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Replacing measurement feedback with coherent feedback for quantum state preparation
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Measurement feedback is a versatile and powerful tool, although its performance is limited by several
practical imperfections resulting from classical components. This paper shows that, for some typical quantum
feedback control problems for state preparation (stabilization of a qubit or a qutrit, spin squeezing, and Fock
state generation), the classical feedback operation can be replaced by a fully quantum one such that the state
autonomously dissipates into the target or a state close to the target. The main common feature of the proposed
quantum operation, which is called coherent feedback, is that it is composed of a series of dispersive and dissipative
couplings inspired by the corresponding measurement feedback scheme.
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I. INTRODUCTION

Many quantum information systems contain measurement
feedback (MF) processes such as teleportation and error correc-
tion [1]. However, the classical components involved in such
processes introduce practical imperfections due to detection
loss, time delays in the signal processing, and the finite
bandwidth of actuators, which as a result severely limit the
system performance. Thus, the following important question
arises; can we replace those classical components by fully
quantum systems that emulate the same functionalities?

The theory for MF is well established [2–6]. In particular,
the MF control method based on quantum nondemolition
(QND) measurement followed by filtering (i.e., continuous-
time state estimation) has been investigated in depth [7–13] and
some notable experiments have been demonstrated [14–19].
Figure 1 illustrates the idea of this MF control, for the case of
squeezed state generation, as follows.

(1) The initial state is the vacuum.
(2) The system dispersively interacts with a probe field, and

thereby they are entangled; if we measure the output field, the
estimated system state becomes a squeezed state with random
amplitude conditioned on the measurement result. The figure
shows the ensemble of these conditional states.

(3) Finally, the measurement result is fed back to com-
pensate this random displacement for generating the target
squeezed state deterministically.

This paper gives an answer to the question posed above.
That is, for some typical quantum feedback control problems
for state preparation, we show that the classical operation
that compensates the random displacement (i.e., the feedback
process in Fig. 1) can be replaced by a fully quantum operation
such that the state autonomously dissipates into the target or
a state close to the target. Our idea is to use the coherent
feedback (CF) scheme to realize this quantum operation; i.e.,
a quantum system is controlled via another quantum system
in a feedback way that does not involve any measurement
process. The CF scheme is implementable in a variety of
systems including optics, superconductors, and cold atoms.
See [20–28] for the basic theories and applications of CF,

and [29–34] for experimental demonstrations. Note that the
control problem considered in this paper is not contained in
the framework where the superiority of CF over MF (or the
equivalency of CF and MF) has been proved [20,24–26,28,33].
Also the proposed scheme is a sort of reservoir engineering
but is different from the other approaches [35–42], in that it
relies on a reservoir composed of a series of dispersive and
dissipative couplings, inspired by MF control composed of
QND measurement and the subsequent filtering process.

The paper is organized as follows. In Sec. II, the CF-
controller configuration is described in a general setting. Then
we demonstrate how CF can replace MF for various state
control problems: stabilization for a qubit (Sec. III) and qutrit
(Sec. IV), spin squeezing (Sec. V), and Fock state generation
(Sec. VI). Section VII concludes the paper.

II. THE CONTROLLER CONFIGURATION

For a general Markovian open quantum system interacting
with a single probe field, the unconditional state obeys the
master equation

dρ

dt
= −i[H,ρ] + LρL† − 1

2L†Lρ − 1
2ρL†L. (1)

Here L is the coupling operator and H is a Hamiltonian;
see Appendix A for a detailed description of this equation.
Thus, this system is generally characterized by (L,H ). Let us
consider two open systems G1 = (L1,H1) and G2 = (L2,H2)
that are unidirectionally connected through a single probe
field, as shown in Fig. 2(a). Then, under the assumption that
the propagation time from G1 to G2 is negligible, the whole
system, denoted as G1�G2, behaves as a Markovian open
system and is given by [23,43,44]

G1�G2 =
(

L1 + L2,H1 + H2 + 1

2i
(L†

2L1 − L
†
1L2)

)
. (2)

In this paper, we consider the case where L1,L2,H1, and H2

are operators living in the same Hilbert space associated with
a single system. Then, as shown in Fig. 2(b), G = G1�G2 is a
CF-controlled system where the output field after the coupling
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Dispersion Feedback

FIG. 1. Schematic of the feedback control for the case of squeezed
state generation.

L1 is again coupled to the same system through L2. Moreover,
L1 and L2 are specified as follows. First, L1 is Hermitian;
L1 = L

†
1. This coupling induces a dispersive change of the

system state depending on the field state. For the MF case,
we measure the field after this coupling; then, ideally, the
system’s conditional state probabilistically changes toward one
of the eigenstates of L1, and a feedback control based on
the measurement result compensates this randomness so that
the target eigenstate is deterministically generated. Our CF
strategy is to apply a fully quantum dissipative process that
emulates this feedback operation; that is, in Fig. 2(b), L2 is
chosen as a dissipative coupling operator, which may drive
the system state to the target. Summarizing, the CF-controlled
system is given by

G = (L,H ) = (eiφL1,Hsys)�(L2,0)

=
(

L2 + eiφL1,Hsys + 1

2i
(eiφL

†
2L1 − e−iφL1L2)

)
, (3)

where L1 = L
†
1 is a given dispersive coupling and L2 is a

dissipative one to be appropriately chosen. Also Hsys is a
system Hamiltonian and eiφ represents a phase shifter acting on
the probe field. In what follows we demonstrate how to choose
these operators and evaluate the performance of the resulting
CF-controlled system, in some quantum control problems.

III. QUBIT STABILIZATION

In this section we study a qubit interacting with a probe
field through the dispersive coupling operator L1 = √

κσz =√
κ(|e〉〈e| − |g〉〈g|), where |e〉 = [1, 0]� and |g〉 = [0, 1]�

[8,45–49]. If we continuously monitor the field after this
coupling, as shown in Fig. 3(a), the qubit state conditioned
on the measurement result probabilistically converges to |e〉
or |g〉; some MF controls compensate this random change and
realize deterministic convergence to |e〉 or |g〉.

A. Control in the ideal setup

First we study the CF control emulating the above MF
scheme, in the ideal setting. Our initial task is to choose

)b()a(

FIG. 2. (a) Cascade connection of two open quantum systems G1

and G2. (b) CF for the system G via cascade connection.
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FIG. 3. (a) MF and (b) CF configuration for qubit control.
(c) Fidelity F = 〈ψ |ρ(∞)|ψ〉 between the ideal target state |ψ〉 and
the steady state ρ(∞) in the realistic model.

a suitable dissipative coupling L2 that autonomously com-
pensates the dispersive effect induced by L1; here let us
particularly take L2 = √

γ σ− = √
γ |g〉〈e|, which represents

the energy dissipation of a two-level atom with decay rate
γ > 0. Figure 3(b) shows the configuration of this CF control;
the qubit interacts with the field via L1, and the output field
is fed back to again couple to the system via L2. Moreover
we set Hsys = 0. Then the characteristic operators of this
CF-controlled system (3) are given by

L = √
γ σ− + eiφ

√
κσz =

[
eiφ

√
κ 0√

γ −eiφ
√

κ

]
,

H =
√

κγ

2i
(eiφσ

†
−σz − e−iφσzσ−)

=
√

κγ

2i

[
0 −eiφ

e−iφ 0

]
. (4)

Then, noting the fact that the uniqueness of the steady state for
the general finite-dimensional master equation (1) is equivalent
to the deterministic convergence to it [50], we find that any
initial state ρ(0) deterministically converges to the following
steady state ρ(∞):

ρ(∞) = |ψ〉〈ψ |, |ψ〉 = 1√
4κ + γ

[
2eiφ

√
κ√

γ

]
. (5)

Interestingly, this is a pure state. Also, an arbitrary pure state,
except |e〉, can be prepared by suitably choosing the control
parameters γ and φ. |e〉 can be approximately generated by
setting γ � κ , although we should note that the dispersive
coupling is usually realized in the so-called weak-coupling
regime where κ is relatively small. Recall now that the MF
control can exactly stabilize |e〉 in an ideal setup, while it
cannot stabilize any pure state other than |e〉 and |g〉. Hence,
this CF is not a control scheme that outperforms MF. Rather,
the important fact we have learned through this case study
is that the CF scheme certainly has an ability to emulate
the functionality of MF, i.e., the ability to compensate the
dispersion effect by autonomous dissipation and as a result
generate a desired unconditional state.

Before closing this subsection, we provide another way to
prove the unique convergence of the CF-controlled system to
the state |ψ〉 given by Eq. (5). We use the following theorem.
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Theorem 1 [51,52]. A pure state |�〉 is a steady state of the
master equation (1) if and only if |�〉 is a common eigenvector
of L and iH + L†L/2.

Now the eigenvectors of the operator L are given by |g〉 and
|ψ〉. Then it is immediate to see that |ψ〉 is an eigenvector of

iH + 1

2
L†L =

[
(κ + γ )/2 −eiφ√

κγ

0 κ/2

]
,

but |g〉 is not. Thus, from the above theorem, |ψ〉 is a unique
steady state; actually, if there exists a mixed steady state, then
|g〉 must also be a steady state due to the convexity of the Bloch
sphere, which is a contradiction. As a result, any initial state
ρ(0) converges to |ψ〉.

Remark 1. Let us consider the setup where the two couplings
occur in a wrong order; that is, the field first couples with the
system via the dissipative operator L1 = √

γ σ− and secondly
with the dispersive one L2 = √

κσz in the feedback way. Then
the operators of the CF-controlled system are given by

L = √
κσz + eiφ√

γ σ− =
[ √

κ 0
eiφ√

γ −√
κ

]
,

H =
√

κγ

2i
(eiφσzσ− − e−iφσ

†
−σz) =

√
κγ

2i

[
0 eiφ

−e−iφ 0

]
.

In this case, the ground state |g〉 = [0,1]� is the unique steady
state of the master equation; hence any initial state converges to
|g〉. This is a reasonable result, because what the CF controller
considered here is doing is to emulate the operation such
that the stabilizing control for |g〉 is performed before the
measurement. Therefore, though not useful, this result also
shows the fact that the all-quantum CF scheme certainly has
an ability to emulate the measurement feedback operation.

B. Control performance in the imperfect setting

To demonstrate the control performance of the proposed
CF scheme in a realistic situation, here we consider the
setup of circuit QED [45]; this paper presented a method
for continuously monitoring a superconducting charge qubit
that dispersively couples to a transmission line resonator. The
master equation for the CF-controlled qubit, which takes into
account the imperfections studied in [45], is given by

dρ

dt
= −i[H + Hδ,ρ] + D[L]ρ + D

[
L(1)

ex

]
ρ + D

[
L(2)

ex

]
ρ,

(6)

where H and L are the operators in the ideal setting given
in Eq. (4). That is, in the practical situation, the qubit sys-
tem is driven by the external Hamiltonian Hδ = δσz with δ

the detuning between the qubit transition frequency and the
driving probe frequency. Moreover, the system is coupled to
another uncontrollable dissipative channel characterized by
the Lindblad operator L(1)

ex = √
ε1σ− and further a dephasing

channel L(2)
ex = √

ε2σz. In the recent experimental study [49],
which has applied the theory of [45] to perform the MF
control for qubit state preparation, the system parameters
are κ/2π = 0.13 MHz and ε2/2π = 0.005 MHz; hence ε2 ≈
0.04κ , meaning that roughly 4% loss occurs in the dispersive
coupling process. We expect further progress will be made in
experiments and assume ε2 = 0.01κ in the simulation. Also

we set ε1 = 0.01γ , i.e., 1% loss in the dissipative coupling
process. Finally φ = 0 is chosen for simplicity. Figure 3(c)
shows the fidelity between the target state |ψ〉 in Eq. (5) with
φ = 0 and the steady state ρ(∞) of the master equation (6), as a
function of the z component of the Bloch vector corresponding
to |ψ〉 [the target Bloch vector is depicted for several z in the
top of Fig. 3(c)]. Note that, from the equation

|ψ〉〈ψ | = 1

4κ + γ

[
4κ 2

√
κγ

2
√

κγ γ

]
= 1

2

[
1 + z x

x 1 − z

]
,

we have z = (4κ/γ − 1)/(4κ/γ + 1). In the ideal setting (the
case δ = 0, ε1 = 0, and ε2 = 0), the fidelity takes F (z) =
〈ψ |ρ(∞)|ψ〉 = 1 for all z; that is, as proven in the previous
subsection, an arbitrary pure qubit state (except |e〉) can be
prepared by suitably choosing the system parameter κ/γ . In
the practical setting, if the detuning δ is small (desirably the
case δ = 0 in the figure), the fidelity monotonically decreases
as z increases, due to the additional decoherence process L(1)

ex =√
0.01γ σ− and L(2)

ex = √
0.01κσz. The figure shows that, in

this case, states close to the ground state can be prepared with
good fidelity nearly F (z) ≈ 1. In particular, the superposition
(|g〉 + |e〉)/√2 can be stabilized with fidelity bigger than 0.99.
On the other hand, if δ becomes large, the fidelity function takes
the minimum at around z = −0.1 and decreases down to about
0.86 when δ = 0.3γ . It is notable, however, that even in those
cases a state close to the excited state can be produced with
fidelity ≈0.97. Therefore, the CF scheme functions as a robust
emulator for selectively producing |e〉 or |g〉. Note of course
that, in order to stabilize a superposition, the detuning should
be sufficiently suppressed.

IV. QUTRIT STABILIZATION

Next, let us consider a qutrit such as a three-level atom, with
states |1〉 = [1,0,0]�, |2〉 = [0,1,0]�, and |3〉 = [0,0,1]�. We
assume that the following dispersive coupling L1 and the
dissipative one L2 can be implemented [53,54]:

L1 = √
κ

⎡
⎣1 0 0

0 0 0
0 0 −1

⎤
⎦, L2 = √

γ

⎡
⎣0 0 0

1 0 0
0 1 0

⎤
⎦.

Measuring the probe after the dispersive coupling L1 produces
the conditional state, which probabilistically converges to one
of the eigenstates of L1, {|1〉,|2〉,|3〉}; a suitable MF control can
compensate this dispersive change and deterministically stabi-
lize an arbitrary eigenstate [12,13]. As for L2, this induces the
state change |1〉 → |2〉 → |3〉, i.e., a ladder-type dissipation
for a three-level atom illustrated in Fig. 4(a). This dissipation
is induced by the coupling of the qutrit to a single probe field
B(t); the Hamiltonian representing this instantaneous coupling
is given by (see Appendix A)

Hint(t + dt,t) = i
√

γ (|3〉〈2| + |2〉〈1|)dB†(t) + H.c.

A. Control in the ideal setup

First let us set Hsys = 0 and φ = 0. Then the CF-controlled
system (3), which might be implemented in a similar setup as
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FIG. 4. (a) Energy diagram of the states and time evolution of
ρ11 − ρ33 in the case κ = 100γ , (b) with several initial states in the
ideal setup and (c) with a specific initial state in the realistic setup.

Fig. 3(b), is characterized by

L =
⎡
⎣

√
κ 0 0√
γ 0 0

0
√

γ −√
κ

⎤
⎦, H = i

√
κγ

2

⎡
⎣0 0 0

0 0 1
0 −1 0

⎤
⎦.

(7)

The master equation has the following unique solution:

ρ(∞) = 1

5κ + γ

⎡
⎣0 0 0

0 4κ 2
√

κγ

0 2
√

κγ κ + γ

⎤
⎦.

Unlike the qubit case, this is not a pure state; purity
is Tr[ρ(∞)2] = 1 − 8/(5 + γ /κ)2. For instance when γ =
3κ , ρ(∞) approximates |�23〉 = (|2〉 + |3〉)/√2 with fidelity
〈�23|ρ(∞)|�23〉 ≈ 9.33. However, ρ(∞) is a particular mixed
state, which can stabilize neither |1〉 nor |2〉.

To emulate the MF scheme and stabilize an arbitrary
eigenstate of L1, the CF scheme needs to have a system
Hamiltonian Hsys to move the steady state. Here we take

Hsys = iu1(|2〉〈1| − |1〉〈2|) + iu2(|3〉〈2| − |2〉〈3|), (8)

where (u1,u2) are real parameters to be determined; Hsys

exchanges |1〉 and |2〉 with strength u1, and |2〉 and |3〉 with
u2 as shown in Fig. 4(a). Finally we set φ = 0. Then the
CF-controlled system (3) is characterized by L in Eq. (7) and

H =
⎡
⎣ 0 −iu1 0

iu1 0 −iu2 + i
√

κγ /2
0 iu2 − i

√
κγ /2 0

⎤
⎦. (9)

The parameter (u1,u2) can be determined by using Theorem
1 given in Sec. III A. Now, the eigenvectors of L are calculated
as

|�1〉 = 1

2κ + γ

⎡
⎣ 2κ

2
√

κγ

γ

⎤
⎦, |�2〉 = 1√

κ + γ

⎡
⎣ 0√

κ√
γ

⎤
⎦,

and |�3〉 = |3〉. Note that, if κ 
 γ , |�1〉 and |�2〉 approx-
imate |1〉 and |2〉, respectively. Then, by solving the equa-
tion (iH + L†L/2)|�j 〉 = λj |�j 〉, we end up with (u1,u2) =
(−√

κγ /2,0) for the case |�1〉, (u1,u2) = (0,
√

κγ /2) for the
case |�2〉, and u2 = √

κγ for the case |�3〉. Moreover, each
|�j 〉 is a unique steady state of the CF-controlled system (the
proof is given in Appendix B), and thus any ρ(0) converges to
|�j 〉 according to the result of [50].

In Fig. 4(b) the time evolution of ρ11 − ρ33 is plotted with
several initial states ρ(0) in the ideal setup. The parameters
are taken as κ = 100γ , hence |�1〉 ≈ |1〉 and |�2〉 ≈ |2〉. This
figure shows that, by properly choosing the control parameters
(u1,u2), we can selectively and deterministically generate |1〉,
|2〉, or |3〉. (Note that ρ11 − ρ33 → 0 indicates ρ → |2〉〈2|
in the figure.) That is, the CF scheme certainly emulates the
corresponding MF control.

B. Control performance in the imperfect setting

Here we study a three-level artificial ladder-type atom
implemented in a superconducting circuit [54], as a realistic
model of the qutrit system. The first practical imperfection
is the parameter mismatch. Recall that we need to add the
driving Hamiltonian Hsys, and its parameters have to be exactly
specified. For instance, if |�1〉 is the target, then the parameters
must be exactly (u1,u2) = (−√

κγ /2,0). In reality, however,
there exists a deviation:

u1 = −(1 + �)
√

κγ /2,

where � is the unknown parameter. Similarly, u2 = (1 +
�)

√
κγ /2 for the case of |�2〉 and u2 = (1 + �)

√
κγ for the

case of |�3〉. The nonzero � would affect the performance of
control.

Next, in addition to the driving Hamiltonian Hsys given by
Eq. (8), the system is subjected to

Hδ = δ1|1〉〈1| + δ2|2〉〈2|,
where δ1 = ω13 − ωin − �1 and δ2 = ω23 − ωin − �2 are de-
tunings; ω13 and ω23 are the transition frequency of the energy
levels |1〉 ↔ |3〉 and |2〉 ↔ |3〉, respectively, with ωin the
center frequency of the probe input field and �i the frequency
of the driving Hamiltonian with strength ui . As in the case of
parameter mismatch, the detunings also violate the condition
for the system to have a pure steady state.

The last imperfection is decoherence. In addition to the ideal
ladder-type decay process represented by L2, in reality there
exist independent decay processes such that the emitted photon
leaks to the fields B1(t) and B2(t). This coupling is represented
by the interaction Hamiltonian

H ′
int(t + dt,t) = i

√
ε1[|2〉〈1|dB

†
1(t) − |1〉〈2|dB1(t)]

+ i
√

ε2[|3〉〈2|dB
†
2(t) − |2〉〈3|dB2(t)].

The master equation of the CF-controlled system, which takes
into account the above imperfections, is

dρ

dt
= −i[H + Hδ,ρ] + D[L]ρ + D

[
L(1)

ex

]
ρ + D

[
L(2)

ex

]
ρ,

where L(1)
ex = √

ε1|2〉〈1|, L(1)
ex = √

ε2|3〉〈2|, L in Eq. (7), and
H in Eq. (9). The simulation shown in Fig. 4(c) has been
carried out with the following parameter choice. First we
take κ = 100γ , which realizes |�1〉 ≈ |1〉 and |�2〉 ≈ |2〉.
In the ideal case where �,δ1,δ2,ε1, and ε2 are all zero, the
qutrit state ρ(t) selectively converges to one of {|1〉,|2〉,|3〉},
as demonstrated in Fig. 4(b). The decoherence strength is
fixed to ε1 = ε2 = √

κγ /1000, in view of the fact that, in the
experiment [54], the corresponding parameters are estimated
as ε = 2π × 0.272 MHz and

√
κγ = 2π × 240 MHz. For
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the detunings (δ1,δ2), they take random numbers generated
from the uniformly random distribution on [−√

κγ ,
√

κγ ]. The
parameter uncertainty � also takes a random number generated
from the uniformly random distribution on [−0.01,0.01]. The
random variables (δ1,δ2,�) are independent. The simulation
result with this setting is depicted in Fig. 4(c), where for each
case of |�i〉 30 sample paths are plotted. This figure clearly
shows that the state convergence to |2〉 or |3〉 is robust against
the above imperfections. For the case of |1〉, it seems that
the fluctuation of the trajectories is not small, but the mean
value of the fidelity 〈1|ρ(∞)|1〉 is 0.9531. Therefore, we can
conclude that the CF-control scheme functions as a robust state
generator.

Remark 2. The robustness property against the detuning
Hδ can be theoretically explained as follows, especially when
ε1 = ε2 = � = 0. The iff condition for the pure state |�i〉 to be
a steady state is that it is an eigenvector of i(H + Hδ) + L†L/2;
in the case of |�1〉, this condition is represented by

⎡
⎣iδ1 + (κ + γ )/2 u1 0

−u1 iδ2 + γ /2 u2 − √
κγ

0 −u2 κ/2

⎤
⎦

⎡
⎣ 2κ

2
√

κγ

γ

⎤
⎦

=
⎡
⎣2iκδ1 + κ(κ + γ ) + 2u1

√
κγ

−2u1κ + 2iδ2
√

κγ + γ u2

−2u2
√

κγ + κγ /2

⎤
⎦ = λ

⎡
⎣ 2κ

2
√

κγ

γ

⎤
⎦,

for some constant λ. Now we choose (u1,u2) = (−√
κγ /2,0),

which are the optimal parameters in the ideal case δ1 = δ2 = 0.
Then, the above eigenequation becomes

⎡
⎣ κ2 + 2iκδ1

κ
√

κγ + 2iδ2
√

κγ

κγ /2

⎤
⎦ = λ

⎡
⎣ 2κ

2
√

κγ

γ

⎤
⎦,

which approximately holds with λ = κ/2, if δ1 and δ2 are
much smaller than κ . Hence, |�1〉 is a robust steady state of
the CF-controlled system, under the influence of the detuning.
Likewise, we can prove the robustness property of |�2〉 and
|�3〉.

V. SPIN SQUEEZING

We next study an atomic ensemble. The goal is to generate
a spin-squeezed state, which can be applied for quantum mag-
netometry [56]. The basic variables are the spin angular mo-
mentum operators (Jx,Jy,Jz). They satisfy [Jx,Jy] = iJz and
accordingly 〈�J 2

x 〉〈�J 2
y 〉 � |〈Jz〉|2/4, where 〈Ji〉 = Tr(Jiρ)

and �Ji = Ji − 〈Ji〉. Also the lowering operator is defined as
J− = Jx − iJy . Here we assume that the ensemble is large,
i.e., J 
 1, and the state lies near the collective spin-down
state. Then Jz can be approximated as Jz ≈ −J , and (Jx,Jy)
satisfy [Jx,Jy] = −iJ and thus 〈�J 2

x 〉〈�J 2
y 〉 � J 2/4. Hence

the spin operators can be transformed to the boson opera-
tors as q = Jx/

√
J , p = −Jy/

√
J , and a = (q + ip)/

√
2 =

J−/
√

2J [55]. As shown in Fig. 5, this is a projection from
the generalized Bloch sphere onto the two-dimensional phase
space.

Suppose that the atomic ensemble dispersively couples
with an optical field with annihilation operator B1(t) via the

FIG. 5. Projection of the spin operators to the boson operators,
for a large atomic ensemble.

following Faraday interaction Hamiltonian [7,18,19]:

H
(1)
int (t + dt,t) = i

√
κ[qdB

†
1(t) − qdB1(t)],

meaning that L1 = √
κq. Through this interaction, the polar-

ization of the optical probe field changes depending on the
system’s energy level. Hence, measuring the probe field after
this coupling yields the conditional squeezed state with random
amplitude on the q axis as shown in Fig. 5; then, as implied by
Fig. 1, a suitable MF can compensate this dispersive change
and generate an unconditional squeezed vacuum state. Here
we take the following dissipative system-field coupling, which
simply represents the energy decay, to construct a CF that
emulates this MF control:

H
(2)
int (t + dt,t) = i

√
γ [adB

†
2(t) − a†dB2(t)],

meaning that L2 = √
γ a. In fact, as indicated by the purple

arrows in Fig. 5, this dissipative CF operation will stabilize a
squeezed vacuum state, or equivalently a spin squeezed state
at around Jz ≈ −J . This means that an additional system
Hamiltonian would not be necessary to achieve the goal; that
is, Hsys = 0. Also we set φ = 0. Then the system operators of
the CF-controlled system (3) are given by

H = 1

2i
(L†

2L1 − L
†
1L2) = −

√
κγ

2
(qp + pq),

L = L1 + L2 = (
√

κ + √
γ )q + i

√
γp.

Note that H ∝ JxJy + JyJx is the two-axis twisting Hamilto-
nian [56], which itself has an ability to yield a spin squeezed
state. As noted in Sec. I, there are several approaches for pro-
ducing such a squeezing operation via CF [35–39,41,42], but
the method proposed in this paper differs from those in that it
utilizes a feedback operation composed of a series of dispersive
and dissipative couplings inspired by the corresponding MF
control.

Now, ρ(t) is Gaussian for all t , and thus it can be fully
characterized by the mean vector 〈x〉 = [〈q〉,〈p〉]� and the
covariance matrix

V =
[ 〈�q2〉 〈�q�p + �p�q〉/2
〈�q�p + �p�q〉/2 〈�p2〉

]
,

where �q = q − 〈q〉 and �p = p − 〈p〉. These statistical
variables are subjected to the equations d〈x〉/dt = A〈x〉 and
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dV/dt = AV + V A� + D, where

A =
[−2

√
κγ − γ 0
0 −γ

]
, D =

[
γ 0
0 (

√
κ + √

γ )2

]
.

The derivation of these matrices is given in Appendix C. Then,
in the limit t → ∞, 〈x(t)〉 → 0 and V (t) converges to the
diagonal matrix diag(〈�q(∞)2〉,〈�p(∞)2〉) with

〈�q(∞)2〉 =
√

γ

4
√

κ + 2
√

γ
, 〈�p(∞)2〉 = (

√
κ + √

γ )2

2γ
.

Clearly, 〈�q(∞)2〉 < 1/2, hence the squeezed state is gen-
erated by the CF control. For example when κ = 9γ , the
variances are 〈�q(∞)2〉 = 1/14 and 〈�p(∞)2〉 = 8, which
corresponds to about 8.5-dB squeezing. In this case the purity
is only Tr[ρ(∞)2] = 1/

√
4det[V (∞)] ≈ 0.66, but this would

not be a serious issue for the application to quantum metrology.
Remark 3. Let us consider the setup where the two system-

probe couplings occur in the wrong order along the feedback
loop; the dissipative coupling represented by L1 = √

γ a first
occurs, and secondly the dispersive one L2 = √

κq occurs. In
this case, the Hamiltonian is calculated as H = √

κγ (qp +
pq)/2. The coupling operator is the same as before, i.e.,
L = L1 + L2 = √

γ a + √
κq. Then the system matrices char-

acterizing this linear system are given by

A =
[−γ 0

0 −γ − 2
√

κγ

]
, D =

[
γ 0
0 (

√
κ + √

γ )2

]
.

Then, the steady covariance matrix of the dynamics dV/dt =
AV + V A� + D is obtained as

V (∞) = 1

2

[
1 0
0 1 + κ/(γ + 2

√
κγ )

]
.

Hence, the steady state is not a squeezed state. Note that, as in
the qubit case discussed in Remark 1, this results emphasizes
the importance of the ordering of the two couplings.

VI. FOCK STATE GENERATION

Lastly we consider the problem for generating a Fock
state via feedback. The system is a high-Q optical cavity
containing a few photons. In Refs. [9–11], the dispersive
coupling L1 = √

κn, where n = a†a with a the annihilation
operator of the cavity mode, was taken for MF control; this
is the cross Kerr coupling between the cavity field and the
probe field represented by B1, the instantaneous Hamiltonian
of which is given by

H
(1)
int (t + dt,t) = i

√
κ[ndB

†
1(t) − ndB1(t)].

In fact, this coupling induces a phase shift on B1 depending on
the number of photons inside the cavity; hence, by measuring
the output field represented by dB̃1(t) = √

κjt (n)dt + dB1(t)
[see Eq. (A5)], we can estimate the number of cavity photons
and probabilistically obtain one of the eigenstates of L1, i.e., a
conditional Fock state |m〉.

Our aim is to construct a dissipative CF controller that
compensates the dispersive process L1 and produces a target
Fock state deterministically. A simple dissipative process is
the optical decay L2 = √

γ a, represented by the interaction
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FIG. 6. (a, b) Time evolution of the fidelity F (t) = 〈1|ρ(t)|1〉
and the purity P (t) = Tr(ρ(t)2); the solid red and blue lines are the
case of ideal setup, while cyan and magenta lines are the case under
(a) decoherence and (b) parameter mismatch. (c) Q function of the
system state at γ t = 0,1.1,4.0 in the ideal setting.

Hamiltonian

H
(2)
int (t + dt,t) = i

√
γ [adB

†
2(t) − a†dB2(t)],

where B2(t) is the annihilation field operator of the correspond-
ing optical field. The CF control is structured by connecting
the output B̃1 to the input B2.

Moreover, we add a displacement Hamiltonian Hsys =
ig(a† − a), where g is the gain to be determined, to move
the steady state; note that merely the vacuum is produced
if Hsys = 0. Also we take φ = 0. Hence, the CF-controlled
system (3) is characterized by

L = √
κn + √

γ a,H = ig(a† − a) +
√

κγ

2i
(a†n − na).

(10)

Now we fix the target to the single-photon |1〉, with initial
state ρ(0) = |0〉〈0|. The control parameters are γ = κ/4 and
g = κ/2, which are chosen to maximize the fidelity F (t) =
〈1|ρ(t)|1〉, at some point of time t . The blue and red lines in
Figs. 6(a) and 6(b) show the time evolution of F (t) and the
purity P (t) = Tr[ρ(t)2], respectively; the maximum fidelity is
F ≈ 0.86 at γ t = 1.1 (with P ≈ 0.86), and F (t) converges
to F ≈ 0.76 (with P ≈ 0.71). Therefore, the proposed CF
controller actually emulates the MF scheme and generates
a state close to |1〉 before reaching the steady state which
still has a feature of |1〉, as indicated by the Q function
Q(α) = 〈α|ρ|α〉/π shown in Fig. 6(c).

We also should study the effect of imperfection. In practice,
there exists an uncontrollable photon leakage; we model this
imperfection by introducing an extra optical field B3 coupled
to the cavity through the interaction Hamiltonian

H
(3)
int (t + dt,t) = i

√
ε[adB

†
3(t) − a†dB3(t)].

The master equation of the CF-controlled system is then given
by

dρ

dt
= −i[H,ρ] + D[L]ρ + D[Lex]ρ, Lex = √

εa,
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with (L,H ) given in Eq. (10). In Ref. [9] the author estimated
ε = 12 kHz while κ = 2.5 MHz, which leads to ε ≈ κ/200;
hence we take ε = κ/50,κ/100. The cyan and magenta lines
in Fig. 6(a) represent F (t) and P (t), respectively, in this
imperfect setting. The figure shows that the peak fidelity
F (t) = 〈1|ρ(t)|1〉 at γ t = 1.1 decreases from the optimal
value 0.86 to 0.84. Apart from the decoherence, we have
studied the case where the gain parameter g in the displacement
operation ig(a† − a) deviates from the optimal value g = κ/2.
Figure 6(b) shows the case g = κ/2 + � with � = ±κ/40, ±
κ/80, while ε = 0 is assumed. Then from the figure we find that
the fluctuation of the peak fidelity at γ t = 1.1 is smaller than
the case of decoherence. In summary, in both cases (a, b), the
performance degradation is not so big, hence the CF scheme for
the single-photon generation is robust against those practical
imperfections. This is in stark contrast to the MF strategy [14]
where |1〉 is generated with fidelity F ≈ 0.9 but is collapsed
immediately.

VII. CONCLUSION

In this paper we demonstrated that a CF control can replace
the MF one for the purpose of state preparation in some
typical settings. The CF controller has a common structure,
which is simply a series of dispersive and dissipative couplings
inspired by the corresponding MF operation. Hence, it would
have a wide applicability in practice and work for other
important objectives such as the quantum error correction. In
fact, some studies along this direction have been conducted in
a particular setup [57,58]. The sophisticated design theory for
dissipative quantum networks [59] would be useful to solve
those problems.
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APPENDIX A: MARKOVIAN OPEN QUANTUM SYSTEMS

1. Quantum stochastic differential equation and
master equation

Here we derive the dynamical equation and the master
equation of a general Markovian open quantum system that
interacts with a single coherent field.

Let b(t) be the annihilation operator of the coherent field
and assume that b(t) instantaneously interacts with the system.
b(t) satisfies the canonical commutation relation [b(t),b†(s)] =
δ(t − s). As in the classical case, such a white-noise process
can be rigorously treated by introducing the annihilation
process operator B(t) = ∫ t

0 b(s)ds; in particular, the infinites-
imal change dB(t) = B(t + dt) − B(t) satisfies the following
quantum Ito rule [44]:

dtdB = 0, dBdB† = dt, dB2 = (dB†)2 = dB†dB = 0.

(A1)

The system-field interaction in the short time interval [t,t + dt)
is generally described by the Hamiltonian

Hint(t + dt,t) = i[LdB†(t) − L†dB(t)], (A2)

where L is a system operator representing the coupling with the
field. The corresponding unitary operator in this time interval is
given by U (t + dt,t) = exp[−iHint(t + dt,t)]. Then the total
unitary operator from time zero to t , denoted by U (t), is
constructed by U (t + dt) = U (t + dt,t)U (t), and from the
quantum Ito rule (A1) we can derive the time evolution of
U (t) as follows:

U (t + dt)

= exp[−iHdt − iHint(t + dt,t)]U (t)

= [
I − iHdt − iHint(t + dt,t) − 1

2Hint(t + dt,t)2
]
U (t)

= [
I − (

iH + 1
2L†L

)
dt + LdB†(t) − L†dB(t)

]
U (t),

(A3)

with U (0) = I , where we have added the time-invariant system
Hamiltonian H [thus, the total Hamiltonian is Hdt + Hint(t +
dt,t)]. From dU (t) = U (t + dt) − U (t), Eq. (A3) is equiva-
lently represented by

dU (t) = [−(
iH + 1

2L†L
)
dt + LdB†(t) − L†dB(t)

]
U (t),

with U (0) = I . This is called the quantum stochastic differ-
ential equation (QSDE). Thus, a Markovian open quantum
system G, which interacts with a single coherent field, is
generally characterized by two operators L and H , and thus it
is denoted by G = (L,H ).

For an arbitrary system operator X, the Heisenberg equation
of X(t) = jt (X) = U †(t)XU (t) is given by

= U †(t + dt)XU (t + dt) − U †(t)XU (t)

= dU †(t)XU (t) + U †(t)XdU (t) + dU †(t)XdU (t)

= jt

(
i[H,X] + L†XL − 1

2L†LX − 1
2XL†L

)
dt

+ jt ([X,L])dB†(t) + jt ([L
†,X])dB(t), (A4)

which is also called the QSDE. The field operator changes to
B̃(t) = jt [B(t)] and satisfies the output equation

dB̃(t) = jt (L)dt + dB(t). (A5)

Let us assume that the probe is a coherent field with amplitude
α. Then the expectation 〈X(t)〉 obeys

d〈X(t)〉
dt

=
〈
jt

(
i[H ′,X] + L†XL − 1

2
L†LX − 1

2
XL†L

)〉
,

where H ′ = H + (αL† − α∗L)/2i. In the Schrödinger picture
the expectation 〈X(t)〉 is represented in terms of the time-
dependent unconditional state ρ(t) as 〈X(t)〉 = Tr[Xρ(t)].
Then it is easy to find that ρ(t) obeys the master equation
(1):
dρ

dt
=−i[H,ρ]+D[L]ρ, D[L]ρ =LρL†−1

2
L†Lρ−1

2
ρL†L,

(A6)

where H ′ has been replaced by H . Note finally that, if the
system interacts with m probe fields, then the resulting master
equation is given by

dρ

dt
= −i[H,ρ] +

m∑
k=1

D[Lk]ρ. (A7)
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2. Derivation of the series product formula (2)

The series product formula (2),

G1�G2 =
(

L1 + L2,H1 + H2 + 1

2i
(L†

2L1 − L
†
1L2)

)
, (A8)

is directly obtained from Eq. (A3) as follows. Because the sin-
gle probe field represented by B(t) first interacts with the sys-
tem G1 = (L1,H1) and secondly with G2 = (L2,H2), the
change of the total unitary operator U (t) is given by

U (t + dt)

=
[
I −

(
iH2 + 1

2
L
†
2L2

)
dt + L2dB†(t) − L

†
2dB(t)

]

×
[
I −

(
iH1 + 1

2
L
†
1L1

)
dt

+ L1dB†(t) − L
†
1dB(t)

]
U (t)

=
{
I − i

[
H1 + H2 + 1

2i
(L†

2L1 − L
†
1L2)

]
dt

− 1

2
(L1 + L2)†(L1 + L2)dt

+ (L1 + L2)dB†(t) − (L1 + L2)†dB(t)

}
U (t).

This means that the whole system G1�G2 is characterized
by Eq. (2) or (A8). Note that, if G1 and G2 are different
systems (for example, G1 is a qubit and G2 is an amplifier),
then (L1,H1) and (L2,H2) are operators on the respective
Hilbert spaces, and the more precise expression of the operators
appearing in Eq. (A8) is, e.g., L1 ⊗ I + I ⊗ L2.

3. General SL H formula

A more general Markovian open quantum system,
which couples with m independent probe fields B(t) =
[B1(t), . . . ,Bm(t)]�, is characterized by the triplet (S,L,H ),
where S is an m × m unitary matrix representing the scattering
process of the probe fields. In this case the QSDE is represented
by [23]

dU (t) ={ − (
iH + 1

2L†L
)
dt + Tr[(S − I )d�(t)T ]

+ dB(t)†L − L†SdB(t)
}
U (t),

with U (0) = I , where L = [L1, . . . ,Lm]� is a vector of cou-
pling operators, � = (�ij ) is the matrix of gauge process
operators satisfying d�ijd�k� = δjkd�i�, and H is a system
Hamiltonian. It is shown in [23] that the cascade connection
from G1 = (S1,L1,H1) to G2 = (S2,L2,H2) is given by

G1�G2 =
(

S2S1,L2 + S2L1,H1 + H2

+ 1

2i
(L†

2S2L1 − L
†
1S

†
2L2)

)
.

The proposed CF-controlled system (3) can then be equiva-
lently represented by

G = (1,L1,Hsys)�(eiφ,0,0)�(1,L2,0),

FIG. 7. Coherent feedback configuration for the system G, com-
posed of two couplings L1 and L2, and the phase shifter eiφ placed
along the feedback loop.

where (eiφ,0,0) represents a static device that only changes
the phase of the field, such as a π/2 wave plate; that is, a
phase shifter is placed along the feedback loop between the
two systems, as shown in Fig. 7 below.

APPENDIX B: PROOF OF UNIQUENESS OF |� j〉 FOR THE
QUTRIT STABILIZATION PROBLEM

Here we prove that, in the ideal setup, one of the vectors
{|�1〉,|�2〉,|�3〉} given in Sec. IV A can be selectively as-
signed as the unique pure steady state of the CF-controlled
system, by properly choosing the parameters (u1,u2) in the
added Hamiltonian Hsys given by Eq. (8). First let us determine
the parameter (u1,u2), using Theorem 1 given in Sec. III A;
that is, |�i〉 is a steady state of the master equation (1) if
and only if it is an eigenvector of both L and iH + L†L/2.
Now {|�1〉,|�2〉,|�3〉} are eigenvectors of L in Eq. (7). Then
for |�1〉 to be a steady state, it must be an eigenvector of
iH + L†L/2:

iH + 1

2
L†L =

⎡
⎣(κ + γ )/2 u1 0

−u1 γ /2 u2 − √
κγ

0 −u2 κ/2

⎤
⎦.

That is,

⎡
⎣(κ + γ )/2 u1 0

−u1 γ /2 u2 − √
κγ

0 −u2 κ/2

⎤
⎦

⎡
⎣ 2κ

2
√

κγ

γ

⎤
⎦

=
⎡
⎣κ(κ + γ ) + 2u1

√
κγ

−2u1κ + u2γ

−2u2
√

κγ + κγ /2

⎤
⎦ = λ

⎡
⎣ 2κ

2
√

κγ

γ

⎤
⎦

must hold, where λ is an eigenvalue. This immediately yields
(u1,u2) = (−√

κγ /2,0), with λ = κ/2. Similarly we obtain
(u1,u2) = (0,

√
κγ /2) for the case |�2〉 and u2 = √

κγ for the
case |�3〉.

Now, by using the following result, we prove that |�i〉 is a
unique steady state.

Theorem 2 [52]. Let D be the subset composed of pure
steady states (called the “dark states”) of the Markovian master
equation (A7) in the Hilbert space H. If there is no subspace
S ⊆ H with S ⊥ D such that LkS ⊆ S for all k, then D is the
unique subset of steady states.
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For the case |�1〉, D is given by D = span{|�1〉}. Then it
is easy to find that the subspace orthogonal to D is

S = span

⎧⎨
⎩

⎡
⎣ γ

0
−2κ

⎤
⎦,

⎡
⎣ 0√

γ

−2
√

κ

⎤
⎦

⎫⎬
⎭.

Then, we have

LS = span

⎧⎨
⎩

⎡
⎣ γ

√
κ

γ
√

γ

2κ
√

κ

⎤
⎦,

⎡
⎣0

0
1

⎤
⎦

⎫⎬
⎭,

which clearly shows that LS � S . Therefore, from Theorem
2, |�1〉 is the unique steady state of the master equation
of the system (L,H ) with (u1,u2) = (−√

κγ /2,0). Then,
from the equivalency of the uniqueness of the steady state
and the deterministic convergence to it for a finite-dimensional
Markovian quantum system [50], we arrive at the conclusion
that any initial state ρ(0) converges to |�i〉. Similarly, we can
prove the uniqueness of |�2〉 and |�3〉.

APPENDIX C: LINEAR OPEN QUANTUM SYSTEMS

1. General single-mode linear model

Here we describe the QSDE of a general single-mode open
harmonic oscillator that interacts with a single field; for a
general system composed of multiple harmonic oscillators, see
[4,6]. This system is generally characterized by the quadratic
Hamiltonian

H = 1

2
x�Gx = 1

2
[q,p]

[
g1 g2

g2 g3

][
q

p

]
, gi ∈ R,

and the coupling operator L = c1q + c2p (c1,c2 ∈ C), where
x = [q,p]� is the vector of canonical variables of the oscil-
lator, satisfying qp − pq = i. Note that, from Eq. (A2), the
oscillator couples with the field via the following interaction
Hamiltonian:

Hint(t + dt,t) = i(c1q + c2p)dB†(t) − i(c1q + c2p)†dB(t).

Then the QSDEs (A4) of q(t) = jt (q) and p(t) = jt (p), for
the system (L,H ) described above, are given by

dq(t) = [g2 + Im(c1c
∗
2)]q(t)dt + g3p(t)dt

− ic∗
2dB(t) + ic2dB†(t),

dp(t) = −g1q(t)dt − [g2 + Im(c∗
1c2)]p(t)dt

+ ic∗
1dB(t) − ic1dB†(t).

This set of equations can be summarized as

dx(t) = Ax(t)dt + i�[C�dB†(t) − C†dB(t)], (C1)

where x(t) = [q(t),p(t)]�,

A := �[G + Im(C†C)], C = [c1,c2], � =
[

0 1
−1 0

]
.

Also the output field operator (A5) is expressed as

dB̃(t) = Cx(t)dt + dB(t). (C2)

Due to the linearity of Eq. (C1), the quantum state ρ(t) is
Gaussian for all t , if ρ(0) is Gaussian. Then the system is fully
characterized by the mean vector 〈x(t)〉 = [〈q(t)〉,〈p(t)〉]� and
the covariance matrix

V (t) =
[ 〈�q(t)2〉 �

〈�q(t)�p(t) + �p(t)�q(t)〉/2 〈�p(t)2〉
]
,

where �q = q − 〈q〉 and �p = p − 〈p〉, and � denotes the
symmetric element. The dynamics of 〈x(t)〉 is readily obtained
as d〈x(t)〉/dt = A〈x(t)〉, where the field state is assumed to
be the vacuum. Also from the quantum Ito rule (A1), the time
evolution equation of V (t) is obtained as

d

dt
V (t) = AV (t) + V (t)A� + D, (C3)

where D = �Re(C†C)��. It is known that, if all the eigen-
values of A have negative real part, the mean vector 〈x(t)〉
converges to zero and Eq. (C3) has a unique steady solution
V (∞).

2. Steady covariance matrix for the spin squeezing problem

We here apply the above formulas to our model, and derive
the dynamical equations of the system variables (q(t),p(t)) and
the covariance matrixV (t). Now the system is an open quantum
harmonic oscillator driven by the following Hamiltonian and
the coupling operator:

H = −
√

κγ

2
(qp + pq), L = (

√
κ + √

γ )q + i
√

γp

Hence, by definition we find

G =
[

0 −√
κγ

−√
κγ 0

]
, C = [

√
κ + √

γ , i
√

γ ].

Then A and D in Eqs. (C1) and (C3) are obtained as follows:

A =
[−2

√
κγ − γ 0
0 −γ

]
, D =

[
γ 0
0 (

√
κ + √

γ )2

]
.

Hence, the differential equation (C3) has the following unique
steady solution:

V (∞) = 1

2

[√
γ /(2

√
κ + √

γ ) 0
0 (

√
κ + √

γ )2/γ

]
.
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