
PHYSICAL REVIEW A 97, 062331 (2018)

Generalized Deutsch-Jozsa problem and the optimal quantum algorithm

Daowen Qiu1,2,* and Shenggen Zheng1

1Institute of Computer Science Theory, School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
2Instituto de Telecomunicações, Departamento de Matemática, Instituto Superior Técnico,

Avenida Rovisco Pais 1049-001, Lisbon, Portugal

(Received 4 February 2018; published 20 June 2018)

The Deutsch-Jozsa algorithm is one of the first examples of a quantum algorithm that is exponentially faster than
any possible deterministic classical algorithm. It was proposed by Deutsch and Jozsa in 1992 with improvements
by Cleve, Ekert, Macchiavello, and Mosca in 1998. The Deutsch-Jozsa problem is a promise problem and we
can equivalently describe it as a partial function DJ0

n : {0,1}n → {0,1} defined as DJ0
n(x) = 1 for |x| = n/2,

DJ0
n(x) = 0 for |x| = 0,n, and it is undefined for the rest of the cases, where n is even, and |x| is the Hamming

weight of x. The optimal quantum algorithm needs only one query to compute DJ0
n but the classical deterministic

algorithm requires 2n−1 + 1 queries to compute it in the worse case. In this article, we generalize the Deutsch-Jozsa
problem as DJk

n(x) = 1 for |x| = n/2, DJk
n(x) = 0 for |x| in the set {0,1, . . . ,k,n − k,n − k + 1, . . . ,n}, and it is

undefined for the rest of the cases, where 0 � k < n/2. In particular, we give and prove an optimal exact quantum
query algorithm with complexity k + 1 for computing the generalized Deutsch-Jozsa problem DJk

n. It is clear
that the case of k = 0 is in accordance with the Deutsch-Jozsa problem. Also, we give a method for finding the
approximate and exact degrees of symmetric partial Boolean functions.

DOI: 10.1103/PhysRevA.97.062331

I. INTRODUCTION

Quantum computing models can be divided into bounded-
error and exact versions in terms of their outputs. A bounded-
error model means that the mistake probability for any output
cannot be beyond an error value given a priori, and an exact
model requires its outputs be fully correct always, without
any error allowed. Exact quantum computing models have
been studied in the frameworks of quantum finite automata
[6,24] and particularly quantum query models (for example,
[2,5,11,12,19,28,31]).

The quantum query models are the quantum analog to the
classical Boolean decision tree models, so they are also called
quantum decision tree models and are at least as powerful as the
classical decision tree models [12]. The implementation pro-
cedure of a quantum decision tree model is exactly a quantum
query algorithm, and it can be roughly described as follows:
It starts with a fixed starting state |ψs〉 of a Hilbert H and will
perform the sequence of operations U0,Ox,U1, . . . ,Ox,Ut ,
where Ui’s are unitary operators that do not depend on the
input x but the query Ox does. This leads to the final state
|ψf 〉 = UtOxUt−1 . . . U1OxU0|ψs〉. The result is obtained by
measuring the final state |ψf 〉.

A quantum query algorithm A exactly computes a Boolean
function f if its output equals f (x) with probability 1, for
all input x. A computes with bounded error f if its output
equals f (x) with probability at least 2

3 , for all input x. The
exact quantum query complexity denoted by QE(f) is the
minimum number of queries used by any quantum algorithm
which computes f (x) exactly for all input x.

*issqdw@mail.sysu.edu.cn

The exact quantum query algorithms for comput-
ing total Boolean functions have been extensively stud-
ied [2,5,15,20,22,27,30,31,34]; one quantum speedup was
QE(f) = O[D(f)0.8675...] by Ambainis [2], and recently Am-
bainis et al. [3] presented a better separation with a su-
perquadratic gap between its quantum and deterministic query
complexities, where D(f) denotes the minimum number of
queries used by any classical deterministic query algorithm.

However, for computing partial Boolean functions, there
can be an exponential separation between exact quantum
and classical deterministic query complexity, and one result
was the well-known Deutsch-Jozsa algorithm proposed by
Deutsch and Jozsa in 1992 [19] with improvements by Cleve,
Ekert, Macchiavello, and Mosca in 1998 [15]. The Deutsch-
Jozsa problem [19] can be described as a partial Boolean
function DJ0

n : {0,1}n → {0,1} defined as follows: n is even,
and DJ0

n(x) = 1 for |x| = n
2 and DJ0

n(x) = 0 for |x| = 0 or n,
and the other cases are undefined, where |x| is the Hamming
weight of x. The Deutsch-Jozsa problem has attracted a lot of
research and discussion (for example, [7,16,26,31]), and the
physical realization was implemented in [33]. Recently, Mon-
tanaro, Jozsa, and Mitchison [31] generalized the Deutsch-
Jozsa problem to another partial Boolean function, say DJ1

n :
{0,1}n → {0,1} defined as DJ0

n except for DJ1
n(x) = 0 for

|x| = 0,1,n − 1,n. Also, Montanaro et al. [31] designed an
exact quantum two-query algorithm to compute it by using
an analytical method. However, the optimality of the exact
quantum two-query algorithm has not been demonstrated.

Ambainis [1] showed that almost all total Boolean functions
have high approximate degree, so we are also interested in
partial Boolean functions with a lower degree. Indeed, partial
Boolean functions have also been called promise problems
[21,23], and both symmetric Boolean functions and partial

2469-9926/2018/97(6)/062331(9) 062331-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.97.062331&domain=pdf&date_stamp=2018-06-20
https://doi.org/10.1103/PhysRevA.97.062331

DAOWEN QIU AND SHENGGEN ZHENG PHYSICAL REVIEW A 97, 062331 (2018)

Boolean functions have had important applications in cryp-
tography (for example, [18,21,23]).

The remainder of this article is organized as follows. In
Sec. II we give and recall some definitions, notions, and results
concerning quantum query algorithms and complexity that are
useful in the article, and we also present the main result that
we will demonstrate. After that, in order to demonstrate the
lower bound of our quantum algorithm, in Sec. III we study
the representation of symmetric partial Boolean functions with
multilinear polynomials, and give a method for finding the
approximate (and exact) degree of symmetric partial Boolean
functions. Then in Sec. IV we investigate the exact quantum
and classical deterministic query complexity of the generalized
Deutsch-Jozsa problem, that is, the function DJk

n, and we
present an optimal exact quantum (k + 1)-query algorithm to
compute DJk

n, but its classical deterministic query complexity
is n/2 + k + 1. Section V summarizes the main results and
mentions some problems for further study. Some verifications
are put in Appendixes A and B.

II. PRELIMINARIES

Let f be a Boolean function from D ⊆ {0,1}n to {0,1}.
If D = {0,1}n, then f is called a total Boolean function.
Otherwise, f is called a partial Boolean function or a promise
problem [21,23] and D is referred to as the domain of definition
or promised set.

A (partial) Boolean function f is called symmetric if f (x)
only depends on the Hamming weight of x, i.e., |x|. Some
characteristics of the symmetric Boolean functions were given
in, for example, [18]. Some common symmetric functions over
{0,1}n are listed as follows.

ORn(x) = 1 if and only if |x| � 1;
ANDn(x) = 1 if and only if |x| = 1;
PARITYn(x) = 1 if and only if |x| is odd;
MAJn(x) = 1 if and only if |x| > n/2;
EXACTk

n(x) = 1 if and only if |x| = k, where 0 � k � n;
THRESHOLDk

n(x) = 1 if and only if |x| � k, where
0 � k � n.

Definition 1. Let f : {0,1}n → {0,1} be a partial Boolean
function, and let D ⊆ {0,1}n be its domain of definition. If
for any x ∈ D and for any y ∈ {0,1}n with |x| = |y|, it holds
that y ∈ D and f (x) = f (y), then f is called a symmetric
partial Boolean function. When D = {0,1}n, f is a symmetric
function.

Clearly, if f : {0,1}n → {0,1} is a symmetric partial func-
tion, then its domain of definition has the version {x : |x| =
k1,k2, . . . ,kl} for some 0 � ki � n with i = 1,2, . . . ,l.

Isomorphism is useful in the study of query complexity,
and two partial functions f and g over {0,1}n are isomorphic
if they are equal up to negations and permutations of the input
variables, and negation of the output variable.

Fact 1. For any two partial functions f,g over {0,1}n, if
they are isomorphic, then they have the same (exact) quantum
query complexity.

Proof. Let g(x) = (¬)f (π ((¬)x1,(¬)x2, . . . ,(¬)xn))
where π is a permutation. Suppose that there is a t-queries
quantum algorithm A that computes f (x), and let A(x)
represent the output (0 or 1) for input x. Now for any x in the
domain of definition of g, we consider the following t-queries

quantum algorithm A′:

A′(x) = (¬)AU1U0(x), (1)

where U0(x) = ((¬)x1,(¬)x2, . . . ,(¬)xn) and U1(x) = π (x).
It is clear that A′ computes exactly function g. �

Remark 1. Given a symmetric partial function f :
{0,1}n → {0,1}, with the domain D of definition, it can
be equivalently described by a vector (b0,b1, . . . ,bn) ∈
{0,1,∗}n+1, wheref (x) = b|x|, i.e.,bk is the value of f (x) when
|x| = k, and f (x) is “undefined” for b|x| = ∗. In the interest
of simplicity, sometimes we will use the vector to denote a
symmetric partial function in this article.

Concerning the n-bit symmetric partial functions, it is clear
that the following functions are isomorphic to each other:

(b0,b1, . . . ,bn);
(bn,bn−1, . . . ,b0);
(b̄0,b̄1, . . . ,b̄n);
(b̄n,b̄n−1, . . . ,b̄0).
We need to introduce some complexity measures for sym-

metric partial functions.
Definition 2. Let f be a partial function with a domain

of definition D ⊆ {0,1}n. For 0 � ε < 1/2, we say a real
multilinear polynomial p approximates f with error ε if

(1) |p(x) − f (x)| � ε for all x ∈ D;
(2) 0 � p(x) � 1 for all x ∈ {0,1}n.
The approximate degree of f with error ε, denoted by

d̃egε(f), is the minimum degree among all real multilinear
polynomials that approximate f with error ε.

Clearly, if ε = 0, then d̃eg0(f) is the exact degree of f .
Furthermore, if D = {0,1}n, i.e., f is a total function, then the
exact degree of f is exactly the degree of f as usual [12],
denoted by deg(f). In the interest of simplicity, sometimes
we just identity d̃eg0(f) with deg(f) for any partial Boolean
function f , since no confusion leads.

Let input x = x1 . . . xn ∈ {0,1}n for some fixed n. We will
consider a Hilbert space H with basis states |i,j 〉 for i ∈
{0,1, . . . ,n} and j ∈ {1, . . . ,m} (where m can be chosen arbi-
trarily). A query Ox to an input x ∈ {0,1}n will be formulated
as the following unitary transformation:

Ox |0,j 〉 = |0,j 〉;
Ox |i,j 〉 = (−1)xi |i,j 〉 for i ∈ {1,2, . . . ,n}.
A quantum query algorithm A which uses t queries

for an input x consists of a sequence of unitary operators
U0,Ox,U1, . . . ,Ox,Ut , where Ui’s do not depend on the input
x and the query Ox does. The algorithm will start in a fixed
starting state |ψs〉 of H and will perform the above sequence
of operations. This leads to the final state

|ψf 〉 = UtOxUt−1 . . . U1OxU0|ψs〉. (2)

The final state is then measured with a measurement
{M0,M1}. For an input x ∈ {0,1}n, we denote A(x)
the output of the quantum query algorithm A. Obvi-
ously, Pr[A(x) = 0] = ‖M0|ψf 〉‖2 and Pr[A(x) = 1] =
‖M1|ψf 〉‖2 = 1 − Pr[A(x) = 0]. We say that the quantum
query algorithm A computes f within an error ε if for every
input x ∈ {0,1}n it holds that Pr[A(x) = f (x)] � 1 − ε. If
ε = 0, we says that the quantum algorithm is exact. For
more details on quantum query complexity, we may refer to
[2,11,12,31].

062331-2

GENERALIZED DEUTSCH-JOZSA PROBLEM AND THE … PHYSICAL REVIEW A 97, 062331 (2018)

Quantum query models are one of the most important
computing models in quantum computing. In this complexity
model [12], an algorithm is charged for “queries” to the input
bits, while any intermediate computation is considered as free.
For many functions one can obtain large quantum speedups
in the case where algorithms are allowed a constant small
probability of error (bounded error). As the most famous
example, Grover’s algorithm [25] computes the n-bit OR
function with O(

√
n) queries in the bounded-error mode, while

any classical algorithm needs �(n) queries. The model of exact
quantum query, where the algorithms must output the correct
answer with certainty for every possible input, seems to be
more intriguing [10,15,19]. It is much more difficult to come
up with exact quantum algorithms that outperform classical
deterministic algorithms.

In the exact quantum query complexity, it was recognized
that the best quantum speedup for computing total functions
was by a factor of 2 for many years [22]. In a breakthrough
result, Ambainis has presented the first example of a Boolean
function f : {0,1}n → {0,1} for which exact quantum algo-
rithms have superlinear advantage over classical deterministic
algorithms [2]. Based on the results in [5,31], Ambainis et al.
[4] have verified that exact quantum algorithms have a certain
advantage for most Boolean functions.

Ambainis et al. [5] have developed optimal exact quantum
algorithms for computing functions EXACTk

n and THRESHOLDk
n,

which are to determine whether an n-bit string has Hamming
weight exactly k and to determine whether an n-bit string has
Hamming weight at least k. The complexity is as follows:

QE(EXACTk
n) = max(k,n − k);

QE(THRESHOLDk
n) = max(k,n − k + 1).

If f is allowed to be a partial function, the Deutsch-
Jozsa algorithm [19] proved that there can be an exponential
separation between exact quantum and classical deterministic
query complexity. Some generalizations [17,26,31,36] of the
Deutsch-Jozsa problem were also investigated, and we will
indicate them carefully if there exist relations to our results.

A general generalization of Deutsch-Jozsa problem is the
following symmetric partial function:

DJk
n(x) =

{
1, if |x| = n/2,

0, if |x| � k or |x| � n − k,
(3)

where n is even and 0 � k < n/2.
Clearly, when k = 0, it is the Deutsch-Jozsa problem, and

when k = 1, it equals the problem given by Montanaro et al.
[31].

III. DEGREE OF POLYNOMIALS FOR SYMMETRIC
PARTIAL FUNCTIONS

First we study the exact degree of symmetric partial func-
tions. We can use the method of symmetrization [32] to prove
the following lemma.

Lemma 1. For any symmetric partial function f over {0,1}n
with domain of definition D, suppose d̃eg0(f) � d. Then there
exists a real multilinear polynomial q representing f and q that
can be written as

q(x) = c0 + c1V1 + c2V2 + · · · + cdVd, (4)

where ci ∈ R, Vi = �j1j2...ji∈{1,2,...,n}i xj1xj2 . . . xji
where any

j1j2 . . . ji ∈ {1,2, . . . ,n}i is without repeated number, 1 �
i � d, for example, V1 = x1 + · · · + xn, V2 = x1x2 + x1x3 +
· · · + xn−1xn, etc.

Proof. Let p be a multilinear polynomial representing f

and let deg(p) = d̃eg0(f) = d. If π is some permutation
and x = (x1, . . . ,xn), then π (x) = (xπ(1), . . . ,xπ(n)). Let Sn

be the set of all n! permutations. For any x ∈ {0,1}n, the
symmetrization of p is

psym(x) =
∑

π∈Sn
p(π (x))

n!
. (5)

Clearly, 0 � p(x) � 1 implies 0 � psym(x) � 1 for x ∈
{0,1}n. Since f is symmetric, x ∈ D implies π (x) ∈ D. For
all x ∈ D, we have f (π (x)) = f (x). Since p represents f ,
for any x ∈ D, we have p(π (x)) = f (π (x)) = f (x) = p(x).
Therefore, for any x ∈ D,

psym(x) =
∑

π∈Sn
p(π (x))

n!
=

∑
π∈Sn

p(x)

n!
= p(x) = f (x).

(6)
So psym can represent f . Let the multilinear polynomial
q = psym. According to Minsky and Papert’s result [32] (also
Lemma 2 in [12]), q can be written as

q(x) = c0 + c1V1 + c2V2 + · · · + cdVd. (7)

Therefore, the lemma has been proved. �
Example 1. Let us give an example to find out d̃eg0(f)

for f = DJ0
n, which is the Deutsch-Jozsa problem. To prove

that d̃eg0(DJ0
n) � 2, we assume that there is a multilinear

polynomial q(x) = c0 + c1V1 + c2V2 representing DJ0
n. For

|x| = 0, we have q(x) = c0 = f (x) = 0. For |x| = n, we have
q(x) = (

n

0

)
c0 + (

n

1

)
c1 + (

n

2

)
c2 = (

n

1

)
c1 + (

n

2

)
c2 = 0. For |x| =

n
2 , we have q(x) = (

n/2
0

)
c0 + (

n/2
1

)
c1 + (

n/2
2

)
c2 = (

n/2
1

)
c1 +(

n/2
2

)
c2 = 1. Therefore, we need to find out the solution of the

following linear system of equations:

c0 = 0,(
n

0

)
c0 +

(
n

1

)
c1 +

(
n

2

)
c2 = 0,

(
n/2

0

)
c0 +

(
n/2

1

)
c1 +

(
n/2

2

)
c2 = 1. (8)

It is easy to obtain that c0 = 0, c1 = 4(n−1)
n2 , c2 = − 8

n2 ,
and q(x) = 4(n−1)

n2 V1 − 8
n2 V2 representing DJ0

n. Therefore,
d̃eg0(DJ0

n) � 2.
Suppose that d̃eg0(DJ0

n) � 1. Then there exists a multilinear
polynomial q(x) = c0 + c1V1 representing DJ0

n. We need to get
the solution for the following linear group of equations:

c0 = 0,(
n

0

)
c0 +

(
n

1

)
c1 = 0,

(
n/2

0

)
c0 +

(
n/2

1

)
c1 = 1. (9)

It is easy to deduce that there is no solution. Therefore,
d̃eg0(DJ0

n) > 1, and consequently d̃eg0(DJ0
n) = 2. The exam-

ple ends.

062331-3

DAOWEN QIU AND SHENGGEN ZHENG PHYSICAL REVIEW A 97, 062331 (2018)

For any total function f , with the next lemma it has been
proved [8] (or see [12]) that QE(f) � 1

2 deg(f).
Lemma 2. [8,12] Let A be a quantum query algorithm that

makes t queries. Then there exist complex-valued n-variate
multilinear polynomials αi of degree at most t , such that the
final state of A is ∑

i∈{0,1}m
αi(x)|i〉 (10)

for every input x ∈ {0,1}n.
For the case of bounded error, we have the following result.
Lemma 3. For any partial Boolean function f , Qε(f) �

1
2 d̃egε(f), where Qε(f) denotes the quantum query complex-
ity for f with bounded-error ε.

Proof. Consider a Qε(f)-query quantum algorithm for f

with error ε. Let S be the set of basis states corresponding to
a one-output. Consider the polynomial p(x) = ∑

i∈S |αi(x)|2,
which is the probability that the algorithm outputs 1. If x ∈ D

and f (x) = 1, then p(x) � 1 − ε. If x ∈ D and f (x) = 0, then
p(x) � ε. Therefore, |p(x) − f (x)| � ε for all x ∈ D. Since
the algorithm procedure to get the last state for any input x

is the implementation of a sequence of unitary operators, it is
clear that 0 � p(x) � 1 for all x ∈ {0,1}n. So polynomial p(x)
approximates f with error ε. According to Lemma 2, the αi

are polynomials of degree no more than Qε(f), therefore p(x)
is a polynomial of degree no more than 2Qε(f). Consequently,
we have

d̃egε(f) � deg(p) � 2Qε(f), (11)

and the lemma has been proved. �
In particular, when ε = 0 we have the following special

case.
Lemma 4. For any partial Boolean function f , QE(f) �

1
2 d̃eg0(f).

We have proved that d̃eg0(DJ0
n) = 2. According to the

above lemma, QE(DJ0
n) � 1

2 d̃eg0(DJ0
n) = 1. It is known that

QE(DJ0
n) � 1 [19]. Therefore, we can use the above lemma to

conclude QE(DJ0
n) = 1.

Now we deal with the case of approximating representation.
Lemma 5. For any symmetric partial Boolean function f

over {0,1}n with domain of definition D, suppose d̃egε(f) = d.
Then there exists a real multilinear polynomial q approximates
f with error ε and q can be written as

q(x) = c0 + c1V1 + c2V2 + · · · + cdVd, (12)

where ci ∈ R, V1 = x1 + · · · + xn, V2 = x1x2 + x1x3 + · · · +
xn−1xn, etc.

Proof. The proof is similar to that of Lemma 1. For
the readability, we outline it again. Let p be a multilinear
polynomial with degree d that approximates f with error ε.
The symmetrization of p is

psym(x) =
∑

π∈Sn
p(π (x))

n!
. (13)

If x ∈ D, then |p(x) − f (x)| � ε. Since f is symmetric,
we have |psym(x) − f (x)| = |p(x) − f (x)| � ε. Since 0 �
p(π (x)) � 1 for all x ∈ {0,1}n, we have 0 � psym(x) � 1 for
all x ∈ {0,1}n. According to Minsky and Papert’s result [32]

(also Lemma 2 in [12]), psym can be written as

psym(x) = c0 + c1V1 + c2V2 + · · · + cdVd. (14)

Therefore, psym is the polynomial required. �
It is important to determine the approximate degree of

symmetric partial functions. The following lemma shows
whether or not a symmetric partial function has degree d. The
following lemma shows whether or not a symmetric partial
function has approximate degree at most d.

Lemma 6. For any symmetric partial function f over {0,1}n
with domain of definition D, and for fixed d and 0 � ε < 1/2,
there is an algorithm to discover whether or not there exists

q(x) = c0 + c1V1 + c2V2 + · · · + cdVd =
d∑

k=0

ckVk (15)

approximating f with error ε.
Proof. Suppose that f is fully described by the vector

(b0,b1, . . . ,bn) ∈ {0,1,∗}n+1, where f (x) = bi for |x| = i. For
input x, Vk = (|x|

k

)
. If there exists a polynomial q with degree d

approximating f with error ε, then for 0 � i � n, q(x) satisfies
the following inequalities and equalities:

(1) 0 � q(x) = ∑d
k=0 ck

(
i

k

)
� ε if bi = 0;

(2) 1 − ε � q(x) = ∑d
k=0 ck

(
i

k

)
� 1 if bi = 1;

(3) 0 � q(x) = ∑d
k=0 ck

(
i

k

)
� 1 if bi = ∗.

Therefore, it suffices to verify whether the polyhedra has
solution or not. It is easy to transfer the above polyhedra to
the normal form, i.e., S = {c|Ac � h}, where the matrix A ∈
R2(n+1)×(d+1) and the vector h ∈ R2(n+1). We now consider the
following linear programming problem [9,29]:

LP: Max Z, (16)

s.t. Ac + eZ � h, (17)

Z � 0, (18)

where e ∈ R2(n+1) and eT = (1,1, . . . ,1). It is clear that S
= ∅
if and only if the maximal value Z∗ = 0. By using the method
of liner programming and Karmarkar’s algorithm [29], we
can further transform the above linear programming problem
into a standard form of linear programming problem and then
obtain that the time complexity for finding a solution c ∈ S or
returning no solution is O(d2n5.5 log2 n) [35], and clearly its
upper bound is O(n7.5 log2 n) since d � n. �

According to Lemma 5, determining d̃egε(f) is equivalent
to finding out the minimal d such that q(x) = ∑d

k=0 ckVk

approximates f with error ε.
Theorem 1. For any symmetric partial Boolean function f

over {0,1}n with domain of definition D, and for the fixed
0 � ε < 1/2, there exists an algorithm to find out d̃egε(f) with
an upper bound O(n7.5 log3 n) on the time complexity.

Proof. This is Algorithm 1, and we analyze the process
in detail. Let b = (b0,b1, . . . ,bn) be the vector describing
f . Let subroutine S(n,b,ε,d) = 1(0) if there does (not) exist
polynomial q with degree d approximating f with error ε.
The subroutine S(n,b,ε,d) can be done with the Karmarkar’s
algorithm according to Lemma 6. We give a binary search
algorithm (Algorithm 1) to find out d̃egε(f) as follows:

062331-4

GENERALIZED DEUTSCH-JOZSA PROBLEM AND THE … PHYSICAL REVIEW A 97, 062331 (2018)

Algorithm 1 Algorithm for finding out d̃egε(f)

1: Procedure DEGREE (integer n, array b, real ε) � b∈{0,1,∗}n+1

2: integer l := 0,r := n;
3: while l � r

4: d = �(l + r)/2;
5: if S(n,b,ε,d) = 0 then l = d + 1;
6: else r = d − 1;
7: end if
8: end while
9: return l;
10: end procedure

In each iteration of the “while” loop, it holds
that S(n,b,ε,r + 1) = 1 and S(n,b,ε,l − 1) = 0. We have
d̃egε(f) � r + 1 and d̃egε(f) > l − 1. When the “while” loop
is finished, we have that l = r + 1 and d̃egε(f) � r + 1 =
l. Therefore, d̃egε(f) = l. The upper bound on time com-
plexity is O(log n)O(n7.5 log2 n) = O(n7.5 log3 n) in terms of
Lemma 6. �

IV. GENERALIZED DEUTSCH-JOZSA PROBLEM

In this section we consider a generalized Deutsch-Jozsa
problem DJk

n that was described by Eq. (3), that is, the problem
of distinguishing between the inputs of Hamming weight n/2
and Hamming weights in the set {0,1, . . . ,k,n − k,n − k +
1, . . . ,n} for all even n with 0 � k < n/2.

A. Exact quantum algorithm

By combining the exact quantum query algorithms for the
functions EXACT and THRESHOLD by Ambainis et al. [5], in
this subsection we give an exact quantum query algorithm for
computing DJk

n.
Theorem 2. For even n, the exact quantum query complex-

ity of DJk
n satisfies

QE

(
DJk

n

)
� k + 1. (19)

Proof. We will give an exact quantum algorithm using k +
1 queries for DJk

n. One of the important subroutines that we
will use in this paper is as follows:

Input: x = x1,x2, . . . ,xm.
Output: If the output is (0,0) then |x|
= m/2. Otherwise, it

will output (i,j) such that xi
= xj .
We call this subroutine Xquery. Let x ∈ {0,1}m. If

Xquery(m,x) = (0,0), then |x|
= m/2. If Xquery(m,x) =
(i,j), then xi
= xj .

Indeed, according to [5] by Ambainis et al., the subroutine
Xquery can be implemented in one exact quantum query
algorithm, and we put the details concerning the subroutine
Xquery in Appendix A.

Based on the subroutine Xquery, now we give an algorithm
(Algorithm 2) for DJk

n. It is clear that Algorithm 2 uses at most
k + 1 queries. �

B. Lower bound of exact quantum query complexity

The purpose of this subsection is to prove that the exact
quantum query complexity of DJk

n is no less than k + 1, i.e.,
QE(DJk

n) � k + 1.
Theorem 3. For even n, the exact quantum query complex-

ity of DJk
n satisfies

QE

(
DJk

n

)
� k + 1. (20)

Proof. We will prove that d̃eg0(DJk
n) � 2k + 2. Let us

consider a simple case k = 1 and n � 6 first. Suppose that
d̃eg0(DJ1

n) � 3, according to Lemma 1, there exists a mul-
tilinear polynomial q(x) = ∑3

i=0 ciVi representing DJ1
n. For

|x| = 0, we have q(x) = c0 = f (x) = 0. For |x| = 1, we have
q(x) = c0 + (1

1

)
c1 = f (x) = 0 and therefore c1 = 0. For |x| =

n,n − 1,n/2, we have the following equations:(n

2

)
c2 +

(n

3

)
c3 = 0,(

n − 1

2

)
c2 +

(
n − 1

3

)
c3 = 0,

(
n/2

2

)
c2 +

(
n/2

3

)
c3 = 1. (21)

Algorithm 2 Algorithm for DJk
n

1: procedure DJ (integer n, integer k, array x) � x∈{0,1}n

2: integer l:=1
3: while l � k do
4: Output ← Xquery(n,x)
5: if Output=(0,0) then return 0
6: end if
7: if Output=(i, j) then
8: x ← x \ {xi,xj }
9: l ← l + 1
10: n ← n − 2
11: end if
12: end while
13: Output ← Xquery(n,x)
14: if Output=(0,0) then return 0
15: end if
16: if Output=(i, j) then return 1
17: end if
18: end procedure

Let us consider the determinant∣∣∣∣∣
(
n2

) (
n3

)
(
n−1

2

) (
n−1

3

)
∣∣∣∣∣ =

∣∣∣∣∣
(

n

n−2

) (
n

n−3

)
(
n−1
n−3

) (
n−1
n−4

)
∣∣∣∣∣ (22)

= 1

n

∣∣∣∣∣
(

n

n−2

) (
n

n−3

)
n
(
n−1
n−3

)
n
(
n−1
n−4

)
∣∣∣∣∣ (23)

= 1

n

∣∣∣∣∣
(

n

n−2

) (
n

n−3

)
(n − 2)

(
n

n−2

)
(n − 3)

(
n

n−3

)
∣∣∣∣∣ (24)

= 1

n

∣∣∣∣∣
(

n

n−2

) (
n

n−3

)(
n

n−2

)
0

∣∣∣∣∣
= 0. (25)

062331-5

DAOWEN QIU AND SHENGGEN ZHENG PHYSICAL REVIEW A 97, 062331 (2018)

Therefore, in order to satisfy the first two equations, we have
c2 = c3 = 0. The last equation will not hold, which means
that such q does not exist. Thus, d̃eg0(DJ1

n) � 4. According

the Lemma 4, we have QE(DJ1
n) � 1

2 d̃eg0(DJ1
n) � 2. That is

to say, the algorithm in Theorem 2 for DJ1
n is optimal. The

algorithm in [31] for DJ1
n is also optimal.

Now we consider for the general case. Suppose that
d̃eg0(DJk

n) � 2k + 1, according to Lemma 1, there exists a
multilinear polynomial q(x) = ∑2k+1

i=0 ciVi representing DJk
n.

For 0 � |x| � k, f (x) = 0. Therefore, we have c0 = c1 =
· · · = ck = 0. For |x| = n,n − 1, . . . ,n − k, we have the fol-
lowing equations:(

n

k + 1

)
ck+1 +

(
n

k + 2

)
ck+2 + · · · +

(
n

2k + 1

)
c2k+1 = 0,

(
n − 1

k + 1

)
ck+1 +

(
n − 1

k + 2

)
ck+2 + · · · +

(
n − 1

2k + 1

)
c2k+1 = 0,

· · ·(
n − k

k + 1

)
ck+1 +

(
n − k

k + 2

)
ck+2 + · · · +

(
n − k

2k + 1

)
c2k+1 = 0.

(26)

Let us consider the determinant (see Appendix B for the
detailed proof):∣∣∣∣∣∣∣∣∣∣∣∣

(
n

k+1

) (
n

k+2

) · · · (
n

2k+1

)
(
n−1
k+1

) (
n−1
k+2

) · · · (
n−1
2k+1

)
...

...
. . .

...(
n−k

k+1

) (
n−k

k+2

) · · · (
n−k

2k+1

)

∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)

k(k+5)
2 ·

∏2k+1
i=k+1

(
n

i

)
∏k

i=1

(
n

i

)
= 0. (27)

Therefore, we have ck+1 = · · · = c2k+1 = 0. Then for |x| =
n/2, f (x) = q(x) = 0, which is a contradiction. Therefore,
d̃eg0(DJk

n) � 2k + 2 and QE(DJk
n) � 1

2 d̃eg0(DJk
n) � k + 1. �

C. Exact classical query complexity

Theorem 4 For even n, the classical deterministic query
complexity of DJk

n satisfies

D
(
DJk

n

) = n/2 + k + 1. (28)

Proof. If the first n/2 queries return xi = 1 and the next k

queries return xi = 0, then we will need to make another query
as well. Therefore, D(DJk

n) � n/2 + k + 1.
Now suppose that we have made n/2 + k + 1 queries. If no

more than k queries return xi = 0, then there are more than
n/2 + 1 queries returning xi = 1 and DJk

n(x) = 0. If no more
than k queries return xi = 1, then there are more than n/2 + 1
queries returning xi = 0 and DJk

n(x) = 0. If there are more
than k queries returning xi = 0 and also more than k queries
returning xi = 1, then it must be balanced and DJk

n(x) = 1.
Therefore, D(DJk

n) � n/2 + k + 1 and the theorem has been
proved. �

Remark 2. Again, we make some comparisons to the pre-
vious results. When k = 0, this is the Deutsch-Jozsa problem;

when k = 1, this problem was considered by Montanaro et al.
[31] and an exact quantum two-query algorithm was given to
solve it, but the optimality was not verified. Also, the method in
[31] is different (the unitary operator in their query algorithm
was derived from distinguishing two orthogonal subsets of
states).

So far, according to Theorems 2–4, our main result has been
proved and is described as follows.

Theorem 5. For even n, the exact quantum query complex-
ity of DJk

n satisfies

QE

(
DJk

n

) = k + 1. (29)

However, the classical deterministic query complexity for DJk
n

is

D
(
DJk

n

) = n/2 + k + 1. (30)

Remark 3. When k = 1, Montanaro et al. [31] designed an
exact quantum two-query algorithm to compute it, and their
method is to derive a unitary operator from solving a system of
equations, but the optimality with two-query was not verified.
Our result also implies that the algorithm by Montanaro et al.
[31] is optimal.

V. CONCLUSIONS

Symmetric Boolean functions are important in cryptog-
raphy and property testing[13,14,18] due to their characters
(for example, their outputs only depend on the Hamming
weights of their inputs). Symmetric partial Boolean functions
are symmetric but their domains of definition are allowed
to be partial, so they also belong to the promise problems
[21,23], for example, the Deutsch-Jozsa problem as a typical
promise problem can be represented by an symmetric partial
Boolean function. In this article, we have proved the exact
quantum query complexity for a generalized Deutsch-Jozsa
problem, and presented a method for determining the degree
of symmetric partial Boolean functions. This method may be
useful for further studying the quantum query complexity of
symmetric partial Boolean functions.

ACKNOWLEDGMENTS

The authors are grateful to the two anonymous referees for
their important suggestions that helped us improve the quality
of the manuscript. Also, the first author thanks G. Xu, Z.
Wu, X. Zhou, and S. Du for checking the time complexity
of determining the approximate degree of symmetric partial
Boolean functions, and we thank L. Li for discussion on
query complexity. This work was supported in part by the
National Natural Science Foundation of China (Grants No.
61572532, No. 61272058, No. 61602532), the Natural Science
Foundation of Guangdong Province of China (Grant No.
2017B030311011), the Fundamental Research Funds for the
Central Universities of China (Grant No. 17lgjc24), and D.Q.
was also funded by FCT Project No. UID/EEA/50008/2013.

APPENDIX A: SUBROUTINE FOR XQUERY

The subroutine will use basis state |0,0〉, |i,0〉, and |i,j 〉
with 1 � i < j � m.

062331-6

GENERALIZED DEUTSCH-JOZSA PROBLEM AND THE … PHYSICAL REVIEW A 97, 062331 (2018)

(1) The subroutine Xquery begins in the state |0,0〉 and then a unitary mapping U1 is applied on it:

U1|0,0〉 =
m∑

i=1

1√
m

|i,0〉. (A1)

(2) The subroutine Xquery then performs the query

m∑
i=1

1√
m

|i,0〉 →
m∑

i=1

1√
m

(−1)xi |i,0〉. (A2)

(3) The subroutine Xquery performs a unitary mapping U2 to the current state such that

U2|i,0〉 =
∑
j>i

1√
m

|i,j 〉 −
∑
j<i

1√
m

|j,i〉 + 1√
m

|0,0〉 (A3)

and the resulting quantum state will be

U2

m∑
i=1

1√
m

(−1)xi |i,0〉 = 1

m

m∑
i=1

(−1)xi |0,0〉 + 1

m

∑
1�i<j

[(−1)xi − (−1)xj]|i,j 〉. (A4)

(4) The subroutine Xquery measures the resulting state in the standard basis. If the outcome is |0,0〉, then
∑m

i=1(−1)xi
= 0
and |x|
= m/2. Otherwise, suppose that we get the state |i,j 〉. Then we have xi
= xj and the subroutine outputs (i,j).

APPENDIX B: PROOF OF EQUALITY (27)

Proof. We define (p

l
) = 0 if p < l and also (p

l
) = 0 if l < 0. For any integers p and l, it is easy to see that (p

l
) = (p

p−l
). Now

we prove that for any integers p and l,

(p + 1)
(p

l

)
= (l + 1)

(
p + 1

l + 1

)
. (B1)

There are several cases as follows.
Case 1: p < l. In this case, (p

l
) = 0 and (p+1

l+1), the equality holds.

Case 2: p � l � 0. In this case, (p + 1)(p

l
) = (p + 1) p!

l!(p−l)! = (l + 1) (p+1)!
(l+1)![(p+1)−(l+1)]! = (l + 1)(p+1

l+1).

Case 3: p � l and l < −1. In this case, (p+1
l+1) = 0 and (p

l
) = 0, the equality holds.

Case 4: p � l and l = −1. In this case, (p

l
) = 0 and (l + 1)(p+1

l+1) = 0, the equality holds.
Therefore, the equality holds.
Now we are ready to prove equality (27):

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
n

k+1

) (
n

k+2

) · · · (
n

2k

) (
n

2k+1

)
(
n−1
k+1

) (
n−1
k+2

) · · · (
n−1
2k

) (
n−1
2k+1

)
...

...
. . .

...
...(

n−k+1
k+1

) (
n−k+1
k+2

) · · · (
n−k+1

2k

) (
n−k+1
2k+1

)
(
n−k

k+1

) (
n−k

k+2

) · · · (
n−k

2k

) (
n−k

2k+1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
n

n−k−1

) (
n

n−k−2

) · · · (
n

n−2k

) (
n

n−2k−1

)
(

n−1
n−k−2

) (
n−1

n−k−3

) · · · (
n−1

n−2k−1

) (
n−1

n−2k−2

)
...

...
. . .

...
...(

n−k+1
n−2k

) (
n−k+1
n−2k−1

) · · · (
n−k+1
n−3k−1

) (
n−k+1
n−3k

)
(

n−k

n−2k−1

) (
n−k

n−2k−2

) · · · (
n−k

n−3k

) (
n−k

n−3k−1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 1

(n − k + 1)
×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
n

n−k−1

) (
n

n−k−2

) · · · (
n

n−2k

) (
n

n−2k−1

)
(

n−1
n−k−2

) (
n−1

n−k−3

) · · · (
n−1

n−2k−1

) (
n−1

n−2k−2

)
...

...
. . .

...
...(

n−k+1
n−2k

) (
n−k+1
n−2k−1

) · · · (
n−k+1
n−3k−1

) (
n−k+1
n−3k

)
(n − k + 1)

(
n−k

n−2k−1

)
(n − k + 1)

(
n−k

n−2k−2

) · · · (n − k + 1)
(

n−k

n−3k

)
(n − k + 1)

(
n−k

n−3k−1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
062331-7

DAOWEN QIU AND SHENGGEN ZHENG PHYSICAL REVIEW A 97, 062331 (2018)

= 1

(n − k + 1)
×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
n

n−k−1

) (
n

n−k−2

) · · · (
n

n−2k

) (
n

n−2k−1

)
(

n−1
n−k−2

) (
n−1

n−k−3

) · · · (
n−1

n−2k−1

) (
n−1

n−2k−2

)
...

...
. . .

...
...(

n−k+1
n−2k

) (
n−k+1
n−2k−1

) · · · (
n−k+1
n−3k−1

) (
n−k+1
n−3k

)
(n − 2k − 1)

(
n−k+1
n−2k

)
(n − 2k − 2)

(
n−k+1
n−2k−1

) · · · (n − 3k)
(

n−k+1
n−3k−1

)
(n − 3k − 1)

(
n−k+1
n−3k

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

rk+1−(n−3k−1)rk========== 1

(n − k + 1)
×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
n

n−k−1

) (
n

n−k−2

) · · · (
n

n−2k

) (
n

n−2k−1

)
(

n−1
n−k−2

) (
n−1

n−k−3

) · · · (
n−1

n−2k−1

) (
n−1

n−2k−2

)
...

...
. . .

...
...(

n−k+1
n−2k

) (
n−k+1
n−2k−1

) · · · (
n−k+1
n−3k−1

) (
n−k+1
n−3k

)
k
(
n−k+1
n−2k

)
(k − 1)

(
n−k+1
n−2k−1

) · · · (
n−k+1
n−3k−1

)
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(B2)

···=== 1

(n − k + 1)(n − k + 2) · · · n ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
n

n−k−1

) (
n

n−k−2

) · · · (
n

n−2k

) (
n

n−2k−1

)
k
(

n

n−k−1

)
(k − 1)

(
n

n−k−2

) · · · (
n

n−2k

)
0

...
...

. . .
...

...

k
(

n−k+2
n−2k+1

)
(k − 1)

(
n−k+2
n−2k

) · · · (
n−k+2
n−3k

)
0

k
(
n−k+1
n−2k

)
(k − 1)

(
n−k+1
n−2k−1

) · · · (
n−k+1
n−3k−1

)
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= k(k − 1) · · · 1

(n − k + 1)(n − k + 2) · · · n ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
k

(
n

n−k−1

)
1

k−1

(
n

n−k−2

) · · · 1
1

(
n

n−2k

) (
n

n−2k−1

)
(

n

n−k−1

) (
n

n−k−2

) · · · (
n

n−2k

)
0

...
...

. . .
...

...(
n−k+2
n−2k+1

) (
n−k+2
n−2k

) · · · (
n−k+2
n−3k

)
0(

n−k+1
n−2k

) (
n−k+1
n−2k−1

) · · · (
n−k+1
n−3k−1

)
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 1(
n

k

) ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
k

(
n

n−k−1

)
1

k−1

(
n

n−k−2

) · · · 1
1

(
n

n−2k

) (
n

n−2k−1

)
(

n

n−k−1

) (
n

n−k−2

) · · · (
n

n−2k

)
0

...
...

. . .
...

...(
n−k+2
n−2k+1

) (
n−k+2
n−2k

) · · · (
n−k+2
n−3k

)
0(

n−k+1
n−2k

) (
n−k+1
n−2k−1

) · · · (
n−k+1
n−3k−1

)
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)k+2 ·
(

n

n−2k−1

)
(
n

k

) ×

∣∣∣∣∣∣∣∣∣∣∣∣∣

(
n

n−k−1

) (
n

n−k−2

) · · · (
n

n−2k

)
...

...
. . .

...(
n−k+2
n−2k+1

) (
n−k+2
n−2k

) · · · (
n−k+2
n−3k

)
(
n−k+1
n−2k

) (
n−k+1
n−2k−1

) · · · (
n−k+1
n−3k−1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣
···===(−1)k+2(−1)k+1 · · · (−1)3 ×

(
n

n−2k−1

)(
n

n−2k

) · · · (n

n−k−2

)
(
n

k

)(
n

k−1

) · · · (n

1

) ∣∣∣∣
(

n

n − k − 1

)∣∣∣∣
= (−1)

k(k+5)
2 ·

∏2k+1
i=k+1

(
n

i

)
∏k

i=1

(
n

i

)
= 0.

�

062331-8

GENERALIZED DEUTSCH-JOZSA PROBLEM AND THE … PHYSICAL REVIEW A 97, 062331 (2018)

[1] A. Ambainis, Inf. Process. Lett. 71, 5 (1999).
[2] A. Ambainis, SIAM J. Comput. 45, 617 (2016).
[3] A. Ambainis, K. Balodis, A. Belovs, T. Lee, M. Santha, and

J. Smotrovs, in Proceedings of the Forty-Eighth Annual ACM
Symposium on Theory of Computing (ACM, New York, 2016),
p. 800.

[4] A. Ambainis, J. Gruska, and S. Zheng, Quantum Inf. Comput.
15, 0435 (2015).

[5] A. Ambainis, A. Iraids, and J. Smotrovs, arXiv:1302.1235.
[6] A. Ambainis and A. Yakaryilmaz, Inf. Process. Lett. 112, 289

(2012).
[7] D. Bera, Quantum Inf. Process. 14, 1777 (2015).
[8] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf, J.

ACM 48, 778 (2001).
[9] S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge

University Press, Cambridge, UK, 2004).
[10] G. Brassard and P. Høyer, in Proceedings of the Fifth Israeli

Symposium on Theory of Computing and Systems, Ramat-Gan,
1997 (IEEE, Los Alamitos, CA, 1997).

[11] H. Barnum, M. Saks, and M. Szegedy, in Proceedings 18th
IEEE Annual Conference on Computational Complexity (IEEE,
Aarhus, Denmark, 2003), p. 179.

[12] H. Buhrman and R. de Wolf, Theor. Comput. Sci. 288, 21
(2002).

[13] E. Blais, A. Weinstein, and Y. Yoshida, SIAM J. Comput. 44,
411 (2015).

[14] A. Childs and W. van Dam, Rev. Mod. Phys. 82, 1 (2010).
[15] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, in Proc. R.

Soc. London, Ser. A 454A, 339 (1998).
[16] D. Collins, K. W. Kim, and W. C. Holton, Phys. Rev. A 58,

R1633 (1998).
[17] D. P. Chi, J. Kim, and S. Lee, arXiv:quant-ph/0005059.
[18] A. Canteaut and M. Videau, IEEE T. Inform. Theory 51, 2791

(2005).
[19] D. Deutsch and R. Jozsa, Proc. R. Soc. London, Ser. A 439, 553

(1992).

[20] A. Dubrovska and T. Mischenko-Slatenkova, arXiv:quant-
ph/0607022.

[21] S. Even, A. L. Selman, and Y. Yacobi, Inform. Control 61, 159
(1984).

[22] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Phys. Rev.
Lett. 81, 5442 (1998).

[23] O. Goldreich, Lecture Notes in Computer Science (Springer,
Berlin, 2006), Vol. 3895.

[24] J. Gruska, D. W. Qiu, and S. G. Zheng, Int. J. Found. Comput.
Sci. 26, 381 (2015).

[25] L. K. Grover, in Proceedings of the Twenty-eighth Annual ACM
Symposium on Theory of Computing (ACM, New York, 1996),
p. 212.

[26] J. Gruska, D. W. Qiu, and S. G. Zheng, Math. Struct. Comput.
Sci. 27, 311 (2017).

[27] T. Hayes, S. Kutin, and D. van Melkebeek, Algorithmica 34, 480
(2002).

[28] P. Høyer and R. Špalek, Bull. Eur. Assoc. Theor. Comput. Sci.
87, 78 (2005).

[29] N. Karmarkar, Combinatorica 4, 373 (1984).
[30] G. Midrijānis, arXiv:quant-ph/0403168.
[31] A. Montanaro, R. Jozsa, and G. Mitchison, Algorithmica 419,

775 (2015).
[32] M. Minsky and S. Papert, Perceptrons: An Introduction to

Computational Geometry (MIT Press, Cambridge, UK, 1988).
[33] B. Perez-Garcia, M. McLaren, S. K. Goyal, R. I. Hernandez-

Aranda, A. Forbes, and T. Konrad, Phys. Lett. A 380, 1925
(2016).

[34] T. Mischenko-Slatenkova, A. Vasilieva, I. Kucevalovs, and R.
Freivalds, Lecture Notes in Computer Science (Springer, Cham,
2015), Vol. 9118.

[35] G. L. Xu, Z. G. Wu, X. Zhou, and D. W. Qiu, Determining the
Approximate Degree of Symmetric Partial Boolean Functions,
technical report, Sun Yat-sen University, 2018.

[36] S. Zheng and D. W. Qiu, Lecture Notes in Computer Science
(Springer, Cham, 2014), Vol. 8808.

062331-9

https://doi.org/10.1016/S0020-0190(99)00079-4
https://doi.org/10.1016/S0020-0190(99)00079-4
https://doi.org/10.1016/S0020-0190(99)00079-4
https://doi.org/10.1016/S0020-0190(99)00079-4
https://doi.org/10.1137/130939043
https://doi.org/10.1137/130939043
https://doi.org/10.1137/130939043
https://doi.org/10.1137/130939043
http://arxiv.org/abs/arXiv:1302.1235
https://doi.org/10.1016/j.ipl.2012.01.001
https://doi.org/10.1016/j.ipl.2012.01.001
https://doi.org/10.1016/j.ipl.2012.01.001
https://doi.org/10.1016/j.ipl.2012.01.001
https://doi.org/10.1007/s11128-015-0976-2
https://doi.org/10.1007/s11128-015-0976-2
https://doi.org/10.1007/s11128-015-0976-2
https://doi.org/10.1007/s11128-015-0976-2
https://doi.org/10.1145/502090.502097
https://doi.org/10.1145/502090.502097
https://doi.org/10.1145/502090.502097
https://doi.org/10.1145/502090.502097
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1137/140971877
https://doi.org/10.1137/140971877
https://doi.org/10.1137/140971877
https://doi.org/10.1137/140971877
https://doi.org/10.1103/RevModPhys.82.1
https://doi.org/10.1103/RevModPhys.82.1
https://doi.org/10.1103/RevModPhys.82.1
https://doi.org/10.1103/RevModPhys.82.1
https://doi.org/10.1098/rspa.1998.0164
https://doi.org/10.1098/rspa.1998.0164
https://doi.org/10.1098/rspa.1998.0164
https://doi.org/10.1098/rspa.1998.0164
https://doi.org/10.1103/PhysRevA.58.R1633
https://doi.org/10.1103/PhysRevA.58.R1633
https://doi.org/10.1103/PhysRevA.58.R1633
https://doi.org/10.1103/PhysRevA.58.R1633
http://arxiv.org/abs/arXiv:quant-ph/0005059
https://doi.org/10.1109/TIT.2005.851743
https://doi.org/10.1109/TIT.2005.851743
https://doi.org/10.1109/TIT.2005.851743
https://doi.org/10.1109/TIT.2005.851743
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1098/rspa.1992.0167
http://arxiv.org/abs/arXiv:quant-ph/0607022
https://doi.org/10.1016/S0019-9958(84)80056-X
https://doi.org/10.1016/S0019-9958(84)80056-X
https://doi.org/10.1016/S0019-9958(84)80056-X
https://doi.org/10.1016/S0019-9958(84)80056-X
https://doi.org/10.1103/PhysRevLett.81.5442
https://doi.org/10.1103/PhysRevLett.81.5442
https://doi.org/10.1103/PhysRevLett.81.5442
https://doi.org/10.1103/PhysRevLett.81.5442
https://doi.org/10.1142/S0129054115500215
https://doi.org/10.1142/S0129054115500215
https://doi.org/10.1142/S0129054115500215
https://doi.org/10.1142/S0129054115500215
https://doi.org/10.1017/S0960129515000158
https://doi.org/10.1017/S0960129515000158
https://doi.org/10.1017/S0960129515000158
https://doi.org/10.1017/S0960129515000158
https://doi.org/10.1007/s00453-002-0981-6
https://doi.org/10.1007/s00453-002-0981-6
https://doi.org/10.1007/s00453-002-0981-6
https://doi.org/10.1007/s00453-002-0981-6
https://doi.org/10.1007/BF02579150
https://doi.org/10.1007/BF02579150
https://doi.org/10.1007/BF02579150
https://doi.org/10.1007/BF02579150
http://arxiv.org/abs/arXiv:quant-ph/0403168
https://doi.org/10.1007/s00453-013-9826-8
https://doi.org/10.1007/s00453-013-9826-8
https://doi.org/10.1007/s00453-013-9826-8
https://doi.org/10.1007/s00453-013-9826-8
https://doi.org/10.1016/j.physleta.2016.04.006
https://doi.org/10.1016/j.physleta.2016.04.006
https://doi.org/10.1016/j.physleta.2016.04.006
https://doi.org/10.1016/j.physleta.2016.04.006

