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Quantum teleportation in vacuum using only Unruh-DeWitt detectors
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We consider entanglement extraction into two two-level Unruh-DeWitt detectors from a vacuum of a neutral
massless quantum scalar field in a four-dimensional space-time, where the general monopole coupling to the scalar
field is assumed. Based on the reduced density matrix of the two detectors derived within the perturbation theory,
we show that the single copy of the entangled pair of the detectors can be utilized in quantum teleportation, even
when the detectors are separated acausally, while we observe no violation of the Bell–CHSH inequality. In the case
of the Minkowski vacuum, in particular, we find that entanglement usable in quantum teleportation is extracted
due to the special relativistic effect when the detectors are in a relative inertial motion, while it is not when they
are comoving inertially and the switching of the detectors is executed adiabatically at infinite past and future.
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I. INTRODUCTION

Quantum entanglement in the relativistic quantum field
theory is a developing field of research. From the point of
view of theoretical physics, in particular, the information loss
paradox in black hole physics (see, e.g., Refs. [1,2]) and the
entanglement entropy in the context of the correspondence
between an anti–de Sitter space-time and a conformal field
theory [3] have attracted much attention recently.

It has been shown by Summers and Werner [4–7] that, with
suitable observables in local space-time regions, the Bell–
Clauser-Holt-Shimony-Horne (CHSH) inequality is maxi-
mally violated in a vacuum of any quantum field theory, which
has led to the observation that the vacuum intrinsically contains
the “nonlocal” correlations, hence also entanglement, that
cannot be explained from a local realistic view [8–10]. Then,
much effort has been made to analyze entanglement extraction
from a vacuum with detectors so that it can be useful for several
quantum information processing methods. (For entanglement
extraction from the Minkowski vacuum, see, e.g., [11–31].) In
particular, following the pioneering paper by Reznik [16], two-
level Unruh-DeWitt detectors [32–35] are frequently employed
to analyze entanglement extracted from a vacuum, where we
can apply the well-established results in quantum information
theory for qubits. In such extraction of entanglement, which is
called harvesting, Unruh-DeWitt detectors are assumed to be
localized not only spatially but also temporally. In particular,
Reznik [16] considered Unruh-DeWitt detectors that interact
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with a quantum field for a strictly finite period so that the future
light cones of the detectors do not intersect within the period of
interaction. It thus has revealed that entanglement is generated
between detectors even if they are separated acausally, i.e.,
located at causally disconnected regions, and has corroborated
the result by Summers and Werner [4–7]. Since the maximally
entangled state can be distilled from an ensemble of any two-
qubit entangled states [36], one can in principle make use of the
extracted entanglement for some information processes such
as quantum teleportation. Notice, however, such distillation
requires the preparation of infinitely many copies of vacua and
detectors, which may be rather unrealistic. Therefore, it is still
meaningful to ask whether the single copy of the entangled
state has potential abilities, especially in the case where the
detectors are separated acausally. The first purpose in this paper
is then to understand in a general context the usability of the
entanglement between the Unruh-DeWitt detectors coupled to
a neutral massless quantum scalar field through a monopole
coupling, i.e., without internal structures of a detector. In
particular, we will show that although the entanglement does
not violate the Bell-CHSH inequality, a quantum teleportation
with the use of the single copy of the entangled Unruh-DeWitt
detectors is still possible. To see this, we will assume neither the
geometry of a space-time, the form of the monopole coupling,
the world lines of the detectors, nor the switching functions of
the detectors.

The notion of the Unruh-DeWitt detector has been in-
troduced as a theoretical device that probes the nature of
a quantum state. In the Minkowski vacuum, in particular,
it detects no excitation when it is carried by an inertial
observer, and its spectrum is thermal if it is carried by a
uniformly accelerated observer. The latter particularly has
corroborated the observation that the Minkowski vacuum looks
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to be a thermal bath for a uniformly accelerated observer,
which is the so-called Unruh effect [32]. These results follow
when one switches on and off the detector adiabatically at
infinite past and future, which is implicitly assumed in the
textbooks [33,34], and computes the excitation probability by
considering practically detectors that interact with a quantum
field for infinitely long time, and thus globally in time. As
for entanglement, one might expect that a sufficiently long
interaction time will naturally enable entanglement extraction.
This is not necessarily the case, however. In the realistic model
[19–22], for example, each of a pair of atoms with the electric
dipole d is coupled with the electric field D, whose interaction
Hamiltonian is given as HI = −(1/ε0) d · D, and the initial
quantum state of the electromagnetic field is set to be the
vacuum, i.e., without applying any external electric field. If the
initial states of the atoms are prepared to be the ground state,
it might be conceivable that the uncertainty relation in time
and energy suppresses quantum fluctuation after sufficiently
long time, the energy conservation being recovered, and the
whole system returns back to the ground state. Then, the
interaction might be expected as ineffective. In fact, as we
will show in this paper, when two Unruh-DeWitt detectors
are comoving inertially and interact with a quantum field for
infinitely long time, entanglement is not generated between
the Unruh-DeWitt detectors. Thus, the second purpose of
this paper is to demonstrate it explicitly and further explore
noncomoving inertial motions of Unruh-DeWitt detectors that
interact with a quantum field for infinitely long time.

We will thus consider in this paper two two-level Unruh-
DeWitt detectors coupled to a neutral massless quantum scalar
field with a general monopole coupling, where the initial states
of the detectors are prepared to be the ground state and the
initial state of the scalar field is set to be a vacuum. The
model is presented in Sec. II, where we will also derive the
reduced density matrix of the two Unruh-DeWitt detectors in
an arbitrary four-dimensional space-time in the perturbation
theory, without assuming particular forms of the world lines
of the detectors or the switching functions. Based on the
reduced density matrix, in Sec. III, we will compute several
entanglement measures, which include the bounds on the
distillable entanglement, the entanglement cost, and the Bell-
CHSH inequality. In particular, we will see the supremacy of
the extracted entanglement in quantum teleportation with the
single entangled pair, compared to the teleportation only via
classical channels. In Sec. IV, we will turn to the issue of en-
tanglement generated between inertial Unruh-DeWitt detectors
with adiabatic switching. To perform explicit computation, we
need to specify a space-time and a vacuum, and thus we will
focus on the Minkowski vacuum. We will consider not only
the case of infinitely long interaction with switching executed
implicitly at infinite past and future, but also the case where the
effect of switching is taken into account. We will conclude and
discuss in Sec. V, which includes a preliminary result for the
case where one of the detectors runs with uniform acceleration.
Throughout this paper, we adopt natural units c = h̄ = 1.

II. REDUCED DENSITY MATRIX OF TWO DETECTORS

We consider two two-level Unruh-DeWitt detectors, A

carried by Alice and B by Bob, with the discrete energy

eigenvalues E(A)
n and E(B)

n , respectively, where n = 0,1, which
are thus considered as two qubits. The excitation energy
�E(I ) ≡ E

(I )
1 − E

(I )
0 is assumed to be positive �E(I ) > 0,

where the index I stands for A or B, here and hereafter.
We denote the coordinate variables of the world lines of the
detectors with a bar as x̄

μ

I (τI ), where τI is the proper time of
the detector I . These detectors are assumed to be coupled with
a neutral massless quantum scalar field φ(x), with the coupling
being governed by the perturbation action

Sint =
∫

c χA(τA) mA(τA) φ(x̄A)dτA

+
∫

c χB(τB) mB(τB) φ(x̄B)dτB, (1)

where c is the coupling constant, mI (τI ) is the monopole
operator of the detector I , which commutes with that of the
other detector and with the scalar field φ(x̄I (τI )). Note that we
do not assume any particular form of the monopole coupling,
guaranteeing the generality of the following discussion. The
switching function χI (τI ) describes how the coupling between
the detectors and the scalar field is implemented as a function
of the proper time τI .

We choose the initial quantum state |in〉 of the whole system
at infinite past as

|in〉 = |0〉∣∣E(A)
0

〉∣∣E(B)
0

〉
, (2)

where |0〉 is the vacuum of the scalar field and |E(I )
n 〉 is the

nth state of the detector I . Then, the quantum state in the
asymptotic future is given by

|out〉 = T ei Sint |in〉, (3)

where T stands for time ordering. Since we are interested in
the state of the two Unruh-DeWitt detectors, we trace out
the degrees of freedom of the scalar field φ. As is shown
in Appendix A, the reduced density matrix ρAB of the two
detectors is then derived from the perturbation theory as

ρAB ≡ Trφ|out〉〈out|

=

⎛
⎜⎜⎜⎝

0 0 0 c2 E
0 c2 PA c2 PAB c2 WA

0 c2 P∗
AB c2 PB c2 WB

c2 E∗ c2 W∗
A c2 W∗

B 1 − c2(PA + PB)

⎞
⎟⎟⎟⎠

+O(c4), (4)

in the bases of {|E(A)
1 〉|E(B)

1 〉, |E(A)
1 〉|E(B)

0 〉, |E(A)
0 〉|E(B)

1 〉, |E(A)
0 〉

|E(B)
0 〉}, where ∗ stands for the complex conjugate. Among

the matrix elements in Eq. (4), PI and E are given by

PI = ∣∣〈E(I )
1

∣∣mI (0)
∣∣E(I )

0

〉∣∣2 II ,

E = 〈E(B)
1

∣∣mB(0)
∣∣E(B)

0

〉 〈
E

(A)
1

∣∣mA(0)
∣∣E(A)

0

〉
IE, (5)

where II and IE are defined as

II ≡
∫ ∞

−∞
dτ ′

I

∫ ∞

−∞
dτI χI (τ ′

I ) χI (τI ) ei �E(I )(τI −τ ′
I ) GW (x̄ ′

I ,x̄I ),

(6)
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IE ≡ − i

∫ ∞

−∞
dτB

∫ ∞

−∞
dτ ′

A χB(τB) χA(τ ′
A) ei �E(B)τB ei �E(A)τ ′

A

× GF (x̄B,x̄ ′
A), (7)

and GW (x,x ′) and GF (x,x ′) are the Wightman function and
the Feynman propagator, defined as

GW (x,x ′) ≡ 〈0| φ(x) φ(x ′) |0〉, (8)

GF (x,x ′) ≡ − i 〈0| T φ(x) φ(x ′) |0〉. (9)

We emphasize here that PI is nothing but the excitation
probability of the detector I from the ground state to the excited
state, and thus we have

PI � 0. (10)

We note also that Eq. (7) is rewritten in terms of the Wightman
function and the retarded Green function, as Eq. (A11) in
Appendix A, by using the relation among the Green functions
(A5). The forms of other elements in Eq. (4) are given in
Appendix A. Note that the density matrix (4) generalizes those
derived in [16,17,23,24,26,31] in the sense that WI appears in
our case. Interestingly, we will see that WI does not play any
role in this paper, similarly to the case where the initial state of
the scalar field is set to the coherent state and the detectors have
spacial extension but with a restricted form of the monopole
coupling [29,30].

As we describe in Appendix A, the reduced density matrix
(4) is derived by employing only the relations between the
Green functions derived from Eqs. (8) and (9), along with the
condition that the world lines of the detectors are causal, i.e.,
the time coordinate t(τ ) of a single timelike world line is a
monotonically increasing function of the proper time τ and
hence

�(τ − τ ′) �(t(τ ) − t(τ ′)) = �(τ − τ ′),

�(τ − τ ′) �(t(τ ′) − t(τ )) = 0, (11)

where τ and τ ′ are proper times along the single timelike world
line, and thus we see that the reduced density matrix given by
Eq. (4) is valid for arbitrary timelike world lines of the detectors
in an arbitrary space-time, once a vacuum |0〉 is well defined,
not necessarily uniquely.

The eigenvalues of the reduced density matrix (4) are
derived by using Eq. (B3) in Appendix B as

1 + O(c2),

c2

2
[PA + PB ±

√
(PA − PB)2 + 4|PAB |2] + O(c4),

c4(X − |E |2) + O(c6), (12)

where X arises in the contribution of order of c4 as

c4 X ≡ 〈E(A)
1

∣∣〈E(B)
1

∣∣ρAB

∣∣E(A)
1

〉∣∣E(B)
1

〉
. (13)

From the positivity of the density matrix ρAB and Eq. (10), we
have

PA PB � |PAB |2, and X � |E |2. (14)

The reduced density matrix ρB of the detector B is obtained
by further tracing out over the states of the detector A, as

ρB ≡ TrAρAB =
(

c2 PB c2 WB

c2 W∗
B 1 − c2PB

)
, (15)

whose eigenvalues are derived as

1 − c2 PB + O(c4), c2 PB + O(c4). (16)

III. PROPERTIES OF EXTRACTED ENTANGLEMENT

Based on the reduced density matrix (4) of the two Unruh-
DeWitt detectors, we here consider the possibility of entan-
glement extraction and its general properties by computing
entanglement measures.

The necessary and sufficient condition for a two-qubit
system to be entangled, as two two-level Unruh-DeWitt de-
tectors, is given by the famous positive partial transpose (PPT)
criterion [37,38]: a two-qubit state ρAB is entangled if and only
if its partial transpose has negative eigenvalues. The partial
transpose ρ

TA

AB of ρAB with respect to the detector A is given as

ρ
TA

AB =

⎛
⎜⎜⎜⎝

0 0 0 c2 P∗
AB

0 c2 PA c2 E∗ c2 W∗
A

0 c2 E c2 PB c2 WB

c2 PAB c2 WA c2 W∗
B 1 − c2(PA + PB)

⎞
⎟⎟⎟⎠

+O(c4). (17)

The eigenvalues of ρ
TA

AB are derived by applying again Eq. (B3)
in Appendix B as

1 + O(c2),

c2

2
[PA + PB ±

√
(PA − PB)2 + 4|E |2] + O(c4),

c4(X − |PAB |2) + O(c6). (18)

By noting Eq. (10) again, the condition for the two detectors
to be entangled is then described as

PA PB < |E |2 (19a)

or

X < |PAB |2, (19b)

where X is defined in Eq. (13). It is worth mentioning that
these conditions coincide exactly with those derived by Reznik
for the restricted form of monopole coupling [16], where WI

is absent; hence those conditions are general enough for the
extraction of entanglement from a vacuum as long as one
considers a monopole coupling.

We notice that conditions (19a) and (19b) are not compatible
with each other, and hence either of them, but not both, is the
condition for the two detectors to be entangled. Indeed, by
taking into account the positivity (14) of the reduced density
matrix ρAB , we find that Eq. (19a) gives

X � |E |2 > PA PB � |PAB |2, (20)
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which contradicts the second condition (19b), while Eq. (19b)
yields

PA PB � |PAB |2 > X � |E |2, (21)

which is incompatible with the first condition (19a).
In order to discuss the nature of extracted entanglement,

we shall compute below several entanglement measures for
arbitrary switching functions and arbitrary world lines of the
detectors in an arbitrary space-time. In the first two sections,
we will consider the bounds on the distillable entanglement
and the entanglement cost. In the third section, we will turn
to the fundamental issue of the Bell-CHSH inequality and
investigate whether Unruh-DeWitt detectors are suitable in the
sense of Summers and Werner [4–7] in the general context.
Note that the distillable entanglement and the entanglement
cost assume many copies of entangled states, which would be
rather unrealistic in our case since one needs to prepare many
vacuum states and many pairs of Unruh-DeWitt detectors.
Motivated by this, in the last section we will consider the
quantum teleportation that is implemented with the single copy
of entangled detectors and compute the teleportation fidelity.

A. Bounds on distillable entanglement—Negativity and
coherent information

The distillability of singlet states (two-qubit maximally
entangled states) is important for many applications, such as

quantum key distribution and quantum teleportation. While
there generally exists an entangled state from which no singlet
states can be extracted, i.e., a bound entangled state, it is always
possible to distill singlet states from many copies of an arbitrary
two-qubit entangled state [36]. Hence, in principle, one can
distill singlet states from the extracted entangled states also in
our case. However, beyond such a qualitative discussion, we
still need to give a quantitative estimation for the distillability.
The distillable entanglement ED(ρAB), defined asymptotically
(n → ∞) as the optimal rate m/n to extract m copies of a
singlet state from n copies of a states ρAB through the local
operations and classical communication (LOCC), provides
such an operationally motivated measure. Unfortunately, the
measure is generally known to be difficult to compute even for
two-qubit cases. So, here we shall focus on other computable
measures that give an upper bound and a lower bound of the
distillable entanglement.

The negativity N (ρAB) of a density operator ρAB is defined
as minus the sum of the negative eigenvalues of its partial
transpose ρ

TA

AB [39]. Moreover, the logarithmic negativity
log2[2N (ρAB) + 1] gives an upper bound of the distillable
entanglement [40]:

ED(ρAB) � log2(2N (ρAB) + 1). (22)

For the reduced density matrix derived in Eq. (4), we
immediately obtain from Eqs. (18) and (19),

N (ρAB) =
⎧⎨
⎩−c2

2
[PA + PB −

√
(PA − PB)2 + 4|E |2] + O(c4) for condition (19a),

c4(|PAB |2 − X ) + O(c6) for condition (19b).
(23)

Therefore, this gives an upper bound of possible distillation
(22) of singlet states from our extracted entanglement.

Surely, a more interesting estimation is a lower bound of
ED(ρAB), as it will guarantee the amount of extraction of
singlet states at lowest. It was shown [41] that the coherent
information Ic(A 〉B) (from B to A) gives a lower bound of the
one-way entanglement capacity D→(ρAB), i.e., entanglement
distillation with one-way communication:

ED(ρAB) � D→(ρAB) � Ic(A 〉B). (24)

The coherent information Ic(A 〉B) of a state ρAB is defined by

Ic(A 〉B) ≡ H (ρB) − H (ρAB), (25)

where H (ρ) ≡ −Trρ log2 ρ is the von Neumann entropy, and
thus Ic(A 〉B) coincides with the negative of the conditional
entropy Ic(A 〉B) = −H (A|B). From Eqs. (12) and (16), we
obtain, for the reduced density matrix (4),

Ic(A 〉B) = 2PA c2 log2 |c| + O(c2). (26)

Since |c| < 1 within the perturbation theory and PA is positive
(10), we find that Ic(A 〉B) is negative. Therefore, the fact
that the excitation probability is non-negative unfortunately
prohibits us from obtaining a meaningful lower bound for
entanglement distillation.

B. Entanglement cost—Entanglement of formation and
concurrence

Another operationally motivated measure of entanglement
is the entanglement of cost EC(ρAB), which is defined as the
optimal rate to cost copies of a singlet state in order to obtain the
copies of a state ρAB . The related measure is the entanglement
of formation EF (ρAB) [42]:

EF (ρAB) ≡ inf
∑

j

pjE(φj ), (27)

where inf is taken over all possible decompositions into pure
states |φj 〉 as ρAB =∑j pj |φj 〉〈φj |, and E(φj ) is the entropy
of entanglement of a pure state |φj 〉. In particular, EC(ρAB)
and EF (ρAB) are related as

EC(ρAB) = lim
n→∞

EF

(
ρ⊗n

AB

)
n

. (28)

Although both EC(ρAB) and EF (ρAB) are generally difficult to
compute, it is known [43] in the case of a two-qubit system that
EF (ρAB) is given by a computable quantity, the concurrence
C(ρAB), through the formula

EF (ρAB) = h

(
1 +
√

1 − C2(ρAB)

2

)
, (29)
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where h(x) ≡ −x log2 x − (1 − x) log2(1 − x) is the binary
entropy. The concurrence C(ρAB) for a two-qubit state ρAB

is defined by

C(ρAB) ≡ max[0,λ̃1 − λ̃2 − λ̃3 − λ̃4], (30)

where λ̃1, λ̃2, λ̃3, and λ̃4 are the square roots of the eigenvalues
of ρAB ρ̃AB in the descending order and ρ̃AB is defined as

ρ̃AB ≡ σy ⊗ σy ρ∗
AB σy ⊗ σy. (31)

The square roots of the eigenvalues of ρABρ̃AB for the re-
duced density matrix (4) are calculated from the eigenvalue

equation (B5) in Appendix B as

c2(
√
PAPB ± |PAB |) + O(c4), c2(

√
X ± |E |) + O(c4).

(32)

As we noticed in Eq. (20), when |E | >
√
PA PB , we have√

X > |PAB |, and hence
√
X + |E | >

√
PA PB + |PAB |.

In this case, the maximal eigenvalue λ̃1 is found to
be λ̃1 = c2(

√
X + |E |) + O(c4). When

√
X < |PAB |, on

the other hand, we have
√
PA PB > |E | from Eq. (21),

which implies
√
PA PB + |PAB | >

√
X + |E |, and thus λ̃1 =

c2(
√
PAPB + |PAB |) + O(c4). Therefore, the concurrence

C(ρAB) associated with the reduced density matrix (4) is
computed as

C(ρAB) =
{

2 c2(|E | − √
PAPB) + O(c4) for condition (19a),

2 c2(|PAB | − √
X ) + O(c4) for condition (19b).

(33)

It is interesting to notice that when the second condition (19b)
for entanglement holds, the contribution to the concurrence
is at order of c2 while the contribution to the negativity is at
order of c4 [see Eq. (23)]. On the other hand, when the first
condition (19a) is met, we see from Eqs. (23) and (33) that in
the particular case of PA = PB , which we thus denote as PI ,
the concurrence and the negativity are related and given as

C(ρAB) = 2N (ρAB) = 2 c2(|E | − PI ) + O(c4). (34)

The same relation has been derived in Ref. [26] for a restricted
form of the monopole coupling. We will use Eq. (34) in the
last section below.

C. Bell-CHSH inequality

In this section, we shall ask whether the entanglement gener-
ated between the Unruh-DeWitt detectors can be explained by
classical means, i.e., by the local realism. Indeed, Summers and
Werner [4–7] showed the maximal violation of the Bell-CHSH
inequality in a vacuum of any quantum field theory, which
implies that a vacuum intrinsically includes the nonlocality that
cannot be explained by any local realistic means. If one could
observe the nonlocality in entanglement generated between
detectors separated acausally, it would provide an indirect cor-
roboration of their results. Notice, however, that the presence
of entanglement does not necessary imply the nonlocality,
since there is an entangled state the statistics of which can
be still reproducible by some local hidden variable models
[10,44]. Therefore, we still need to check the violation of a
Bell inequality for the extracted entanglement. Here, we focus
on the so-called Bell-CHSH inequality, which gives not only
the necessary condition for the existence of the local hidden
variable models [9], but also the sufficient condition [45] in
the CHSH setting, i.e., the physical setting where there are
two-valued dichotomic measurements in the bipartite system.

For a two-qubit state ρAB , letting the “optimal” CHSH
quantity [46] be

βCHSH(ρAB) ≡ max
a,a′,b,b′

Tr ρAB[σa ⊗ (σb + σb′)

+σa′ ⊗ (σb − σb′)], (35)

where the maximization in Eq. (35) is taken over all spin
observables σa,σa′ for one qubit and σb,σb′ for the other, the
Bell-CHSH inequality is described as

βCHSH(ρAB) � 2. (36)

One can show [46] that

βCHSH(ρAB) = 2
√

M(ρAB), (37)

where M(ρAB) is the sum of the two greatest eigenvalues of

UρAB
≡ T T

ρAB
TρAB

, (38)

and TρAB
is the 3 × 3 matrix defined by

(TρAB
)ij ≡ Tr(ρAB σi ⊗ σj ). (39)

From the eigenvalue equation (B7) in Appendix B, the eigen-
values of the matrix UρAB

for the reduced density matrix (4)
are derived as

1 − 4 c2(PA + PB) + O(c4), 4 c4(|E | ± |PAB |)2 + O(c6).

(40)

Consequently, we have

M(ρAB) = 1 − 4(PA + PB)c2 + O(c4), (41)

and hence we obtain from Eq. (37),

βCHSH(ρAB) = 2[1 − 2(PA + PB)c2] + O(c4) � 2. (42)

Therefore, we see that the entanglement generated between the
two Unruh-DeWitt detectors does not violate the Bell-CHSH
inequality (36). The same conclusion was observed in [17,31].
We note again that our interaction is more general than those
used there; hence the derived result here shows the fact of
nonviolation of the Bell-CHSH inequality of the extracted
entanglement in a more general context. Notice, however, that
this result is still not sufficient to conclude that the extracted
entanglement can be explainable by local realism. Indeed, the
optimization in Eq. (35) is only through spin observables,
while there are more general positive operator valued measure
(POVM) measurements. Moreover, as is noticed above, the
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Bell-CHSH inequality gives the sufficient condition for the
local realism only in the restriction to the CHSH setting.1In this
restricted sense, however, we see again that the non-negativity
of the excitation probability (10) prevents the Bell-CHSH
inequality from being violated, and hence Unruh-DeWitt
detectors are found not to be suitable detectors in the sense
of Summers and Werner [4–7], also for the general monopole
coupling.

D. Optimal fidelity of teleportation

In this section, we consider the possibility of quantum tele-
portation only via the single copy of the entangled detectors.
To do this, we compare the optimal teleportation fidelity with
entanglement to that achievable only via classical channels.
The (averaged) teleportation fidelity is given by

F =
∫

dM(φ)
∑

k

pk〈φ|ρk|φ〉, (43)

where the integral is over the quantum state |φ〉 to be teleported
from the sender with the unitary invariant measure dM , and
ρk is the state teleported to the receiver given the outcome k of
the sender’s measurement with the probability pk . Let F (ρAB)
denote the fidelity of teleportation using an entangled state

ρAB . The Horodecki family showed [49] the optimal fidelity
for a two-qubit system is given as

Fmax(ρAB) = 1
2

(
1 + 1

3 Tr
√

UρAB

)
, (44)

where UρAB
is given by Eq. (38). Here, we are concerned only

with the standard teleportation, and then the optimization is
over all local unitary operations on the receiver’s side while
the Bell measurement on the sender’s side is fixed. (See
[50] for general protocols based on LOCC.) On the other
hand, one can show [50,51] that the classically achievable
fidelity is Fcl = 2/3. Hence, the condition for the supremacy
of teleportation using entanglement over classical channels is
given by Fmax(ρAB) > 2/3, which turns out to be

Tr
√

UρAB
> 1. (45)

Note that while the violation of the Bell-CHSH inequality
is sufficient to obtain the fidelity of the standard quantum
teleportation larger than its classical value [49], the converse
does not hold in general. Thus, in spite of the previous result in
Sec. III C, it is still meaningful to investigate here whether the
entanglement generated between the Unruh-DeWitt detectors
can be utilized in quantum teleportation.

By summing the square roots of eigenvalues (40), we find,
for the reduced density matrix (4),

Tr
√

UρAB
=
{

1 + 4 c2
[|E | − PA+PB

2

]+ O(c4) for |E | > |PAB |
1 + 4 c2

[|PAB | − PA+PB

2

]+ O(c4) for |E | < |PAB |.
(46)

If the second condition (19b) for entanglement holds, and
hence Eq. (21) is valid, we have |E | < |PAB |. In this case, we
have

Tr
√

UρAB
= 1 + 4 c2

(
|PAB | − PA + PB

2

)
+ O(c4). (47)

However, Eq. (21) and
√
PAPB � PA+PB

2 show that condition
(45) fails. Therefore, the entanglement extracted due to the
second condition (19b) is not useful in quantum teleportation.

On the other hand, when the first condition (19a) is satisfied,
and hence Eq. (20) is valid, we have |E | > |PAB |. In this case,
we have

Tr
√

UρAB
= 1 + 4 c2

(
|E | − PA + PB

2

)
+ O(c4). (48)

In particular, when the two detectors are symmetric in the
sense PA = PB , which we write as PI , Eq. (20) shows |E | >
PA+PB

2 = PI . Hence the condition (45) holds, implying that
the extracted entangled state is indeed useful for the standard
teleportation. Moreover, since the negativity N (ρAB) and the

1In [17,31], the authors also showed that there is a hidden nonlocality
[47] by using a local filtering. However, we should be careful in
concluding the nature of nonlocality. Similar to the argument of the
detection loophole of Bell inequality, it is still not clear that the
extracted entanglement cannot be explained by local realism [48].

concurrence C(ρAB) in this case are given by Eq. (34), we have

Fmax(ρAB) = 2
3 + 2

3 N (ρAB) + O(c4)

= 2
3 + 1

3 C(ρAB) + O(c4). (49)

Therefore, we have shown that the extracted entanglement
with the first condition (19a) for the symmetric case is useful
actually for the standard teleportation only with the use of
the single copy of the entangled Unruh-DeWitt detectors.
Furthermore, we found the interesting characterization (49)
of the optimal fidelity expressed in terms of the negativity and
the concurrence.

IV. INERTIAL MOTIONS IN MINKOWSKI VACUUM

Now that we have seen that entanglement generated be-
tween Unruh-DeWitt detectors, if any, is useful in quantum
teleportation, our interest is then whether and how entangle-
ment is generated between the Unruh-DeWitt detectors. In
this section, we focus on inertial motions of Unruh-DeWitt
detectors in the Minkowski vacuum, where the Wightman
function GW (x,x ′) of a neutral massless scalar field is given
by

GW (x,x ′) = −1

(2π )2

1

(t − t ′ − i ε)2 − |x − x′|2 , (50)

where t and x are Cartesian coordinates, and evaluate the
entanglement generated between the Unruh-DeWitt detectors.
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We will consider in the first section the case where the
switching functions χI (τI ) in Eqs. (6) and (7) are set as
χI (τI ) = 1 identically, while adiabatic switching on and off at
infinite past and future is assumed implicitly, as in the textbooks
on Unruh-DeWitt detectors [33,34], which we call the implicit
adiabatic switching in what follows. In the second section, we
will analyze the explicit effects of switching on and off of
Unruh-DeWitt detectors, while being concerned only with the
case of two comoving Unruh-DeWitt detectors.

A. Implicit adiabatic switching

In this section, we consider the implicit adiabatic switching
χI (τI ) ≡ 1, and thus the integrals in Eqs. (6) and (7) reduce to

II =
∫ ∞

−∞
dτ ′

I

∫ ∞

−∞
dτI ei �E(I )(τI −τ ′

I ) GW (x̄ ′
I ,x̄I ), (51)

IE = − i

∫ ∞

−∞
dτB

∫ ∞

−∞
dτA ei �E(B)τB ei �E(A)τA GF (x̄B,x̄A).

(52)

For an inertial motion of the detector I , the coordinates of
the world line are given by

t̄I (τI ) = 1√
1 − v2

I0

τI , x̄I (τI ) = xI0 + vI0√
1 − v2

I0

τI , (53)

where xI0 and vI0 are constants, and vI0 ≡ |vI0|. Then the
Wightman function GW (x̄ ′

I ,x̄I ) between the events x̄ ′
I and x̄I

along the world line of the detector I reduces to

GW (x̄ ′
I ,x̄I ) = −1

(2π )2

1

(τ ′
I − τI − i ε)2

, (54)

and thus II is rewritten from Eq. (51) as

II = −1

(2π )2

∫ ∞

−∞
dτ ′

I

∫ ∞

−∞
d�τ ei �E(I ) �τ 1

(�τ + i ε)2
, (55)

where �τ ≡ τI − τ ′
I . By analytically continuing onto the

complex �τ plane and taking as the integral path the infinite
semicircle in the upper half of the complex �τ plane, where
the integrand in Eq. (55) is analytic, we obtain II = 0. Thus,
from Eq. (5) we have

PI = 0, (56)

in this case. Actually, Eq. (56) is naturally required to hold for
inertial detectors in the Minkowski vacuum if they properly
probe the vacuum, because the Minkowski vacuum should
be perceived by inertial observers as containing no excited
particles, which means that the excitation probability vanishes.

We notice also that Eq. (56) implies that Eq. (21) is
not satisfied, and hence that the second condition (19b) for
entanglement does not hold. [This can be seen also from the
facts that PAB vanishes due to Eqs. (61) and (A12) below,
and that X is non-negative, as we see from Eq. (14). For a
restricted form of the monopole coupling and the gaussian
switching function, the same result has been obtained when
the two detectors are at rest [26].] Therefore, the condition for
entanglement in this case reduces to the first condition (19a),
which is rewritten as

E = 〈E(B)
1

∣∣mB(0)
∣∣E(B)

0

〉 〈
E

(A)
1

∣∣mA(0)
∣∣E(A)

0

〉
IE �= 0. (57)

When Eq. (57) holds, since PA = PB = 0, the concurrence
and the negativity are related and given by Eq. (34), which is
expressed as

C(ρAB) = 2N (ρAB) = 2 c2|E | + O(c4)

= 2 c2
∣∣〈E(B)

1

∣∣mB(0)
∣∣E(B)

0

〉∣∣ ∣∣〈E(A)
1

∣∣mA(0)
∣∣E(A)

0

〉∣∣ |IE|
+O(c4), (58)

and then the optimal fidelity Fmax(ρAB) of quantum telepor-
tation is computed by Eq. (49), with C(ρAB) and N (ρAB)
being proportional to |IE| by Eq. (58). Therefore we see that
whenever IE is nonvanishing, the entanglement is generated
between the Unruh-DeWitt detectors and it is utilized in
quantum teleportation.

In the remainder of this section, we choose the Cartesian
coordinate system where Alice is at rest at the origin, and
therefore

t̄A(τA) = τA, x̄A(τA) = 0. (59)

In this case, the Wightman function GW (x̄B,x̄A) is written as

GW (x̄B,x̄A) = −1

(2π )2

1

(τA − t̄B(τB) + i ε)2 − |xB(τB)|2 . (60)

Since the poles are located in the lower half of the complex
τA plane, by taking the infinite semicircle in the upper half as
above, we obtain∫ ∞

−∞
dτA ei �E(A)τA GW (x̄B,x̄A) = 0. (61)

By noticing further that the Feynman propagator GF (x,x ′) is
decomposed (see Appendix A), as

GF (x,x ′) = − i GW (x,x ′) + GR(x ′,x), (62)

we see that IE given by Eq. (52) is computed by

IE = − i

∫ ∞

−∞
dτB ei �E(B)τB

∫ ∞

−∞
dτA ei �E(A)τA GR(x̄A,x̄B),

(63)

where the retarded Green function GR(x,x ′) of a neural
massless scalar field in the Minkowski space-time is given as

GR(x,x ′) = − 1

2π
�(t − t ′) δ((t − t ′)2 − |x − x′|2)

= − 1

4π

1

|x − x′|δ(t − t ′ − |x − x′|). (64)

Therefore, contrary to the literature on entanglement harvest-
ing, e.g., Ref. [16], where the contribution to entanglement
results only from the Wightman function, entanglement ex-
traction is possible only due to the causal propagation of the
quantum field described by the retarded Green function in the
case of the implicit adiabatic switching, while the quantum
correlations due to vacuum fluctuation, i.e., virtual processes
of the quantum field described by the Wightman function, do
not contribute to entanglement extraction.

1. Comoving inertial motion

Here we consider the case where Alice and Bob are
comoving. By choosing the coordinate system (59), Bob also
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is at rest, and then the world line of Bob is described as

t̄B(τB) = τB, x̄B(τB) = x0, (65)

with x0 �= 0 being constant, which we denote as L = |x0|. By
substituting Eqs. (59) and (65) into Eqs. (63) and (64), we
obtain

IE = −1

2

ei �E(A)L

L
δ(�E(A) + �E(B)) = 0, (66)

where one notes �E(I ) > 0. From Eq. (57), we thus find that
entanglement is not extracted in this case. As the appearance
of the δ function in Eq. (66) indicates, when considered as the
distribution of the variable �E(A) + �E(B), the reason why
entanglement is not extracted in this case is understood from
energy conservation as the consequence of an infinite amount
of interaction time (transition time) in the uncertainty relation
between time and energy. Transitions that violate energy
conservation are not allowed after infinitely long interaction,
and then the state of the two detectors is forced to return back
to the ground state, which is not entangled.

2. Relative inertial motion

We next consider the case where Bob is in a relative inertial
motion with respect to Alice, with a nonvanishing constant
relative three-velocity v0, which we assume not parallel or
antiparallel to x0 �= 0 so that the world lines of Alice and Bob
do not intersect. In this case, the world line of Bob is given by

t̄B(τB) = 1√
1 − v2

0

τB, x̄B(τB) = x0 + v0√
1 − v2

0

τB, (67)

where v0 ≡ |v0|. By substituting Eqs. (59) and (67) into
Eqs. (63) and (64), we obtain

IE = i

4π

∫ ∞

−∞
dτB

1

|x̄B(τB)| ei ε τB ei �E(A)|x̄B (τB )|, (68)

where

ε ≡ �E(B) + 1√
1 − v2

0

�E(A) (69)

is the sum of the excitation energies of the two detectors
measured in Bob’s Lorentz frame. By changing the integration
variable into ξ defined as

ξ ≡ τB +
√

1 − v2
0

v0
|x0| cos θ, (70)

Eq. (68) is written as

IE = i

4π

√
1 − v2

0

v0
exp

⎡
⎣− i

√
1 − v2

0

v0
ε |x0| cos θ

⎤
⎦

×
∫ ∞

−∞
dξ

1√
ξ 2 + �2

ei ε ξ ei p
√

ξ 2+�2
, (71)

where p and � are defined by

p ≡ v0√
1 − v2

0

�E(A), � ≡
√

1 − v2
0

v0
|x0| sin θ. (72)

The integral in Eq. (71) is the zeroth modified Bessel function
of the second kind K0(η) of the variable η defined as

η ≡ �
√

ε2 − p2 =
√

1 − v2
0

v0
|x0| sin θ

×
√√√√�E(A)2 + 2√

1 − v2
0

�E(A)�E(B) + �E(B)2
, (73)

and θ ( �= 0,π ) is the angle between x0 and v0. From Eq. (67),
we see that |x0| sin θ is the closest approach between Alice
and Bob. Therefore, η given by Eq. (73) is found to be
invariantly defined under Lorentz transformations and affine
reparametrizations. We thus obtain

|IE| = 1

2π

√
1 − v2

0

v0
K0(η). (74)

We note that if |x̄B(τB)| were constant in Eq. (68), IE would be
proportional to the δ function of ε as in the comoving case. Thus
the variable distance between Alice and Bob is responsible for
the appearance of the modified Bessel function, instead of the
δ function.

From the asymptotic behavior of K0(η) for η → ∞, we
immediately see that |IE| vanishes and thus entanglement is
not extracted in the comoving case v0 = 0, as we have found
above. On the other hand, since the leading behavior of K0(η)
near η = 0 is given as K0(η) ≈ − ln η, |IE| drops to zero also
in the limit of the speed of light v0 → 1. This will be naturally
understood because the mutual causal contact between Alice
and Bob diminishes in this limit. However, |IE | does not vanish
for 0 < v0 < 1. To demonstrate this simply, we consider the
case of �E(A) = �E(B), which we set as �E. Then, η is
written as

η = a

v0

√
1 − v2

0 +
√

1 − v2
0, (75)

wherea ≡ √
2 |x0| sin θ �E is the ratio of the closest approach

to the de Broglie wavelength of a scalar particle with the reso-
nance energy �E. The behavior of |IE| in this case is shown
in Fig. 1. As long as the relative velocity is nonrelativistic

0 0.25 0.5 0.75 1

0.05

0.1

FIG. 1. The behavior of |IE |, where the horizontal axis is v0. The
red solid line denotes a = 2, the blue dashed line a = 1, and the green
dotted line a = 0.5.
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v0  1, we see from Fig. 1 that |IE| remains quite small. As
the relative velocity becomes relativistic, |IE| starts to grow
in an accelerated manner, which is thus certainly ascribed to
the special relativistic effect. Although |IE| decreases quickly
as one further increases v0 to the limit of v0 → 1, we see
that the entanglement is extracted and enhanced by the special
relativistic effect, unless the relative velocity is ultrarelativistic.
From Eqs. (49) and (58), we thus find that the special relativistic
effect enables quantum teleportation.

B. Switching effects

Now we analyze the effects on entanglement caused by
switching on and off of Unruh-DeWitt detectors, by focusing
on the case where Alice and Bob are comoving. For simplicity,
we assume that the two Unruh-DeWitt detectors have identical
structure and hence set E(A)

n = E(B)
n ≡ En, �E ≡ E1 − E0,

|En〉 ≡ |E(I )
n 〉, and mA(τ ) = mB(τ ) ≡ m(τ ). Furthermore, in

order to take into account the effects of switching, we also
prescribe the form of the switching function χI (τI ) as

χI (τI ) = χ (τI ) ≡ tanh [σ (τI + T )] − tanh [σ (τI − T )], (76)

where the positive constants 1/σ and 2T denote the timescales
of the switching on and off, and the duration that χ (τI ) stays
above a half of its maximal value, which we call the effective
interaction time, respectively. Thus, the timescale of the total
interaction time is given by 2(T + 1/σ ) = (2/σ )(σT + 1). In
Fig. 2, we show two typical cases of the behavior of χ (τI ).

In this case, we have PA = PB , and hence the concurrence
C(ρAB) and the negativity N (ρAB) when the first condition

-6 -4 -2 0 2 4 6

1

2

FIG. 2. The behavior of the switching function χ (τI ). The hori-
zontal axis denotes τI normalized by σ and the vertical axis shows
χ (τI ). The blue dashed line shows the behavior of χ (τI ) for σ T =
0.5, and the red solid line for σ T = 5.

(19a) for entanglement is valid are now given from Eq. (34) as

C(ρAB) = 2N (ρAB) = 2 c2(|E | − PI ) + O(c4)

= 2 c2 |〈E1| m(0) |E0〉|2(|IE| − II ) + O(c4), (77)

and the fidelity of quantum teleportation is given by Eq. (49),
with C(ρAB) and N (ρAB) taking the form of Eq. (77). Since
quantum teleportation is not possible in the case of the second
condition (19b) for entanglement, we focus in this section on
the first condition (19a), which is rewritten in the present case
as |IE| − II > 0, and thus compute and analyze the behavior
of |IE| − II .

1. Computation

We first evaluate II by employing the expansion of tanh z as

tanh z =
∞∑

k=1

[
1

z + i
(
k − 1

2

)
π

+ 1

z − i
(
k − 1

2

)
π

]
. (78)

By substituting Eqs. (50), (59), (65), (76), and (78) into Eq. (6), we perform the first integration by considering the infinite
semicircle in the upper half of the complex τI plane, within which only the poles of the switching function χ (τI ) located at

τI = ∓T + i

(
k − 1

2

)
π

σ
(79)

contribute to the integral. The second integration in Eq. (6) is performed by taking as the integration path the infinite semicircle
in the lower half of the complex τ ′

I plane. Again, only the poles of the switching function χ (τ ′
I ) contribute, which are located at

τ ′
I = ∓T − i

(
k′ − 1

2

)
π

σ
, (80)

where k′ is the summation index that appears in the expansion of χ (τ ′
I ) as Eq. (78). Relabeling the summation indices as

� = k + k′ − 1 and m = k − k′, and performing the summation over m, we obtain

II = 1

π2

[
− 2 ln

(
1 − e− �E

σ
π
)− e2 i T �E �

(
e− �E

σ
π , − 2 i T

σ

π
,1

)
− e− 2 i T �E �

(
e− �E

σ
π ,2 i T

σ

π
,1

)

+ 2 i T
σ

π

{
e− 2 i T �E �

(
e− �E

σ
π ,2 i T

σ

π
,2

)
− e2 i T �E �

(
e− �E

σ
π , − 2 i T

σ

π
,2

)}]
, (81)
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where �(z,a,s) is the Hurwitz-Lerch ζ function defined as

�(z,a,s) ≡
∞∑

n=0

zn

(a + n)s
. (82)

By decomposing the Feynman propagator GF (x,x ′) in Eq. (7) into the Wightman function GW (x,x ′) and the retarded Green
function GR(x ′,x) as Eq. (62), we then compute IE . The contribution from the Wightman function GW (x,x ′) to IE is calculated
similarly to the case of II above, except that the integral path in the second integration is chosen to be the infinite semicircle in
the upper half of the complex τB plane, which encircles the five series of poles located at

τB = ∓ T + i

(
k′ − 1

2

)
π

σ
, τB = −L − T + i

{(
k − 1

2

)
π

σ
+ ε

}
, τB = L − T + i

{(
k − 1

2

)
π

σ
+ ε

}
,

τB = −L + T + i

{(
k − 1

2

)
π

σ
+ ε

}
, τB = L + T + i

{(
k − 1

2

)
π

σ
+ ε

}
, (83)

where L = |x0| as above, and k and k′ are the summation indices in the expansion of the switching function χ (τA) and χ (τB),
respectively. We implement this integration by assuming that these poles do not coincide with each other. This requires T �= L

and 2T �= L, but IE for these cases is determined by continuity. We note that the expansion

coth z = 1

z
+

∞∑
�=1

[
1

z + i �π
+ 1

z − i �π

]
=

∞∑
�=−∞

z

z2 + �2π2
, (84)

is helpful in order to simplify the expression.
On the other hand, the contribution from the retarded Green function GR(x ′,x) to IE is evaluated by substituting Eqs. (59),

(64), (65), (76), and (78) into Eq. (7), and by using∫ ∞

−∞
dτ ei E τ tanh [σ (τ + T1)] tanh [σ (τ + T2)] = −2 π

σ

1

sinh
[

π E
2 σ

] coth [σ (T2 − T1)] sin

[
E

T2 − T1

2

]
e−i E

T1+T2
2 − 2 π i δ(E),

(85)

which is derived by considering the rectangle with the infinite width (along the real axis) and the height π/σ (along the imaginary
axis) in the upper half of the complex τ plane. By adding these two parts, we finally obtain

IE = 1

2 sinh
(

π
σ
�E
) 1

σL

(
− 2L

σ (4 T 2 − L2)
− 2 cos (2 �E T )

[
1

σ L
+ i

π

{
�
(
e− π

σ
�E, − i

σ

π
L,1
)

− c.c.
}]

+ei �E L[coth[σ (2 T + L)]e2 i �E T − coth[σ (2 T − L)]e− 2 i �E T − 2 cos(2 �E T ) coth(σ L)]

− i

π

[{
�
(
e− π

σ
�E,i

σ

π
(2T + L),1

)
− �
(
e− π

σ
�E,i

σ

π
(2T − L),1

)}
− c.c.

])
. (86)

2. Behavior of entanglement

When the switching of the detectors is executed quickly
enough, it will disturb the quantum state of the scalar field and
excite the detectors. Since the timescale of the switching is
given by 1/σ , we may apply in this case the approximation
�E/σ  1. When we keep �E T fixed, the Hurwitz–Lerch
ζ functions are shown to be bounded, and hence Eq. (81) is
approximated as

II � − 2

π2
ln

(
π

σ
�E

)
. (87)

Thus, II logarithmically diverges in the limit of �E/σ →
0, as in Ref. [35]. The two factors in front of the outermost
round bracket in Eq. (86) are approximated as 1/(2 �E L), and
σ T = �E T/(�E/σ ) → ∞ in this limit. Therefore, unless
we set the distance between the two detectors to be vanishingly
small, IE remains finite in this limit. Although entanglement
will be naturally generated between detectors put so close, we
see that the first condition (19a) for entanglement extraction

is not satisfied under physically plausible circumstances of the
finite distance for the sudden switching limit �E/σ → 0. This
is consistent with Ref. [25], where entanglement is shown not to
be extracted in the sudden switching limit, while for a different
form of the switching function.

On the other hand, when the switching is performed
adiabatically compared to the excitation energy �E, we
employ the approximation �E/σ � 1. In this case, Eq. (81)
is approximated as

II � e− �E
σ

π

[
2

π2
− 2

π2 − 4 σ 2 T 2

(π2 + 4 σ 2 T 2)2
cos (2 �E T )

+ 8 π σ T

(π2 + 4 σ 2 T 2)2
sin (2 �E T )

]
, (88)

while the approximate form of Eq. (86) is given by

IE � e− �E
σ

π 1

σ L

(
2 L

σ (4 T 2 − L2)
+ 2

σ L
cos(2 �E T )

+ ei �E L{coth[σ (2 T +L)] e2 i �E T
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− coth[σ (2 T −L)] e− 2 i �E T

− 2 cos(2 �E T ) coth(σ L)}
)

. (89)

In particular, in the limit of σ T → 0, by taking the limit
�E/σ → ∞ while keeping �E T small, Eqs. (88) and (89)
yield

|IE| − II = 4

π2
e− �E

σ
π

[(
π

σ L

)2

− 1

]
sin2 (�E T ). (90)

We thus see that the entanglement generated between the
detectors falls off as L−2, which is understood from the
behavior of the Wightman functionGW (x,x ′) in Eq. (50) for the
massless scalar field, whose Compton wavelength is infinite.
Since the timescale of the total interaction time (2/σ )(σT + 1)
(see above) in this case is approximated as 2/σ , and |IE| − II

is positive if L < π/σ = (2/σ )(π/2), we also confirm that
the entanglement is generated between the detectors even if
they are separated acausally L > 2/σ , i.e., even when one
of them is put outside the other’s light cone within the total
interaction time. Although the switching function χ (τI ) in

this paper has an exponential tail, our analytical treatment
complements the numerical investigation by Reznik [16],
where the switching function is nonvanishing only for a strictly
finite period and hence the detectors are separated acausally
in the rigorous sense. We note from Eqs. (49) and (77) that
the entanglement extracted in both of these cases is useful in
quantum teleportation.

However, in the case of adiabatic switching �E/σ � 1, the
maximal extraction of entanglement occurs around L = 2T ,
which we expediently call the light cone within the effective
interaction time (L.E.). (As we described above, 2T is the
effective interaction time.) To see this, we depict in Fig. 3
the behavior of |IE| − II , multiplied by eπ �E/σ so that the
magnitude is not too small, on theσL − �E T plane. Although
we employ Eqs. (81) and (86) in the case where �E/σ is
small, we need to resort to the approximate forms (88) and
(89) when �E/σ is large, due to the apparent numerical
divergences in each of the Hurwitz-Lerch ζ functions that are
analytically found to cancel among them. In Fig. 3, along
with the line of L.E. described by �E T = (�E/2σ )σL,
we plot what we call the light cone within the total inter-
action time 2(T + 1/σ ) (L.T.), which is defined by the line

FIG. 3. The behavior of |IE | − II multiplied by eπ �E/σ , (a) for �E/σ = 2, (b) for �E/σ = 10, (c) for �E/σ = 20, and (d) for �E/σ =
40. The horizontal axis is the distance L between the detectors normalized by σ , and the vertical axis is half the effective interaction time T

normalized by �E. The region of σL < 1 is not shown because too large a magnitude near σL = 0 obscures the detailed structure elsewhere.
L.E. and L.T. (see the main text) are denoted by a while dashed line and a white dotted line, respectively.
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�E T = (�E/2σ )(σL − 2). The entanglement in the region
between L.E. and L.T. is considered as arising from the
disturbance due to switching on and off of the Unruh-DeWitt
detectors.

We see from Fig. 3 that there exist two periods generally,
one along the �E T axis [as we see also from Eq. (90)],
and the other along the normal direction to L.E., which is
normal to L.T. also. As we decrease �E/σ , L.E. and L.T. get
tilted horizontally, and then the two periods become almost
degenerate. We see also that the magnitude of |IE| − II gets
flatter as �E/σ becomes small, which is in accord with the
above argument on the sudden switching limit.

On the other hand, for large values of �E/σ , the periodic
behavior in the two different directions manifests itself. In
particular, the maximum of the amount of the extracted
entanglement is found to occur on L.E., and the oscillation in
the normal direction to L.E. is drastically damped away from
L.E.. Although the region between L.E. and L.T. gets wider and
hence one can extract entanglement due to switching effects, it
is quite small compared with the entanglement extracted due
to causal propagation of the quantum field during the effective
interaction time, i.e., on and inside L.E. The entanglement
extraction outside L.T. is possible, as we have seen from
Eq. (90), but even smaller. This implies that entanglement is
extracted essentially due to causal propagation of the quantum
field when we implement the switching of the Unruh-DeWitt
detectors adiabatically, and it is consistent with the analysis
in Sec. IV A, where we have seen that the only contribution
comes from the retarded Green function in the case of the
implicit adiabatic switching, while it actually vanishes due to
the energy conservation for the comoving case. Indeed, as we
see from Eq. (89), IE vanishes in the limit of T → ∞, because
the first term falls off as T −2, and the rest terms oscillate
infinitely rapidly in the same manner as the δ function arises
in Eq. (66), i.e., when those are considered as the distribution
of the variable �E. Since II in Eq. (88) contains the term that
does not vanish in the limit T → ∞, we see that by explicitly
considering the adiabatic switching effect and taking the limit
of infinitely long exposure of the Unruh-DeWitt detectors to
the interaction with the quantum field, entanglement is not
generated between the comoving detectors, as the analysis in
Sec. IV A for the implicit adiabatic switching.

V. CONCLUSION AND DISCUSSION

We considered in this paper two two-level Unruh-DeWitt
detectors, as a pair of qubits, with an arbitrary monopole
coupling to a neutral massless quantum scalar field in an
arbitrary four-dimensional space-time, and analyzed entan-
glement generated between the Unruh-DeWitt detectors from
a vacuum. We first derived the general form of the reduced
density matrix of the two Unruh-DeWitt detectors in the
perturbation theory, for arbitrary world lines of the detectors
and arbitrary switching functions.

We then considered the entanglement measures. Although
we have not obtained evidences for usability of the entan-
glement from the analyses of the bounds on the distillable
entanglement or the Bell-CHSH inequality, we did find that the
single copy of the entangled pair of the Unruh-DeWitt detectors
alone serves as the resource for quantum teleportation. More

precisely, the optimal fidelity of the standard teleportation
exceeds the classical value whenever a nonvanishing value of
the concurrence (and hence the negativity) of the entanglement
between symmetric (PA = PB) Unruh-DeWitt detectors arises
from the first condition (19a) for entanglement, which is found
within the second-order perturbation theory. It is worthwhile
to emphasize that this result is valid for an arbitrary monopole
coupling with arbitrary switching functions and for arbitrary
world lines of the detectors in an arbitrary four-dimensional
space-time, while its extension into higher dimensionality will
be straightforward.

In order to find whether and how entanglement is actually
generated between the Unruh-DeWitt detectors, we then fo-
cused on inertial motions of the Unruh-DeWitt detectors in the
Minkowski vacuum. When we assume the implicit adiabatic
switching, we found that no entanglement is extracted when
Alice and Bob are comoving inertially. This is interpreted
as resulting from the energy conservation due to an infinite
amount of interaction time (transition time) and the uncertainty
relation between time and energy. On the other hand, if Alice
and Bob are in a relative inertial motion, entanglement was
found to be extracted and enhanced by the special relativistic
effect, obeying the first condition (19a) for entanglement,
unless the relative velocity is ultrarelativistic. Therefore, we
found that one can perform quantum teleportation by using
the entanglement extracted in this manner without invoking
many copies of the entangled pair or preparing an entangled
state initially. Bob’s desperate run in a relativistic speed in the
vacuum suffices!

By assuming the form (76) of the switching function χI (τI ),
we considered explicitly the switching effects also for the case
where Alice and Bob are comoving inertially. In the case
of adiabatic switching �E/σ � 1, in particular, we found
that entanglement arises primarily from causal propagation of
the quantum field, which validated the analyses in the case
of the implicit adiabatic switching. However, we noted that
entanglement generation between the Unruh-DeWitt detectors
separated acausally is possible also. Although our form of
the switching function has the exponential tail and hence the
terminology “acausal” does not have a rigorous sense, the
analysis on the fidelity of quantum teleportation in this paper
applies also to the case where the detectors are located in
causally disconnected regions, as in Ref. [16]. Therefore, we
see that quantum teleportation is possible even if Alice and
Bob are separated acausally in the strict sense.

The results in this paper may shed light on the physical
process behind the entanglement generation between Unruh-
DeWitt detectors. By regarding the quantum field as the con-
tinuum limit of discretized particles connected with springs,
one may consider the entanglement extraction from a vacuum
as resulting from the entanglement between these particles.
Although a vacuum in the second quantization is the continuum
limit of the product state of the ground state of each normal
mode, it may be regarded as an entangled state by considering
the Hilbert space of each particle. However, the transformation
between the position operators of the particles and the normal
modes is time independent, and then this picture of entan-
glement does not seem to be compatible with our result that
entanglement generated between the comoving Unruh-DeWitt
detectors depends on the interaction time T , especially in the
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limit of T → ∞. As a more plausible picture of entanglement
extraction, it may be possible to consider that entanglement is
transferred from vacuum fluctuation [52], whose correlation
length extends acausally as described by the explicit form of
the Wightman function Eq. (50). Vacuum fluctuation is nothing
but virtual processes of creation and annihilation of quanta, and
its effect is suppressed when interaction lasts for infinite time,
due to the uncertainty relation between time and energy, which
also is understood from Eq. (50). This will be the reason why
the Wightman function does not contribute to entanglement
extraction in the case of the implicit adiabatic switching,
and the entanglement extracted outside L.E. in the case of
explicit adiabatic switching is small. From the same reason, the
contribution from the retarded Green function vanishes in the
comoving case, because infinitely long interaction suppresses
the effect of the virtual processes and then leads to the energy
conservation, as indicated by the appearance of the δ function
in Eq. (66). However, this mechanism of suppression does not
work completely when the detectors are in a relative motion
because of the variable distance between the detectors, as in
the Doppler effect, which gives the modified Bessel function
instead of the δ function. This will explain why entanglement is
extracted and enhanced by the special relativistic effect when
the detectors are in a relative inertial motion.

The analyses in this paper will provide applications and
extensions. It may be interesting to investigate the relation of
the entanglement between the detectors in a relative motion to
the mechanism that gives rise to the revival of entanglement
after entanglement sudden death. It also seems valuable to
extend the analyses to the case of accelerated observers.
In particular, when Alice is at rest and Bob is uniformly

accelerated with the magnitude of the acceleration κ , our
preliminary calculation in the case of the Minkowski vacuum
gives

|IE| =
∣∣∣∣∣ eπ �E(B)

κ

e2π �E(B)
κ − 1

sinh

(
π

2

�E(B)

κ
− �E(A)

κ

)∣∣∣∣∣, (91)

for the implicit adiabatic switching χI (τI ) ≡ 1. Since PA = 0
in this case (arbitrarily small even in the case of the explicit
adiabatic switching), we see from Eq. (19a) that entanglement
is extracted if Eq. (91) is nonvanishing. Although we have not
arrived at complete understanding of this result, it is interesting
to note that even when Bob’s world line is very close to the
Rindler horizon, where κ → ∞, entanglement is generated
between the Unruh-DeWitt detectors. (In this case, massless
quanta emitted from Bob reach Alice, even after Alice passes
across Bob’s event horizon, in contrast to the case of thev0 → 1
limit of relative inertial motion.) In a recent paper [53], the
authors considered the case where both of the detectors are
accelerated in the same direction in the B.T.Z. black hole
space-time. Comparison of Ref. [53] and our preliminary
result above may provide a clue to the information loss
paradox.

Note added in proof. Recently, a paper by Ng et al. [54]
appeared, which also derived the expressions equivalent to
Eqs. (A10) and (A11) for spatially extended detectors.
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APPENDIX A: EXPLICIT FORM OF REDUCED DENSITY MATRIX

In this Appendix, we describe briefly the computation of the elements 〈E(A)
nA

|〈E(B)
nB

|ρAB |E(A)
n̂A

〉|E(B)
n̂B

〉 of the reduced density
matrix (4) and present their explicit forms.

Expanding eiSint in Eq. (3) to second order in c, the matrix elements of the reduced density matrix ρAB ≡ Trφ|out〉〈out| are
found to be written as〈

E(A)
nA

∣∣〈E(B)
nB

∣∣ρAB

∣∣E(A)
n̂A

〉∣∣E(B)
n̂B

〉 = [δnA

0 δ
nB

0 δ
n̂A

0 δ
n̂B

0 + c2
{
R

(1)
nA,nB,n̂A,n̂B

+ R
(2)
nA,nB,n̂A,n̂B

+ R
(2) ∗
n̂A,n̂B ,nA,nB

}]+ O(c4), (A1)

where

R
(1)
nA,nB ,n̂A,n̂B

= δ
nB

0 δ
n̂B

0

〈
E(A)

nA

∣∣mA(0)
∣∣E(A)

0

〉 〈
E

(A)
n̂A

∣∣mA(0)
∣∣E(A)

0

〉†
×
∫ ∞

−∞
dτ ′

A

∫ ∞

−∞
dτA χA(τ ′

A) χA(τA) ei(E(A)
nA

−E
(A)
0 )τAe

−i(E(A)
n̂A

−E
(A)
0 )τ ′

A〈0|φ(x̄ ′
A)φ(x̄A) |0〉

+ δ
nA

0 δ
n̂B

0

〈
E(B)

nB

∣∣ mB(0)
∣∣E(B)

0

〉 〈
E

(A)
n̂A

∣∣mA(0)
∣∣E(A)

0

〉†
×
∫ ∞

−∞
dτ ′

A

∫ ∞

−∞
dτB χA(τ ′

A) χB(τB) ei(E(B)
nB

−E
(B)
0 )τB e

−i(E(A)
n̂A

−E
(A)
0 )τ ′

A〈0|φ(x̄ ′
A)φ(x̄B) |0〉

+ δ
nB

0 δ
n̂A

0

〈
E(A)

nA

∣∣mA(0)
∣∣E(A)

0

〉 〈
E

(B)
n̂B

∣∣ mB(0)
∣∣E(B)

0

〉†
×
∫ ∞

−∞
dτ ′

B

∫ ∞

−∞
dτA χB(τ ′

B) χA(τA) ei(E(A)
nA

−E
(A)
0 )τAe

−i(E(B)
n̂B

−E
(B)
0 )τ ′

B 〈0|φ(x̄ ′
B)φ(x̄A) |0〉

+ δ
nA

0 δ
n̂A

0

〈
E(B)

nB

∣∣ mB(0)
∣∣E(B)

0

〉 〈
E

(B)
n̂B

∣∣ mB(0)
∣∣E(B)

0

〉†
×
∫ ∞

−∞
dτ ′

B

∫ ∞

−∞
dτB χB(τ ′

B) χB(τB) ei(E(B)
nB

−E
(B)
0 )τB e

−i(E(B)
n̂B

−E
(B)
0 )τ ′

B 〈0|φ(x̄ ′
B)φ(x̄B) |0〉 (A2)
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and

R
(2)
nA,nB,n̂A,n̂B

= − δ
nB

0 δ
n̂A

0 δ
n̂B

0

∑
k

〈
E(A)

nA

∣∣mA(0)
∣∣E(A)

k

〉〈
E

(A)
k

∣∣mA(0)
∣∣E(A)

0

〉

×
∫ ∞

−∞
dτA

∫ ∞

−∞
dτ ′

A χA(τA) χA(τ ′
A) �(τA − τ ′

A) ei(E(A)
nA

−E
(A)
k )τAei(E(A)

k −E
(A)
0 )τ ′

A 〈0|T φ(x̄A)φ(x̄ ′
A)|0〉

− δ
n̂A

0 δ
n̂B

0

〈
E(B)

nB

∣∣mB(0)
∣∣E(B)

0

〉 〈
E(A)

nA

∣∣mA(0)
∣∣E(A)

0

〉
×
∫ ∞

−∞
dτB

∫ ∞

−∞
dτ ′

A χB(τB) χA(τ ′
A) ei(E(B)

nB
−E

(B)
0 )τB ei(E(A)

nA
−E

(A)
0 )τ ′

A 〈0|T φ(x̄B)φ(x̄ ′
A)|0〉

− δ
nA

0 δ
n̂A

0 δ
n̂B

0

∑
k

〈
E(B)

nB

∣∣mB(0)
∣∣E(B)

k

〉〈
E

(B)
k

∣∣mB(0)
∣∣E(B)

0

〉

×
∫ ∞

−∞
dτB

∫ ∞

−∞
dτ ′

B χB(τB) χB(τ ′
B) �(τB − τ ′

B) ei(E(B)
nB

−E
(B)
k )τB ei(E(B)

k −E
(B)
0 )τ ′

B 〈0|T φ(x̄B)φ(x̄ ′
B)|0〉. (A3)

Here we employ the causality relations Eq. (11) and the properties of the Feynman propagator GF (x,x ′) and the Wightman
function GW (x,x ′),

GF (x,x ′) = − i [�(t − t ′) GW (x,x ′) + �(t ′ − t) GW (x ′,x)], (A4)

GW (x,x ′) − i GF (x,x ′) = − i GR(x ′,x), (A5)

GF (x,x ′) = GF (x ′,x), G∗
R(x,x ′) = GR(x,x ′), G∗

W (x,x ′) = GW (x ′,x), (A6)

which are derived from their definitions Eqs. (8) and (9), along with

GR(x,x ′) ≡ − i �(t − t ′) 〈0|[φ(x),φ(x ′)]|0〉 = i �(t − t ′) [GW (x ′,x) − GW (x,x ′)]. (A7)

One finds that the reduced density matrix ρAB takes the form of Eq. (4) with the nonvanishing elements given by

PA ≡ ∣∣〈E(A)
1

∣∣mA(0)
∣∣E(A)

0

〉∣∣2 ∫ ∞

−∞
dτ ′

A

∫ ∞

−∞
dτA χA(τ ′

A) χA(τA) ei �E(A)(τA−τ ′
A) GW (x̄ ′

A,x̄A), (A8)

PB ≡ ∣∣〈E(B)
1

∣∣ mB(0)
∣∣E(B)

0

〉∣∣2 ∫ ∞

−∞
dτ ′

B

∫ ∞

−∞
dτB χB(τ ′

B) χB(τB) ei �E(B)(τB−τ ′
B ) GW (x̄ ′

B,x̄B), (A9)

E ≡ − 〈E(B)
1

∣∣mB(0)
∣∣E(B)

0

〉 〈
E

(A)
1

∣∣mA(0)
∣∣E(A)

0

〉 ∫ ∞

−∞
dτB

∫ ∞

−∞
dτ ′

A χB(τB) χA(τ ′
A) ei �E(B)τB ei �E(A)τ ′

A i GF (x̄B,x̄ ′
A) (A10)

= − 〈E(B)
1

∣∣mB(0)
∣∣E(B)

0

〉 〈
E

(A)
1

∣∣mA(0)
∣∣E(A)

0

〉 ∫ ∞

−∞
dτB

∫ ∞

−∞
dτ ′

A χB(τB) χA(τ ′
A) ei �E(B)τB ei �E(A)τ ′

A [GW (x̄B,x̄ ′
A) + i GR(x̄ ′

A,x̄B )],

(A11)

PAB ≡ 〈E(A)
1

∣∣mA(0)
∣∣E(A)

0

〉 〈
E

(B)
1

∣∣ mB(0)
∣∣E(B)

0

〉† ∫ ∞

−∞
dτ ′

B

∫ ∞

−∞
dτA χB(τ ′

B) χA(τA) ei �E(A)τA−i �E
(B)
1 τ ′

B GW (x̄ ′
B,x̄A), (A12)

WA ≡ − 〈E(A)
1

∣∣mA(0)
∣∣E(A)

0

〉 [〈
E

(A)
1

∣∣mA(0)
∣∣E(A)

1

〉− 〈E(A)
0

∣∣mA(0)
∣∣E(A)

0

〉]
×
∫ ∞

−∞
dτA

∫ ∞

−∞
dτ ′

A χA(τA) χA(τ ′
A) �(τ ′

A − τA) ei �E(A)τA GW (x̄ ′
A,x̄A)

− i
〈
E

(A)
1

∣∣mA(0)
∣∣E(A)

0

〉 〈
E

(B)
0

∣∣ mB(0)
∣∣E(B)

0

〉 ∫ ∞

−∞
dτ ′

B

∫ ∞

−∞
dτA χB(τ ′

B) χA(τA) ei �E(A)τA GR(x̄A,x̄ ′
B)

− i
〈
E

(A)
1

∣∣mA(0)
∣∣E(A)

0

〉 〈
E

(A)
0

∣∣mA(0)
∣∣E(A)

0

〉 ∫ ∞

−∞
dτ ′

A

∫ ∞

−∞
dτA χA(τ ′

A) χA(τA) ei �E(A)τA GR(x̄A,x̄ ′
A), (A13)

WB ≡ − 〈E(B)
1

∣∣mB(0)
∣∣E(B)

0

〉 [〈
E

(B)
1

∣∣mB(0)
∣∣E(B)

1

〉− 〈E(B)
0

∣∣mB(0)
∣∣E(B)

0

〉]
×
∫ ∞

−∞
dτB

∫ ∞

−∞
dτ ′

B χB(τB) χB(τ ′
B) �(τ ′

B − τB) ei �E(B)τB GW (x̄ ′
B,x̄B )
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− i
〈
E

(B)
1

∣∣ mB(0)
∣∣E(B)

0

〉 〈
E

(A)
0

∣∣mA(0)
∣∣E(A)

0

〉 ∫ ∞

−∞
dτ ′

A

∫ ∞

−∞
dτB χA(τ ′

A) χB(τB) ei �E(B)τB GR(x̄B,x̄ ′
A)

− i
〈
E

(B)
1

∣∣ mB(0)
∣∣E(B)

0

〉 〈
E

(B)
0

∣∣ mB(0)
∣∣E(B)

0

〉 ∫ ∞

−∞
dτ ′

B

∫ ∞

−∞
dτB χB(τ ′

B) χB(τB) ei �E(B)τB GR(x̄B,x̄ ′
B ). (A14)

APPENDIX B: EIGENVALUES OF MATRICES

In this Appendix, we outline the derivations of the eigenvalues of the matrices in the main text. In particular, we shall see that
WI does not appear in the leading contributions to the eigenvalues.

The density matrix ρAB given in Eq. (4) and its partial transpose ρ
TA

AB in Eq. (17) take the same form,

P =

⎛
⎜⎜⎝

0 0 0 c2 α

0 c2 A c2 β c2 σ

0 c2 β∗ c2 B c2 κ

c2 α∗ c2 σ ∗ c2 κ∗ 1 − c2(A + B)

⎞
⎟⎟⎠+ c4

⎛
⎜⎜⎝

Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44

⎞
⎟⎟⎠, (B1)

where A and B are real, α, β, σ , and κ are complex constants, and Qij = Q∗
ji is conditioned to satisfy Q11 + Q22 + Q33 + Q44 =

0. Thus, their eigenvalues are derived in a single stroke. A straightforward calculation shows that the eigenvalue equation is given
by

0 = det(P − λ I) = λ4 − λ3 + [c2(A + B) + O(c4)]λ2 − [c4(AB − |β|2) + O(c6)]λ + c8(AB − |β|2)(Q11 − |α|2) + O(c10).

(B2)

Since σ or κ do not contribute to leading order in Eq. (B2), we expect that they will not appear in leading order of the eigenvalues,
either. Indeed, Eq. (B2) is found to factorize as

0 = det(P − λ I)

={λ2 − [c2(A + B) + O(c4)]λ + c4(AB − |β|2) + O(c6)}{λ2 − [1 − c2(A + B) + O(c4)]λ + c4(Q11 − |α|2) + O(c6)},
and thus the leading terms of the eigenvalues of P are derived as

1 + O(c2),
c2

2
[A + B ±

√
(A − B)2 + 4|β|2] + O(c4), c4(Q11 − |α|2) + O(c6). (B3)

We now set as A = PA, B = PB , and Q11 = X . When we further set as α = E , β = PAB , σ = WA, and κ = WB , we obtain
Eq. (12), while α = P∗

AB , β = E∗, σ = W∗
A, and κ = WB give Eq. (18).

Similarly, the eigenvalue equation of ρAB ρ̃AB computed from Eqs. (4) and (31) is found to be given as

0 = det(ρAB ρ̃AB − λ I) = λ4 − [2 c4(X + |E |2 + PAPB + |PAB |2) + O(c6)]λ3

+ [c8{(X − |E |2)2 + (PAPB − |PAB |2)2 + 4(X + |E |2)(PAPB + |PAB |2)} + O(c10)]λ2

− [2 c12{(X + |E |2)(PAPB − |PAB |2)2 + (X − |E |2)2(PAPB + |PAB |2)} + O(c14)]λ

+ c16(X − |E |2)2(PAPB − |PAB |2)2 + O(c18), (B4)

which is found to be factorized as

det(ρAB ρ̃AB − λ I) = [λ2 − {2 c4(X + |E |2) + O(c6)}λ + c8(X − |E |2)2 + O(c10)] [λ2 − {2 c4(PAPB + |PAB |2) + O(c6)}λ
+ c8(PAPB − |PAB |2)2 + O(c10)]. (B5)

Then, we see that the square roots of the eigenvalues of ρAB ρ̃AB are given as Eq. (32).
The matrix TρAB

defined by Eq. (39) is computed from Eq. (4) as

TρAB
=

⎛
⎜⎝

c2(E + E∗ + PAB + P∗
AB) i c2(E − E∗ − PAB + P∗

AB) − c2(WA + W∗
A)

i c2(E − E∗ + PAB − P∗
AB) c2(−E − E∗ + PAB + P∗

AB) i c2(−WA + W∗
A)

−c2(WB + W∗
B) i c2(−WB + W∗

B) 1 − 2 c2(PA + PB)

⎞
⎟⎠+ O(c4), (B6)

and then the eigenvalue equation of UρAB
is derived and factorized as

0 = det(UρAB
− λ I)

= − λ3 + [1 − 4 c2(PA + PB) + O(c4)]λ2 − [8 c4(|E |2 + |PAB |2) + O(c6)]λ + 16 c8(|E |2 − |PAB |2)2 + O(c10)

= − {λ − [1 − 4 c2(PA + PB) + O(c4)]}{λ2 − [8 c4(|E |2 + |PAB |2) + O(c6)]λ + 16 c8(|E |2 − |PAB |2)2 + O(c10)}, (B7)

where UρAB
= T T

ρAB
TρAB

as defined in Eq. (38). Then one finds that the eigenvalues of UρAB
are given by Eq. (40).
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