
2

(|↑↓〉 − |↓↑〉), (1)

from an unentangled initial ground state. The up and down
spins are eigenstates of σ z [σ z|↑〉 = |↑〉 and σ z|↓〉 = −|↓〉],
where σx,y,z denote the Pauli matrices. The form of the
Hamiltonian is set by the architecture of the device. Motivated
by the coupling between powerful gmon qubits developed in
the Martinis group (see Chen et al. [44]), we choose

H = B1σ
x
1 + B2σ

x
2 + J

(
σx

1 σx
2 + σ

y

1 σ
y

2

)
. (2)

The gmon qubits allow for much more control. For two
qubits, we can add other single-qubit terms σ

y

1,2 and σ z
1,2. It is

also possible to generate an effective σ z
1 σ z

2 interaction through
virtual tunneling to higher levels outside the qubit sector (it
is possible to limit leaking outside the qubit manifold [50]).
The larger the number of control knobs, the more power we
have in state transformation. However, finding optimal controls
becomes more complicated with more control fields. In this
paper we focus on the simplest case, where only changing two
parameters in time generates the dynamics. This simple case
is illuminating from a theoretical perspective. It also provides
a fast and robust way of creating an entangled state.

The above Hamiltonian has three parameters. To restrict
ourselves to only two tuning parameters, we focus on two cases
with ±B1 = B2 = B for simplicity. We assume that both B and
J parameters can be tuned as a function of time in the following
range:

0 � B(t), J (t) � �, (3)

where we set � = 1 (we have also set h̄ to unity). Exper-
imentally, the coupling can be tuned within a range range
J

2π
∼ 103 MHz [44]. We also note that the parameters in the

Hamiltonian are tuned indirectly. The coupling J , e.g., depends
on the inductances of linear inductors connecting the qubits to
the ground, the inductance of a Josephson junction between
qubits, and the resonance frequency of the qubits [44]. The
Josephson inductance, in turn, depends on a phase difference
that can be tuned by applying a dc flux. The dependence
of J on the flux is calibrated through a simple mapping.
The discussion becomes more transparent if we work with
the effective Hamiltonian parameters B and J instead of the
physical parameters such as the flux.

Note that the target state (1) is the ground state of the
Hamiltonian (2) for J = 1 and B = 0. For J = 0, the two
qubits are decoupled and the ground states for the two cases
±B1 = B2 = B are unentangled direct products:

|ψ+(0)〉 = 1
2 (|↑↑〉 − |↑↓〉 − |↓↑〉 + |↓↓〉), (4)

|ψ−(0)〉 = 1
2 (|↑↑〉 − |↑↓〉 + |↓↑〉 − |↓↓〉). (5)

We comment that the above set of tunable parameters and
the initial states are chosen for a nontrivial connection to
shortcuts to adiabaticity. The speed limit we find is specific
to the permissible Hamiltonian form and the chosen initial
state, and can be viewed as a system-dependent minimal time
of transforming our initial states to the target state. If the

062343-2



OPTIMAL CONTROL OF SUPERCONDUCTING GMON … PHYSICAL REVIEW A 97, 062343 (2018)

FIG. 1. The energy gap as a function of B (with J = 1 − B) for
two cases with and without a level crossing. The units are fixed in all
figures by setting both � and h̄ to unity.

experimental goal is to merely create the singlet target state
(1), other unentangled initial states and control parameters may
be more convenient. For instance, an initial state |↑↓〉 can be
rotated to an entangled superposition 1√

2
(|↑↓〉 + i|↓↑〉), by

only using a rotation, ei π
4 τx , generated by the coupling operator

τx ≡ (σx
1 σx

2 + σ
y

1 σ
y

2 )/2, with τx |↑↓〉 = |↓↑〉 and τx |↓↑〉 =
|↑↓〉. This entangled state can then be transformed to the target
state (1) by applying a field Bzσ

z
2 for a time π

4Bz
2
.

To transform the initial states into the final target state, we
need to turn off B and turn on J . If this is done slowly enough
and there is a gap to the excitations, the adiabatic theorem
guarantees that the target state can be reached. Therefore,
we first check the presence of a gap along a trajectory that
connects the initial and final Hamiltonians. Factoring out the B

coefficient from the Hamiltonian, we observe that the spectrum
behaves as E(J/B)B. To explore all ratios J/B, we fix J =
1 − B and plot the energy gap as a function of B in the range
0 < B < 1. As seen in Fig. 1, the gap never closes for B1 =
−B2 but closes at some intermediate value of B for B1 = B2.

In the B1 = B2 = B case, the level crossing occurs at
J/B = 1/

√
2, implying B = √

2/(1 + √
2) for J = 1 − B at

the gap closure as seen in Fig. 1. The level crossing is exact
and protected by the symmetry |↑↓〉 ↔ |↓↑〉. In other words,
the permutation operator

Q =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠, (6)

in the (|↑↑〉,|↑↓〉,|↓↑〉,|↓↓〉) basis, commutes with the Hamil-
tonian. All eigenstates of H are also eigenstates of Q with
eigenvalues q = ±1. These two symmetry sectors are decou-
pled, making the level crossing exact. This same symmetry
forbids the transformation of |ψ+(0)〉 to the target state (1)
by any coherent nonequilibrium evolution generated by H . In
fact, the singlet (1) is the only eigenstate of the Hamiltonian
with q = −1 for arbitrary B and J (not necessarily the ground
state) and cannot be reached from any other eigenstate.

To see this explicitly, notice that the time-dependent wave
function can be written as

|ψ(t)〉 = c1(t)|↑↑〉 + c2(t)|↑↓〉 + c3(t)|↓↑〉 + c4(t)|↓↓〉,
(7)

with the amplitudes cj evolving according to

d

dt
c1(t) = −i[B2(t)c2(t) + B1(t)c3(t)], (8)

FIG. 2. Approximating an arbitrary protocol with a piecewise
constant protocol to transform the functional minimization to a
multivariable function minimization. The bias can be eliminated by
increasing N and obtaining convergent results.

d

dt
c2(t) = −i[B2(t)c1(t) + 2J (t)c3(t) + B1(t)c4(t)], (9)

d

dt
c3(t) = −i[B1(t)c1(t) + 2J (t)c2(t) + B2(t)c4(t)], (10)

d

dt
c4(t) = −i[B1(t)c2(t) + B2(t)c3(t)]. (11)

We see that in the B1 = B2 case the equations are symmetric
under the c2 ↔ c3 exchange. As the initial state also has
c2 = c3, this equality holds at arbitrary times under all pos-
sible dynamics generated by arbitrary B(t) and J (t) so the
target state, which has c2 = −c3, cannot be reached by any
protocol. Hereafter, we focus on the B1 = −B2 case, where
the preparation of the target state is not forbidden.

III. BRUTE-FORCE OPTIMIZATION:
OPTIMAL VERSUS LINEAR PERFORMANCE

Our goal is to reach the target ground state (1) from the
initial state (5) in the shortest amount of time possible by
adjusting the Hamiltonian parameters as a function of time. In
real-world applications, we may have a shorter total time than
the minimum time needed to reach the state exactly. Therefore,
it is useful to be able to quantify the performance of different
protocols in a fixed total time τ . This will also provide a
practical approach for finding the minimum τ for which exact
preparation is possible. Using the overlap between the final
state |ψ(τ )〉 and the target state (1), we define the error as

E = 1 − |〈ψtarget|ψ(τ )〉|2. (12)

The error above is always non-negative and vanishes if the two
states are the same.

The error (12) is a functional of the controllable time-
dependent parameters B(t) and J (t) in the range defined in
Eq. (3). To apply standard numerical optimization algorithms,
we need to transform the functional to a multivariable function.
There are multiple ways to do this, e.g, using truncated
coefficients of a Taylor or Fourier expansion. For our bounded
parameters, it is convenient to discretize time, i.e., divide T

into N intervals of length T/N , as seen in Fig. 2, creating
piece-wise constant functions for B(t) and J (t), where B(t) =
B̃j for (j − 1)τ/N < t < jτ/N and similarly for J (t). Then,
we can minimize E as a multivariable function of B̃j and J̃j

(with 2N bounded variables). To avoid an artificial bias, we
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FIG. 3. (a) The error for optimal and linear protocols. For a time
τ ∗ ∼ 0.9, the optimal protocol is able to prepare the target entangled
state exactly and the error vanishes. (b) The linear protocol for J (t)
and B(t). (c) The optimal protocol for total time τ = 0.2. For τ <

τ0 ∼ 0.4, the optimal protocol is simply a constant pulse, with both
B and J suddenly turned on to their maximum allowed value and
kept on for 0 < t < τ . (d) The optimal protocol for τ = 0.8. For
0.4 ∼ τ0 < τ < τ ∗ ∼ 0.9, the optimal protocol has a constant pulse
for J and one switching from zero to the maximum allowed value at
a finite time for B.

increase N until the results converge. In our simulations, using
the interior-point minimization algorithm, we used N = 5 and
10 and found that the protocols and the associated errors were
almost identical.

As seen in Fig. 3(a), we find that our optimal protocols
beat the linear protocol shown in Fig. 3(b) significantly. Two
examples of the optimal protocols for different values of τ are
shown in Figs. 3(c) and 3(d). For τ < τ0 ∼ 0.4, the optimal
protocol for both control parameters is simply a constant pulse,
with both B and J at their maximum allowed value. For
0.4 ∼ τ0 < τ < τ ∗ ∼ 0.9, the optimal protocol has a constant
pulse for J but B is initially zero for a finite time and is
suddenly turned on to its maximum at a finite time tB . At τ = 0,
all protocols give an error E = 0.5 (from the finite overlap
of the initial and target states). Upon increasing τ , the error
corresponding to the linear protocol decreases, approaching
E = 0 only at τ → ∞, while the error corresponding to the
optimal one decreases more rapidly, reaching E = 0 at a
finite time τ ∗ ∼ 0.9, indicating an exact preparation of the
desired state. This time scale is computed in units where the
maximum coupling strength is set to 1 (� = 1). The time scale
is generally inversely proportional to the maximum allowed
coupling strength τ ∗ ∼ 0.9/� [see Eq. (3)]. If the maximum
allowed couplings are different for B and J but of the same
order of magnitude, we still expect a time τ ∗, which allows
for exact preparation of the target state, that is inversely
proportional to the characteristic coupling strength.

We further comment on preserving the entangled state in
the system after creating it with an optimal protocol that takes
a time τ ∗. As the entangled state is the ground state for J = 1
and B = 0, we need to turn off B at the end of the process at
time τ ∗.

0 0.5 1 1.5 2
0

0.5

1

1.5

FIG. 4. The bang-bang optimal protocol and the corresponding
optimal solution for tB and tJ as a function of τ .

IV. BANG-BANG OPTIMIZATION:
CHARACTERIZING THE PROTOCOLS

From our brute-force optimization in Sec. III, we observe
that the optimal B(t) and J (t) have discontinuous jumps
between their minimum and maximum allowed values of zero
and one. Such protocols are referred to as bang-bang protocols.
As discussed in the next section, they are indeed expected to
generically occur in linear optimal control problems. Knowing
the bang-bang form of the protocol (and making an educated
guess about the maximum number of bangs), we can perform
a secondary optimization, which determines the optimal pro-
tocol very accurately. The new results are in agreement with
the approximate (due to the finite discretization) results from
the brute-force computations. Since we have a much smaller
number of variational parameters, i.e., the times of the jumps,
this optimization is much more efficient.

We performed this secondary optimization with two param-
eters (although one parameter would have been sufficient). As
shown in Fig. 4, these parameters are tB and tJ . B(t) jumps
from zero to one at tB ; J (t) jumps from one to zero at tJ . We
find that tJ is always equal to τ , so there is no jump in J (t) in
the middle of the evolution. As seen in the figure, for τ larger
than τ ∗ ∼ 0.9, the numerically obtained tJ is no longer equal
to τ . This is precisely the total time τ for which the optimal
protocol prepares the state exactly (see Fig. 3). Therefore, for
times longer than τ ∗, many protocols can achieve this exact
preparation and the optimal protocols are not unique. For τ <

τ ∗, we find two distinct behaviors for tB . If τ is smaller than
a critical value τ0 ∼ 0.4, we have tB = 0. On the other hand,
for τ0 < τ < τ ∗, we find the following linear relationship:

tB = τ − τ0. (13)

At this point the results above are purely numerical findings, but
we will explain them in Sec. V using the Pontryagin theorem.

V. CONNECTION WITH PONTRYAGIN’S MINIMUM
PRINCIPLE: SINGULARITY OF THE CONTROL

The Pontryagin’s minimum principle [48,49] explains the
bang-bang nature of the protocol above and provides an
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alternative approach for determining the switching time tB . We
first briefly review the formalism. For dynamical variables x
evolving with the equation of motion ẋ = f(x,b) with controls
b, we can write an optimal-control HamiltonianH in terms of
conjugate momenta p as

H = pT.f(x,b), (14)

where the superscript “T” indicates transpose. The dynamics
of x and p are governed by the Hamiltonian equations

ẋ = ∂pH, ṗ = −∂xH. (15)

Assuming we want to minimize a cost function E[x(τ )] at
the final time τ , the boundary conditions for the conjugate
momenta are given by

p(τ ) = ∂xE[x(τ )], (16)

and the key condition of optimal control is

H(xopt,popt,bopt) = min
b
H(xopt,popt,b), (17)

where the superscript “opt” indicates the optimal protocol and
the corresponding trajectories for the dynamical variables and
their conjugates. A consequence of the above expression is
that if the equations of motion and consequently H are linear
in the controls the optimal protocol is generically bang-bang.
The only exception is the case of singular control, where the
coefficient in front of a control parameter b (inH) vanishes not
just at isolated points but over finite intervals. This coefficient
can be written as ∂H

∂b
and thus b is singular over intervals with

∂H
∂b

= 0.
In general, a singular optimal control parameter does not

need to take its smallest or largest permissible value over such
intervals.

In the context of quantum evolution, the equations of motion
d
dt

|�〉 = −iH (t)|�〉 can be written as

d

dt
R = H (t)I,

d

dt
I = −H (t)R, (18)

for a real Hamiltonian H (t) (in this case a 4 × 4 matrix),
where the dynamical variables R and I contain the real
and imaginary parts of the wave function. Let us denote the
conjugate momenta by vectors PR and PI, respectively, for R
and I. The optimal-control HamiltonianH is then constructed
as

H = P T
RH (t)I− P T

IH (t)R. (19)

We now observe that since H (t) is linear in the controls B

and J the optimal-control Hamiltonian H is also linear in
them. Equation (17) then implies that, at any point in time,
the controls B and J must be set to either their minimum or
their maximum allowed values depending on the sign of their
corresponding coefficient in the linear functionH (for optimal
values of R, I, PR, and PI). Thus, a bang-bang solution, as
found in our numerical studies, is indeed expected, unless one
of the aforementioned coefficients identically vanishes over a
finite time interval.

The equations of motion for the conjugate momenta are
obtained by differentiatingHwith respect to the corresponding

dynamical variables and are given by

d

dt
PR = H (t)PI,

d

dt
PI = −H (t)PR. (20)

Combining the conjugate momenta into |	〉 = PR + iPI, we
can then write

d

dt
|	〉 = −iH (t)|	〉. (21)

To proceed, we write the cost function (12) [see also Eq. (1)]
in terms of the dynamical variables at time τ as

E = 1 − 1
2 [(R2 − R3)2 + (I2 − I3)2], (22)

where

cj = Rj + iIj , j = 1 . . . 4, (23)

for cj defined in Eq. (7). Using Eq. (16) then leads to the
following boundary conditions for the conjugate momenta:

|	(τ )〉 =M|�(τ )〉, (24)

with the matrixM given by

M =

⎛
⎜⎝

0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0

⎞
⎟⎠. (25)

It is illuminating to use the Pontryagin equations with an
ansatz characterized by one parameter tB and tJ = τ to find the
protocol shown in Fig. 4. Using Eq. (19), we find the coefficient
of B inH (a linear function of B) as

∂BH = P T
RKI− P T

IKR = Im〈	(t)|K|ψ(t)〉, (26)

where

K = ∂BH (B,J ) =

⎛
⎜⎝

0 1 −1 0
1 0 0 −1

−1 0 0 1
0 −1 1 0

⎞
⎟⎠. (27)

Thus, the minimum ofH is achieved by choosing

B(t) = 1, −Im〈	(t)|K|ψ(t)〉 > 0,

B(t) = 0, −Im〈	(t)|K|ψ(t)〉 < 0. (28)

The time-dependent evolution operator can be written in a
convenient form by defining

U1(t) = exp[−itH (B = 0,J = 1)] ≡ exp(−itH1), (29)

U2(t) = exp[−itH (B = 1,J = 1)] ≡ exp(−itH2), (30)

which leads to

|ψ(t)〉 = U1(t)|ψ(0)〉, t < tB,

|ψ(t)〉 = U2(t − tB)U1(tB)|ψ(0)〉, t > tB,

|	(t)〉 = U
†
2 (τ − t)MU2(τ − tB)U1(tB)|ψ(0)〉, t > tB,

|	(t)〉 = U
†
1 (tB − t)U †

2 (τ − tB)MU2(τ − tB)

×U1(tB)|ψ(0)〉, t < tB

where we have used the boundary condition (24) and the
equations of motion (21) for the conjugate momenta. Fix-
ing τ and tB , the four equations above uniquely determine
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FIG. 5. The factor −Im〈	(t)|K|ψ(t)〉 [the sign of which deter-
mines B through Eq. (28)] as a function of time for τ = 0.75 and
several values of tB . At the critical value of tB ≈ 0.3423, Eq. (28)
requires B(t) = 1 in the entire region tB < t < τ . Interestingly, for
this value of tB , Im〈	(t)|K|ψ(t)〉 vanishes for t < tB , making the
control singular. Nevertheless, we have confirmed numerically that
the bang-bang form with B(t) = 0 for t < tB still provides the optimal
solution.

−Im〈	(t)|K|ψ(t)〉 as a function of t . For a fixed τ , we can
then scan over tB and see if we can find solutions where
−Im〈	(t)|K|ψ(t)〉 switches sign from negative to positive
precisely at tB . Indeed as seen in Fig. 5 as an example for
τ = 0.75 (a similar behavior was observed for other values of
τ ), we find that, for long tB , −Im〈	(t)|K|ψ(t)〉 is positive for
all finite t . For shorter tB , there is one sign switch from negative
to positive at an intermediate time. We want this switch to
occur precisely at the corresponding tB . Starting from the short
tB limit and searching for tB for which the crossing occurs
precisely at tB gives tB ≈ 0.3423 in agreement with our direct
numerical studies, which gave tB = τ − τ0, with τ0 ∼ 0.4.

An unexpected result is that the control becomes singular
for all t < tB for our solution. This simple system thus provides
an example of singular control, in which the application
of the Pontryagin theorem is rather subtle. While the sign
of the coefficient of B determines the value of B, if this
coefficient vanishes over a finite interval as seen in Fig. 5 for
tB ≈ 0.3423, the control is singular and the theorem does not
directly yield the optimal protocol. In case of singular control,
there is no reason to expect a bang-bang protocol in intervals
with a vanishing Im〈	(t)|K|ψ(t)〉. However, our brute-force
numerical results indicate that the protocol is still bang-bang.

The numerically found relationship between tB and τ [see
Fig. 4 and Eq. (13)] in the range of τ , for which the optimal
control is unique and tB is finite, can be understood in terms
of the Pontryagin theorem. The singularity of the control for
t < tB implies Im(C) = 0 with

C = 〈ψ(0)|U †
1 (tB)U †

2 (τ0)MU2(τ0)U1(tB)

× U
†
1 (t)KU1(t)|ψ(0)〉 (31)

independently of t and tB as long as we have the correct τ0.
Our particular value of τ0 has the property that

U
†
2 (τ0)MU2(τ0)

= 1

2

⎛
⎜⎜⎜⎜⎝

−1 e−iπ/3 −e−iπ/3 1

eiπ/3 −1 1 −eiπ/3

−eiπ/3 1 −1 eiπ/3

1 −e−iπ/3 e−iπ/3 −1

⎞
⎟⎟⎟⎟⎠

. (32)

Using the above matrix, Eq. (31) can be explicitly computed
as a function of t and tB :

C = 2 cos(2t) + cos[2(t − tB)] −
√

3 sin[2(t − tB)], (33)

which is a real number. Therefore, we have Im(C) = 0 for all
t and tB , demonstrating the validity of Eq. (13).

VI. EFFECTS OF TIMING ERROR
AND FINITE BANDWIDTH

The bang-bang protocols require suddenly turning the
control parameters on and off at precise times. For example,
if we apply the protocol with τ = τ ∗, we need to suddenly
turn on (off) J (B) at time t = 0, suddenly turn on B at an
intermediate time τ ∗ − τ0, and suddenly turn off B at the end
of the process at time τ ∗, to get a vanishing cost function.
Performing a secondary optimization with the form of the
optimal protocol based on the Pontryagin minimum principle
gives τ0 = 0.40774 and τ ∗ = 0.93134.

Exact preparation of the entangled state relies on perfect
timing and sharp square pulses. Due to finite bandwidth
that makes the jumps continuous or simple instrumentation
inaccuracy, the applied protocol may be imprecise. We study
the effects of finite bandwidth as well as timing errors by
making the switching times inaccurate in a random manner.
The finite bandwidth spreads out the sudden jump over a short
time interval. We can expand the time-ordered exponential
(appearing in the evolution operator) over this interval to first
order in the duration of the interval, and generate an average
coupling constant over this short interval. The same error (to
leading order) can be implemented by incorrect timing for
turning the coupling constant on or off.

To be explicit, we assume that instead of t = 0 the dynamics
begins at t = δt0. Similarly, B is turned on at τ ∗ − τ0 + δt1 and
turned off at time τ ∗ + δt2. We can write the cost function as

E = 1 − |〈ψtarget|U2(τ0 + δt2 − δt1)

×U1(τ ∗ − τ0 + δt1 − δt0)|ψ(0)〉|2
= 1 − |〈ψtarget|U2(τ0)OU1(τ ∗ − τ0)|ψ(0)〉|2, (34)

where

O ≡ U2(δt2 − δt1)U1(δt1 − δt0). (35)

We further assume that δtj for j = 1,2,3 are independent
random variables, with characteristic duration ε, and drawn
from a uniform distribution [−ε/2,ε/2]. We have

δti = 0, δtiδtj = ε2

12
δij . (36)

For small ε, we can expand

O = 1 − iδt21H2 − iδt10H1 − δt21δt10H2H1

− 1
2 (δt21)2H 2

2 − 1
2 (δt10)2H 2

1 + · · · (37)

with δtij ≡ δti − δtj . The nonvanishing averages of the above
quantities are

δt21δt21 = δt10δt10 = ε2

6
, δt21δt10 = − ε2

12
. (38)

Up to second order in ε, we then find the average of E,
denoted by E, which is equal to the variation of the error from
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FIG. 6. The average E and its standard deviation due to timing
errors.

the error corresponding to the perfect protocol (since E = 0
for δtj = 0). Several terms contribute to E. We obtain

E = ε2

6
Re

[〈ψ(0)|U†
1U

†
2ρtargetU2

(
H 2

1 + H 2
2

)
U1|ψ(0)〉]

− ε2

6
Re[〈ψ(0)|U†

1U
†
2ρtargetU2H2H1U1|ψ(0)〉]

+ ε2

6
Re[〈ψ(0)|U†

1H1U†
2ρtargetU2H2U1|ψ(0)〉]

− ε2

6
〈ψ(0)|U†

1H1U†
2ρtargetU2H1U1|ψ(0)〉

− ε2

6
〈ψ(0)|U†

1H2U†
2ρtargetU2H2U1|ψ(0)〉 + O(ε4),

(39)

where

ρtarget ≡ |ψtarget〉〈ψtarget|,
U1 ≡ U1(τ ∗ − τ0), U2 ≡ U2(τ0). (40)

An explicit evaluation of the above expression gives

E = 2
3ε2 + O(ε4). (41)

We verify this calculation by numerically generating many
inaccurate protocols, calculating the cost function for each
realization, and averaging them over the realizations. We used
105 realizations, which lead to excellent convergence. The
results are shown in Fig. 6 and the data are in excellent
agreement with the prediction (41). The averaged E does not
contain enough information to determine how an individual
inaccurate protocol performs. We also need to quantify the
deviations of the errors for individual protocols from the above
average by finding the standard deviation:

σ (E) =
√
E2 − (E)2. (42)

While it is possible to determine σ (E) analytically by
a similar perturbative expansion, the calculation is lengthy

and not very illuminating. The same numerical simulation,
however, readily yields the standard deviation of the errors.
A very good fit to the data gives σ (E) ≈ 0.647ε2, slightly
less than E. Importantly, the standard deviation also scales as
ε2. Therefore, we expect the typical errors due to imprecise
implementation of the protocol to scale as quadratic in δt .
Even for an ε = 0.02 (typical error of around 2% of the total
evolution time in each of the three switching times), the error
is negligibly small.

VII. CONCLUSIONS

In summary, we used optimal control to generate a maxi-
mally entangled quantum state from an unentangled state using
quantum dynamics in a simple two-qubit system. The quantum
dynamics was generated by a two-parameter Hamiltonian rel-
evant to the gmon architecture of superconducting qubits. We
found that, when the adiabatic theorem fails due to a level cross-
ing, the symmetry responsible for the crossing also forbids state
transformations by using a more general nonadiabatic optimal
protocol, making the target state unreachable. In the case of a
reachable target, for various total times, we numerically found
the optimal protocols that maximized the overlap of the final
states with the target state. We found optimal protocols that
substantially outperform a linear adiabatic protocol. In fact,
they prepare the states exactly for a total time of order 1.

The optimal protocols were found to have a bang-bang
character. Furthermore, we had a maximum of only one jump
on one of the controls, allowing for a full characterization of the
optimal solution. Taking advantage of the bang-bang form of
the solution, which significantly reduces the number of the vari-
ational parameters, we then performed a much more efficient
optimization. As argued in Ref. [28], we expect the bang-bang
ansatz to provide substantial advantages in the many-body
context. We also presented an analytical understanding of the
optimal protocols using the Pontryagin minimum principle.
Interestingly, we found these bang-bang optimal protocols
despite the presence of singular segments in the control. Our
results shed light on the conditions for reachability, and fully
characterize both qualitative and quantitative characteristics
of the optimal pulses in a shortcut to the adiabatic evolution,
which creates a maximally entangled state.
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