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Magic states can be used as a resource to circumvent the restrictions due to stabilizer-preserving operations,
and magic-state conversion has not been studied in the single-copy regime thus far. Here we solve the question
of whether a stabilizer-preserving quantum operation exists that can convert between two given magic states in
the single-shot regime. We first phrase this question as a feasibility problem for a semidefinite program, which
provides a procedure for constructing a stabilizer-preserving quantum operation (free channel) if it exists. Then
we employ a variant of the Farkas lemma to derive necessary and sufficient conditions for existence, and this
method is used to construct a complete set of magic monotones.
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I. INTRODUCTION

Magic states have interesting applications in disparate areas
of quantum physics from foundations of quantum mechanics
to quantum computation. According to the Gottesman-Knill
theorem [1-3], if we restrict the allowed set of states and
operations to stabilizer states and operations, then the dynamics
and measurements of quantum states can be simulated effi-
ciently on a classical computer. However, it is well known that
universal quantum computing can be achieved by addition of
magic states [4,5]. In circuit synthesis [5], the set of Clifford
unitaries is supplemented with the T gate in order to achieve
universal quantum computation. There, it is favorable to reduce
the number of T gates as much as possible, since to implement
a T gate magic states need to be consumed as a resource. More-
over, recently an interesting connection between contextuality
and the resource theory of magic has been pointed out [6-9].
In particular, it was established that quantum contextuality
is a resource for quantum speed-up within one of the most
successful models for fault-tolerant quantum computation
[10], namely, the magic state distillation model.

Recently, the resource theory of magic has attracted much
attention [7-11]. In this framework, free operations are the
set of allowed operations, i.e., stabilizer operations. Resource
states, namely, the magic states, are required in order to
achieve some desired task. In a realistic setting wherein the
resources are finite, one is ideally interested in answering the
single-shot question: Given two resource states p and p’, is
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there a free operation that will convert p to p’? In a recent
attempt to answer this question, the necessary and sufficient
conditions for the possibility of converting a resource state
into another resource state have been obtained for a large class
of quantum resource theories coined as affine resource theories
[12]. In these resource theories, an affine combination of free
states is considered to be a free state itself. Resource theories
of coherence [13-18], asymmetry [19-24], and athermality
[25-31] are examples of affine resource theories, whereas the
resource theories of entanglement and magic states [5,10,11]
are not affine [12].

In this paper, we study the single-shot conversion of magic
states using free operations. We find the set of free operations
in [11] too restrictive and we extend it to include all the
completely positive trace preserving (CPTP) maps that convert
stabilizer states into stabilizer states, i.e., stabilizer-preserving
operations (SPOs). SPOs form the largest possible set of
physical operations that can be considered free. We have
numerical evidence that this set is strictly larger than the
set of stabilizer operations as defined in [11]. Furthermore,
we construct a complete set of magic monotones based on
the conditional minimum entropy [32]. Our set of magic
monotones is complete in the sense that a magic state can be
converted into another magic state by an SPO if and only if the
value of all the monotones does not increase in the process.

This paper is structured as follows. In Sec. II, we define
the set of free states, i.e., stabilizer states. In Sec. III, we
characterize the set of SPOs. In Sec. IV, we construct a
family of magic monotones which quantify the usefulness of
magic states. In Sec. VA, we formulate the necessary and
sufficient conditions for single-shot conversion of a magic state
to another using a free operation as a semidefinite program
(SDP). In Sec. V B, we prove that our set of magic monotones
is complete.

©2018 American Physical Society
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Throughout this paper, d denotes the dimension of the
Hilbert space. H is the set of d x d Hermitian matrices and D
is the set of d x d density matrices. When a quantum channel
is considered, we use no-prime notation for the input of the
channel and prime notations for the output (for example, F
denotes the set of free input states in dimension d while F’
denotes the set of free output states in dimension d’). Greek
letters are used for density matrices. Capital letters such as
X,Y, and Z are used for generic Hermitian matrices, with an
added tilde if they are traceless.

II. FREE STATES

The free states in our resource theory are defined to be
stabilizer states. These consist of all pure stabilizer states,
which are eigenstates of the generalized Pauli operators, and
their convex mixtures. We use the term magic (or nonstabilizer)
states to refer to states that are not stabilizer states. We only
consider cases where the Hilbert-space dimension d is a prime
number. We devote a separate analysis for d = 2 to provide
intuition via the visualization of the free states in the Bloch
sphere.

A. Qubit case

In the Hilbert space of dimension d = 2, there are six
pure stabilizer states, namely, the set of eigenstates of Pauli
operators {|0),|1),|4+),]—),]i),|—i)}. In the Bloch representa-
tion, these states correspond to three pairs of antipodal points
along the three principle axes. The full set of free qubit states
F is the convex hull of these extreme points, which is an
octahedron embedded in the Bloch sphere. This octahedron
consists of four pairs of parallel facets, so a point lies inside
the octahedron if and only if it is confined to the space between
any pair of parallel planes containing the facets. These planes
are described by the equations £x + y £ z = 1. Therefore, a
state with the Bloch vector (x,y,z) is a free state if and only if
the following inequalities hold:

1< x+y+z =<1,
—1<—x+4+y+z <I,

(1
-1< x+y-z =1

The inequalities above characterize free qubit states in terms of
their Bloch coordinates. However, as it will be more natural for
the later consideration of quantum channels, we would like to
have an alternative characterization in the space of Hermitian
operators. This can be done by noticing that the facets of the
octahedron can be divided into two groups, each containing
four facets that extend to a regular tetrahedron. The octahedron
can then be described as the intersection of these two regular
tetrahedra as shown in Fig. 1.

The eight vertices of the two tetrahedra have Bloch co-
ordinates (£1,£1,41), where the first tetrahedron’s vertices
consist of coordinates with an odd number of 1’s such as
(1,1,1) and (—1,—1,1), and the second tetrahedron’s vertices
have an even number of 1’s in their coordinates. Let A;
(for i =1,...,4) denote the unit-trace Hermitian operators

FIG. 1. The octahedron of stabilizer states for a qubit as an
intersection of two regular tetrahedra. The six pure stabilizer states
{10),11),]4),|—),li),|—i)} are vertices of the octahedron, which lie
on the Bloch sphere. The phase-point operators {A;} and {A}} are the
vertices of the two tetrahedra.

corresponding to the vertices of the first tetrahedron (simi-
larly A} for the second one). It is straightforward to check
that

2 ifi=j
0 ifi # j.
The same properties hold for A;. Therefore, {A;} and {A’} form
two orthogonal (but not normalized) bases for the space of qubit

Hermitian operators. Any unit-trace Hermitian operator H can
therefore be written as

4 4
H = ZO{,‘A,‘ = ZO(;A: (3)
i=1 i=1

where the real coefficients o; and «; are determined by

rAA; = { @)

a; =3t (HA), o =1 (HA) 4)
and they satisfy ) . a; = ) ; o/ = 1 because H has unit trace.
In Bloch space, H lies inside the tetrahedron {A;} if and
only if it can be written as a convex combination of A,
meaning that the coefficients ¢; are all non-negative. A similar
statement holds for the tetrahedron {A}. This results in the
following characterization of free states: a state p is free if and
only if

tr(pA;) > 0,

5
tr(pA;) = 0 ®

foralli =1,...,4.

Note that the number of inequalities in (5) is the same as
that in (1), but here we can directly characterize the set of
free states F using the Hilbert-Schmidt inner product in the
space of operators. It is also worth noting that {¢;} and {¢;}
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are sets of values for the Wigner functions associated with the
phase-point operators {A;} and {A}}.

B. Qudit case

Next, we define and characterize free states for the case of a
single qudit of dimension d, where d is an odd prime number.
Following the same procedure for the qubit case, we will start
with the definition of pure stabilizer states, and then take the
convex hull to obtain the set of all free states F. Similar to
the qubit case, we can characterize F by the simultaneous
positivity of a finite number of Wigner functions, as shown
below.

Pure stabilizer states can be obtained by applying Clifford
unitaries to the state |0) [11]. In prime dimensions, they form a
complete set of mutually unbiased bases (MUBs) [33]. In other
words, they can be grouped into d — 1 orthonormal bases so
that states from different bases all have the same overlap. If we
denote the density operators of these states by I, ,, where b €
{1,...,d + 1} labels the basis and v € {0, ...,d — 1} labels
the basis vector, then they form a complete set of MUBs if and
only if they are rank-1 projectors that satisfy

1 ith=>b,v="1
tr(T1, , [y ) = {0 ifb=>b,v#£0v (6)
1/d ifb#b.

The set of all (pure and mixed) stabilizer states is then defined
as the convex hull of the pure stabilizer states, which is denoted
by F := conv{Il, ,}.

The standard discrete Wigner function of a quantum state
o € Dis aquasiprobability distribution over the discrete phase
space Z4 X Z4 given by

Wp,q(p) = tr(pAp.q)v (7)

where (p,q) € Z; X Zq and A, , are d? Hermitian operators
that satisfy

trA,, =1,

(®)
tr(ApgAp.g) = ddppdyq

A, 4 are usually referred to as phase-point operators. For odd
prime dimensions d, they are defined as

1 _
Aoo = - Y D,y Apgi=Dp4A0eD}, (9
p.q

where
D,, = w*pq/prSq, w = e2rild (10)

and the shift operator S and phase operator P are defined by
their actions on the standard basis as

Slky=k+1), Plk)=d\k), keZy. (11)

The discrete Hudson’s theorem proves that a pure state is a
stabilizer state if and only if its standard Wigner function is
non-negative for all (p,q) € Zy4 x Z4 [34]. This is not true for
mixed states: there are mixed states with non-negative standard
Wigner function that are not stabilizer states (i.e., not in JF)
[34]. However, if we consider a larger family of d9~! Wigner
functions, it was conjectured [35] and later proved [36] that
F is characterized by the simultaneous non-negativity of these

Wigner functions. For the purpose of characterizing F, we do
not need to go into the details of how to define them, and will
instead only specify their associated d?*! generalized phase-
point operators.

Let v = (v1,v2, ...,v441) be a vector with d + 1 compo-
nents v; € Z,. For each v we define a generalized phase-point
operator A, as

d+1
A, = Z M., — L (12)
b=1

There are d?*! such generalized phase-point operators. It is
straightforward to check from their definition that tr(A,) = 1.
Using the properties of MUB projectors in (6), one can show
that tr(A,A,) = d if and only if v and u agree at exactly one
component. One can group these operators into d¢~! groups of
size d? in such a way that for any A, and A,, in the same group,
v and u agree at exactly one component, thus forming d?~!
Wigner functions (this is a nontrivial combinatoric problem;
see Sec. 4 in [37]). Here, we focus on the fact that these
operators are stabilizer witnesses and we can use them to
characterize F: a density operator p is a free state if and only if

tr(pAy) > 0 Vo e Z4T. (13)

A geometric interpretation of the inequalities in (13) is that F is
apolytope with d*! facets in the space of Hermitian operators.

III. FREE OPERATIONS

In magic-state distillation protocols, one asks whether there
exists a procedure which can transform any mixed magic state
to a more resourceful (more magic) state while solely em-
ploying free operations. In [11], stabilizer protocols and magic
monotones such as sum negativity, mana, and relative entropy
of magic were defined to answer this question quantitatively.
In this section, for comparison purposes, we first recall the
definition of stabilizer protocols and then present our definition
of free operations (SPOs).

A stabilizer protocol may consist of the following types
of quantum operations: Clifford unitaries, composition with
stabilizer states, partial trace, and measurements in the com-
putational basis. Moreover, these quantum operations can be
conditioned on measurement results and classical randomness.
Using the Stinespring dilation theorem, any quantum protocol
composed of these quantum operations can be written as

E(p) = tre[U(p ® pp)UT, (14)

where U is a Clifford unitary! and the ancilla pg is a free
state, i.e., a pure or mixed stabilizer state. Note that for a
given dimension of the ancillary system there are finitely many
Clifford unitaries, which means that the number of stabilizer
protocols (14) is also finite.

In our definition of SPOs as free operations, we do not
put any operational restriction on U and pg but instead only
require that free operations O do not generate resources.

'The Clifford group is defined as the normalizer of the generalized
Pauli group, i.e., the collection of unitary operators U¢ that map the
generalized Pauli group to itself under conjugation.
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Specifically, we define SPOs as linear maps that satisfy the
following conditions.

(1) They are completely positive.

(2) They are trace preserving.

(3) They transform stabilizer states to stabilizer states; i.e.,
if p € F,then E(p) € F'.

We would like to point out that in the resource theory
framework the set of SPOs as defined above is the maximal set
of resource nongenerating operations. Therefore, it includes
the stabilizer protocols. In fact, we have numerically checked
that the set of SPOs strictly contains the set of stabilizer
protocols, as described in the Appendix.

We write the above conditions 1-3 in the Choi repre-
sentation which later enables us to phrase our problem as
an SDP. The Choi matrix J corresponding to the quantum
channel E : H — H'isgivenas J = £ @ I[(|¢p1)(¢T|) where
lpt) = Z;jzl |ii), which is the state vector of the maximally
entangled state up to a normalization, and J is a positive
semidefinite matrix in # ® H’. Note that the TP condition can
be phrased in terms of the Choi matrix as trg(J) = I, which
is equivalent to tr [J(I' ® X)] = tr(X) for all X € H. Finally,
the Choi matrix of a free operation £ € O must satisfy the
conditions

J >0, (15)
trJI ® X)] = tr(X) VX € H, (16)

tr[J(A, ® TT]

a,u

)]=0 Yvau, (17)

where v € ZZ:“;a =12,....d+ 1;andu € Z,.

Note that to write the third condition, given in Eq. (17),
we have used the fact that, if a CPTP map takes the extreme
points of the stabilizer polytope to a free state, it will also take
any convex combination of them to a free state. Hence, it is
sufficient to demand that the quantum channel takes all the
elements of the set of MUB projectors {I1, ,} to a free state.

IV. QUANTIFYING MAGIC

Monotones are used to quantify the resourcefulness of resource
states. By definition, they are real-valued functions that are
nonincreasing under the action of free operations. In other
words, for f to be amonotone, it has to satisfy f(p) > f[E(p)]
for all states p and free operations £. In this section, we
construct a family of magic monotones to quantify magic states
and prove that they are indeed nonincreasing under SPO.

Definition. For any nonzero X € HAQHE, X >0, we
define g(X) as

q(X) := min{ir §|§ € HEI'® S > X). (18)

Note that g(X) is positive and closely related to the conditional
minimum entropy by g(X) = 2~ fmin(41B)x [32],

Given a density matrix o € D/, a real number ¢ > 0, and
probabilities p, .., we define the density matrix €2, as a
function of input state p € D:

Qp = N(O' ® ,OT +t Z Pv,a,uné,ub ® Hilt) (19)

v,b,a,u

where N := 1/(td’ +t + 1) is the normalization factor and
the sum is over all v € ZZ:H; b=1,....d +1,u € Z,; and
a=1,....d+ 1.

Definition (monotones). For each ¢ € D’ and a real number

t > 0, we define the function M,; : D — R as
My, = Ipnin q(S2p) — Co (20)
where ¢5; :=min,, . g(Qq/4).

Note that €2, depends on o, ¢, and probabilities py 4.,
but M, ; only depends on parameters o and ¢ because of the
minimization over p, 4 . The constant ¢, is used to offset the
value of M, ; to zero on stabilizer states.

Theorem 1. For all ¢ € D" and t > 0, M, ,(p) are magic
monotones. That is, for an arbitrary state p, if p’ = E(p) for a
stabilizer-preserving quantum channel E, then

Moi(p) = Mo, (p). 2y

Proof. We first recall a fact about the conditional minimum
entropy that, for a channel &, ¢(X) > g[A(X)], where A :=
I ® T o€&oT andT isthe transposition map [12]. Also, note
that, because £ is a stabilizer-preserving channel,

A, @07 ) =T, , ® &))"

=0,,®Y puJ, (22

a,u

for some probabilities p, ,. Denoting the set of probabilities
that minimize the function ¢(£2,) by py 4 ., we then have

Ma,t(p) + Cot

= q[N (o ®p" +1 Z Praully, ® HZ,M)}

v,b,a,u

> q|:N (0 ® ,O/T +t Z pv,a,un/b,v,, ® Hg,u>:|

v,b,a,u
= Ma,t(p,) + Cot (23)

where N := 1/(¢td’ + t + 1). The first inequality follows from
q(X) > q[A(X)], Pv.a.u are probabilities derived from p, 4,
and p, ,, and the second inequality follows from the definition
of My,. |

Remark 1. Our monotones are also monotones under the set
of operations considered in [11], since it is a strict subset of
our set of SPOs.

Remark 2. Tt is worth pointing out that the double mini-
mization in the definition of M, ; can be computed in whole
as an SDP. As the number of probabilities p,,, grows
as d(d + 1)d’**!, in high dimensions it is not practical to
compute M, ,. The computation can be easily carried out in low
dimensions, as described in the following numerical example.

Example (qubit case). Here we consider the case d =
d' = 2. Computing M, involves a minimization over 48 real
parameters and a 2 x 2 Hermitian matrix. We used CVX in
MATLAB to evaluate M, ;(p) numerically at various input states
p, for several values of parameters ¢ and 7. With o fixed at
|0)(0], for t = 0 we get the trivial zero monotone. For ¢ = 1
the monotone is faithful, meaning that M, ;(p) = 0 if and only
if p is a stabilizer state (see Fig. 2). ForO0 <t < lort > 1,
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FIG. 2. Plot of Mg,1(p) evaluated at qubit states p on the
equatorial disk of the Bloch sphere. The vertical axis represents the
value of the monotone. The horizontal axes represent the x and y
Bloch coordinates of p. The flat square in the center corresponds to
stabilizer states.

the monotone is not faithful: there are magic states p at which
M, (p) = 0 (see Fig. 3). For some other choices of o, we
observed that the monotone became faithful at some particular
value of ¢ that depends on o.

V. MANIPULATING MAGIC STATES

Resource state manipulation, i.e., using free operations
to convert one resource state to another, is among the most
fundamental aspects in studying a quantum resource theory.
Here we consider exact manipulation in the single-shot regime,
that is, exact conversion of a single copy of one state to that of
another by an SPO. We first formulate the conversion question
as a semidefinite program and use Farkas’s lemma to derive
necessary and sufficient conditions for conversion. We then

0.06

t=0.2

0.05p .o t=0.4

- ='1=0.6

0.04l - = = t=0.8

’ t=1.0
=° 0.03r
0.021
0.01f

0 — -

FIG. 3. Plot of Mg :(p) for several values of ¢, evaluated at
qubit states p = (1 — «)[/2 + «|T)(T| along the line from the com-
pletely mixed state to the type-T magic state with Bloch coordinate
(1,1,1)/+/3. The boundary between stabilizer and nonstabilizer states
is at ¢ &~ 0.58. The monotone can be seen to be faithful when r = 1.

show that the monotones constructed in the previous section
can alternatively be used to determine convertibility.

A. An SDP formulation

The characterization of free operations in (15)—(17) is
readily in the form of SDP constraints. The only missing
ingredient is the condition for a quantum channel £ to convert
state p to state p’. We begin this section by expressing
the state conversion statement £(p) = p’ in the Choi matrix
representation as trg [J(I ® pT)] = p’. After transforming the
partial trace to a full trace we get

tr[J(Y @ pD)] =tr(p'Y) VY € H . (24)

Following [12], we can phrase the existence question of a
stabilizer-preserving channel £ converting density matrices p
to p’ as the existence question of a nonzero matrix J € H ® H'
that satisfies the conditions

J =0, (25a)

r[JA'®X)] =0 VX eH, (25b)

w[J(A,®TI,)] =0 Vvau, (25

tr[J<ff®p @ p)]l’®]1>:|=0 VY e H', (25d)

for all traceless matrices X and ¥, v € Zd+1, u € Zy, and
a=1,...,d+ 1. Conditions (25) on the Choi matrix J cor-
respond to the conditions for £ to be completely positive,
trace preserving, stabilizer preserving, and converting p to p’.
To turn the existence question into necessary and sufficient
conditions that are verifiable, we make use of the following
lemma.

Lemma 1. Let V be a subspace of H and let Wy, . ..
matrices in H. The following are equivalent.

(1) There exists a nonzero positive semidefinite matrix J
such that

,W,, be

tr(JV)=0 forallV eV,

(26)
tr(JW;) >0 foralli=1,...,m
(2) For all V € V and non-negative numbers yi, ...,V
- (ylWl + .+ yme) } 0. (27)

This lemma is a variant of Farkas’s lemma and its proof is
based on the separating hyperplane theorem [38]. Applying this
lemma to conditions (25a)—(25d), with ) being the subspace

spanned by I' ® X and ¥ ® p” — "({/Tp/)]l’ ® I, and W; being

A, ® 1T, we obtain the following equivalent conditions:
o tr(Y p'
]I’®X+Y®,0T—r(Tp)]I’®]I
=Y VoauAy® T, #0 (28)

v,a,u

for all traceless X € 7, traceless ¥ € ', and Yv.au = 0.

To summarize, we have cast the state conversion question
in the form of an SDP feasibility problem (25a)—(25d) and
alternatively provided a set of necessary and sufficient condi-
tions. The SDP form is more useful for practical purposes. It
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is also constructive: When the conversion is possible, there are
known SDP algorithms that can find an SPO that does the state
conversion. The necessary and sufficient conditions in (28)
consist of infinitely many conditions. On the other hand, they
provide the analytical base for the proof of the completeness
of our magic monotones in the next section.

Remark 3. Using CVX in MATLAB, we found a numerical
example of qutrit-to-qutrit SPOs that can increase the Wigner
sum negativity> (a monotone for stabilizer protocols studied
in [11]), thus confirming that the set of SPOs is strictly larger
than the previously studied set of stabilizer protocols. See the
Appendix for this specific example.

B. Completeness of monotones

An alternative way of checking if a resource can be con-
verted to another by a free operation is to use a complete
set of monotones. In this section, we show that our set of
magic monotones, M, ,(p) defined in (20), is complete in
the sense that a resource state can be converted to another
using a stabilizer-preserving operation if and only if it is more
resourceful with respect to every monotone. We begin with the
lemma below, which we then use to prove the completeness of
magic monotones as stated in Theorem 2.

Lemma 2. Given density operators p € D and p’ € D/,
there exists a stabilizer-preserving quantum channel £ such
that £(p) = p’ if and only if for all density operators o € T,
probabilities p, 4., and ¢ > 0 we have

t +tr(op’) -
td +t+1—

Proof. The necessary and sufficient conversion conditions
were cast in (28). Notice that these conditions remain un-
changed if we divide the left-hand side by an arbitrarily large
positive number. Therefore, we can assume Y < I'/d’ such that
Y =1'/d’ — o, where o is a density operator. After making
this substitution into (28), diving both sides by #(d’ + 1) + 1
and rearranging it so that all the terms of the form I’ ® . . . are
grouped to the left-hand side of the inequality, we obtain

I'et#Q, (30)

where €, is defined in (19) and

1
=
td +t+1

q(82). (29)

€29

for all traceless X € H, o € D/, probabilities p, ,, and t > 0.
This is equivalent to

t +tr(op’)
t = —<q(Q 32
1(7) td,+t+l_q( 0) (32)
for all density operators ¢ € D" and ¢ > 0. ]

2The sum negativity of a state is the sum of the negative elements
of the Wigner function [11].

Theorem 2. Given density operators p € D and p’ € D,
if for all density operators o € D’ and ¢ > 0 it holds that
My (p) > My ,(p'), then there exists a stabilizer-preserving
quantum channel £ such that £(p) = p’.

Proof. We begin by noticing that the identity channel is a
free channel, and therefore we know that p’ can be converted
to p’. Then using Lemma 2 and the optimal set of probabilities
Dv.a.u for all density operators o € D" and t > 0 we can write

t +tr(op’)
td+1)+1
1
< T ¢ ~ . / HT
_td/+t+1q<a®p + v%upv” by, @ gy

= Mo,t(p/) < Ma,t(p) < CI(Qp),

and hence there exists a free channel which converts
ptop. |

The following corollary is the result of combining Theorems
1 and 2.

Corollary. Given density operators p € D and p’ € D', the
following statements are equivalent.

(1) There exists a stabilizer-preserving quantum channel £
such that £(p) = p’.

(2) For all density operators ¢ € D" and ¢t > 0 we have
My (p) = My (0").

To summarize, we have found a complete set of magic
monotones which can be used to determine the single-shot
convertibility between two states.

VI. CONCLUSIONS

In this paper, we answered the following question: Given
two magic states p and o', is there an SPO that can convert p
to p’? We cast this question as an SDP feasibility problem
and we employed a variant of Farkas’s lemma to find the
necessary and sufficient conditions for the existence of such
an operation. Then, we provided a set of magic monotones
which we proved to be complete. In other words, the answer to
the single-shot question is positive in our case if and only if the
density matrix p € D is more resourceful than (or at least as
resourceful as) the density matrix p’ € D’ according to all the
magic monotones (20). Note that we answered this question
for the exact conversion of a resource state to another resource
state. As a future line of research, investigating the possibility
of approximate conversion of a magic state to another using
SPOs is a natural next step.

The usefulness of the tools developed here may extend
beyond the study of magic states. As a future line of research,
it would be interesting to see if the methods applied in this
paper (such as SDP and Farkas’s lemma) to the resource theory
of magic can be applied to the more general case of convex
resource theories.

Another possible direction for future work is to extend our
results to the case of infinite-dimensional systems, namely, the
resource theory of non-Gaussianity. It is known that stabilizer
states are the discrete analogs of Gaussian states [34] and that
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non-Gaussianity is a resource for tasks such as distillation of
Gaussian entanglement, violation of continuous-variable Bell
inequalities, and continuous-variable quantum computation
[39]. However, it is still unknown what can be achieved
using Gaussian operations given that one has access to a
non-Gaussian state.

ACKNOWLEDGMENTS

We thank Mercedes Gimeno-Segovia, Mark Girard, and
David Jennings for useful discussions and comments. The au-
thors were supported by the Natural Sciences and Engineering
Research Council of Canada and the Pacific Institute for the
Mathematical Sciences. B.C.S. appreciates financial support
from Alberta Innovates Technology Futures and China’s 1000
Talent Plan.

J

0.1913 + 0.0000i

0.0580 — 0.1002i

APPENDIX: NUMERICAL EXAMPLES

Here, we present an example for the qutrit case where the
state p cannot be converted using the stabilizer operations as
was defined in [11], while this conversion is possible using
SPOs. To find such examples, we generated random density
matrices p and p’ and ordered them such that p’ has a higher
sum negativity in comparison to p. This means that the state
p cannot be converted to p’ using the stabilizer operations
defined in [11]. Then, using the CVX package for MATLAB [40]
(a package for specifying and solving convex programs), we
checked whether there exists an SPO with the Choi matrix J
which satisfies conditions (25).2

As an example for the qutrit case, consider the following
density matrices:

0.1383 +0.1163i

p = | 0.0580 4+ 0.1002{ 0.4585 +0.0000i —0.0292 — 0.0897i
0.1383 — 0.1163;  —0.0292 + 0.0897i 0.3502 + 0.0000i
and
0.2383 + 0.0000i 0.0413 +0.0808; —0.0286 — 0.0380i
o= 0.0413 — 0.0808i 0.4894 + 0.0000: 0.1650 — 0.0552i
—0.0286 + 0.0380i 0.1650 + 0.0552i 0.2723 + 0.0000i

The sum negativities of these two states are 0 and 0.0074, respectively, while there exists an SPO that converts p to p’, the Choi

matrix of which has the real part

~ 0.3841 —0.0380 —0.0629 —0.0173
—0.0380 0.2577 0.0535 0.0516
—0.0629 0.0535 0.2688 —0.0287
—0.0173 0.0516 —0.0287 0.2935

Je = | —0.0242 0.0313 0.0285 0.0442

0.0782 —0.0470 0.0243 0.0853

0.0270 —0.0406 —0.0013 —0.0711

—0.0073 —0.0232 —0.0241 0.0901

| —0.0597 0.0114 —0.0081 0.0663

and the imaginary part

[ 0.0000 —0.0318 0.0458 —0.0795
0.0318 0.0000 —0.0306 0.0295
—0.0458 0.0306 0.0000 0.0902
0.0795 —0.0295 —0.0902 0.0000
Jim = | —0.0678  —0.0548 0.0621 —0.0508
—0.0427 0.0241 —0.0500 0.0664
—0.0641 0.0270 0.0629 —0.0425
0.0562 0.0188 —0.0406 —0.0302
L 0.0273 —0.0147 0.0269 0.1252

corresponds to an SPO that converts p to o’

—0.0242 0.0782 0.0270 —0.0073  —0.05977
0.0313 —0.0470 —0.0406 —0.0232 0.0114
0.0285 0.0243 —-0.0013 —0.0241 —0.0081
0.0442 0.0853 —0.0711 0.0901 0.0663
0.4680 —0.0595 0.0460 0.1288 —0.0375 |,

—0.0595 0.4349 0.1283 —0.0815 0.1109
0.0460 0.1283 0.3224 —-0.0062 —0.0224
0.1288 —0.0815 —0.0062 0.2742 0.0060

—0.0375 0.1109 —0.0224 0.0060 0.2964

0.0678 0.0427 0.0641 —0.0562 —0.02737
0.0548 —0.0241 —-0.0270 —0.0188 0.0147
—0.0621 0.0500 —0.0629 0.0406 —0.0269
0.0508 —0.0664 0.0425 0.0302 —0.1252
0.0000 0.0475 —0.0945 —0.0393 0.0826
—0.0475 0.0000 0.0398 —0.0373 —0.0368
0.0945 —0.0398 0.0000 —0.0190 0.0205
0.0393 0.0373 0.0190 0.0000 —0.0169
—0.0826 0.0368 —0.0205 0.0169 0.0000_

3https://github.com/ahmadimehdi/Quantification-and-manipulation-of-magic-states.
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