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Quantum network coding is an effective solution for alleviating bottlenecks in quantum networks. We introduce
a measurement-based quantum network coding scheme for quantum repeater networks (MQNC), and analyze
its behavior based on results acquired from Monte Carlo simulation that includes various error sources over a
butterfly network. By exploiting measurement-based quantum computing, operation on qubits for completing
network coding proceeds in parallel. We show that such an approach offers advantages over other schemes in
terms of the quantum circuit depth and therefore improves the communication fidelity without disturbing the
aggregate throughput. The circuit depth of our protocol has been reduced by 56.5% compared to the quantum
network coding scheme (QNC) introduced in 2012 by Satoh er al. For MQNC, we have found that the resulting
entangled pairs’ joint fidelity drops below 50% when the accuracy of local operations is lower than 98.9%,
assuming that all initial Bell pairs across quantum repeaters have a fixed fidelity of 98%. Overall, MQNC showed
substantially higher error tolerance compared to QNC and slightly better than buffer space multiplexing using
step-by-step entanglement swapping, but not quite as strong as simultaneous entanglement swapping operations.
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I. INTRODUCTION

Quantum network coding is a promising technique used for
improving the aggregate throughput of a quantum network.
Linear operations on data at nodes in the middle of the network
allow efficient exchange of quantum information, alleviating
bottlenecks caused by topological constraints.

Network coding, proposed by Ahlswede, Cai, Li, and
Yeung, is a classical communication technique used for
alleviating bottlenecks in a classical network [1]. Unlike the
standard switch used for routing, network coding requires
additional node functionality, using an encoder and decoder
dedicated for linearly combining more than one message
and for reversibly constructing the original message, which
can be used to improve the network throughput for certain
traffic patterns. The simplest example of network coding
can be explained over a butterfly network as illustrated in
Fig. 1(a).

In this example, there are two source nodes S; and S, with
the goal of delivering messages X and Y to their target nodes
t; and 1, respectively. Here, each message is assumed to be 1
bit of data, and all directed channels have a limited capacity of
1 bit per unit time. With a general routing protocol, no matter
what path is chosen for each connection, the two paths must
overlap somewhere, resulting in contention for access to one
link. Therefore, the link between the intermediate resource
nodes | and r, becomes a bottleneck. One possible solution for
such a problem may be the use of time division multiplexing,
which uses two cycles to complete the message transmissions.

On the other hand, network coding is capable of completing
both transmissions within one cycle by linearly combining the
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incoming messages and transmitting them as a single message
[see Fig. 1(b)]. Source node S;, which wants to send message
X to t;, sends its message towards the target node #, and to
the resource node r;. Similarly, source node S, forwards its
message towards the target node #; and the resource node ry.
The resource node r; then processes the incoming messages,
using an XOR operation to linearly combine the messages, and
forwards the encoded message to both target nodes via r,. At
the end, each node can reconstruct their desired message by
decoding the linearly combined message, using XOR operation
between the other message directly sent from the source
node to the target node. Hence network coding can achieve
a throughput of two messages per cycle.

To tackle similar issues that occur in quantum networks,
a number of quantum network coding techniques have been
proposed. Many protocols do not address noisy operations or
decoherence [2—6], and assume the ability to transmit qubits
perfectly along channels from node to node with or without
classical support.

Some assume lossy and noisy channels with imperfect gate
operations. One of the protocols for quantum network coding
is motivated by Bell pair-based quantum repeater networks
[7]. The error tolerance of the proposed protocol in [7] is
analyzed over various errors using Monte Carlo simulation
with discussions on the advantages and disadvantages of
network coding relative to the standard routing strategy based
on entanglement swapping [8]. Another proposal focuses on
graph state networks composed of quantum routers with the
ability to perform basic measurement-based quantum com-
putations, which also employs network coding [9]. Epping
et al. consider depolarizing channels and analyze the error
correction capabilities of quantum network coding in the
context of stabilizer codes and stabilizer error correction codes
and discusses the robustness of network coding.
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FIG. 1. Fundamental network topology with bottleneck solvable
via network coding. (a) The butterfly network with a bottleneck
at link between intermediate resource nodes r; and r,. Even with
undirected channels, resource contention occurs somewhere with
standard routing protocol. (b) Network coding performed to transmit
two messages simultaneously. Messages are encoded at resource node
ry and decoded at target nodes #, and #,.

In this paper, we simplified the protocol in [7] by adopting
measurement-based quantum computing in order to process
operations in parallel, but without loss of capability. We study
the creation of the necessary cluster state building on repeater-
produced two-qubit cluster states, and find that this approach
consumes fewer resources and results in higher fidelity than
the Bell pair-based approach.

II. RELATED WORK

A. Quantum network coding

Hayashi et al. first introduced quantum network coding in
2006 [2]. They focused on the theoretical approach of quantum
network coding without classical communication support, and
showed that the communication fidelity is upper bounded by
Foupue < 0.983, when simultaneously transmitting arbitrary
quantum states over a butterfly network via quantum network
coding. In 2007, Leung et al. generalized the impossibility
of perfect quantum network coding to several network types
beyond the butterfly network and showed that perfect quantum
network coding is impossible even with asymptotically perfect
transmission [10]. For each topology, they have also assumed
different kinds of supporting classical channels that include
forward-assisted, back-assisted, and two-way assisted chan-
nels, and concluded that the communication fidelity supported
with the two-way assisted classical channels is no better than
the case with the free classical back-assisted channels, and, in
all cases, there is an upper bound and a lower bound for the
communication fidelity. Later on, Kobayashi et al. showed that
perfect quantum network coding can be accomplished when-
ever free classical channels are available, for any graph shape
that is solvable by classical network coding [3-5]. Beaudrap
and Roetteler showed that the classically assisted quantum
network coding scheme in [3,5] corresponds to measurement-
based quantum computing [6]. All of these results assumed
that qubits are immune to noise.

B. Quantum repeater network coding (QNC)

Quantum repeaters, introduced by Briegel et al. in the
late 1990s, are a promising technology for enabling multihop
quantum communications and managing errors using entan-
gled qubits distributed over long distances [11,12]. Knill and
Laflamme introduced an error correction based fault-tolerant
quantum communication scheme in 1996 [13].

The ability to manipulate the quantum channels across
repeaters also allows us to complete network coding without
disturbing the message qubit until the very end of the protocol.
Such a method was proposed by Satoh et al. in 2012 as a
network coding protocol for noisy and lossy quantum repeater
networks (QNC) [7]. Performing complex gate operations
directly on the message qubits degrades the qubit state, and
performing purification on the message after a complex en-
coding may not be easy. Instead, QNC focuses on creating two
end-to-end Bell pairs between the source-destination pairs by
consuming the entangled resources shared across the repeaters
with a goal of lowering the protocol complexity and thus
improving the communication fidelity.

As shown in the QNC encoding procedure in Fig. 2 and
the corresponding circuit in Fig. 7(a), the network is assumed
to have seven Bell pairs shaping a butterfly graph. Classical
channels are assumed to be undirected and have unlimited
capacity. With the given seven Bell pairs across six nodes,
operations convert the given resources into two independent
Bell pairs from source to target directly, which can be used to
teleport the message qubit to the desired destination (refer to
Appendix A for details).

In 2016, Satoh er al. studied the behavior of QNC under
noisy conditions using Monte Carlo simulation and compared
it with the standard routing technique using entanglement
swapping [8]. Their paper concluded that the routing pro-
tocol tolerates about twice the local error rate of QNC.
Each operation in QNC is ordered in time; therefore, qubit
dependencies worsen the quantum circuit depth. Due to the
high circuit complexity, local operation accuracies tend to have
a larger impact on the output fidelity compared to preshared
entangled resource fidelity. Moreover, even with perfect local
gates, the output fidelity drops below Foupue < 0.5 when Bell
pairs have fidelity Fippu: < 0.90. While the standard routing
protocol offers higher communication fidelity, QNC reduces
the required number of cycles and therefore provides a benefit
if network resources are limited or if higher communication
speed is demanded.

C. Measurement-based quantum computing (MBQC)

Measurement-based quantum computing (MBQC) is an
alternative universal computation method based on single qubit
measurements on a cluster state, which was proposed by
Raussendorf et al. in 2003 [14].

A cluster state of n vertices (qubits) can be defined by

1G) =[] Aas(@)]+)®". )

(a,b)eE

where E is the set of edges (entanglement) and a,b are the
corresponding vertices (qubits).

Performing X measurements on the bottleneck qubits of a
butterfly cluster state will result in two crossover two-qubit
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FIG. 2. Step-by-step encoding procedure of QNC. This scheme performs network coding on quantum channels across repeaters in a similar
way as the classical network coding algorithm. The qubit at the bottleneck will be manipulated to be the parity of 2 GHZ states to the left and

right.
cluster states [9]. For an illustrated model of this scheme, see

Fig. 3. Although this algorithm seems to be simpler than QNC,
one should be reminded that creating a cluster state requires

Cluster state

1) 1 Cluster state
%6 qubits

2) 2 crossing-over cluster states

Encoding procedure

FIG. 3. Visualized encoding procedure of network coding on a
cluster state. This scheme may be used as a swap gate for MBQC.

pairwise entanglement of all qubits; thus it is not feasible to
directly create a multiqubit cluster state using qubits that are far
apart. The physical system used for MBQC often is assumed
to be a system area network.

III. MEASUREMENT-BASED QUANTUM REPEATER
NETWORK CODING (MQNC)

Recently introduced quantum network coding protocols are
generally designed based on a classical algorithm using the
controlled-NOT (CNOT) operation, which is the quantum equiv-
alent of XOR, and have high circuit complexities compared
to the standard quantum routing protocol using entanglement
swapping. Consequently, prior work on quantum network
coding acquires higher aggregate network throughput but
with a penalty on the communication fidelity due to complex
operations.

The benefit of QNC comes from its applicability over
quantum repeater networks and use for long distance
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FIG. 4. Step-by-step encoding procedure of MQNC. This scheme also manipulates quantum channels but without any parity creation. The
topological transition via measurements on cluster states can accomplish the same goal as QNC in a simpler way.

communications. Nevertheless, the encoding procedure is still
based on the classical counterpart which results in many qubit
dependencies, lengthening the circuit depth, and therefore ad-
versely affecting the communication fidelity. While the benefit
of MBQC comes from the simplicity of implementation, the
scheme for MBQC generally assumes a system area network.

We optimized the procedure of network coding for lossy
and noisy repeater networks based on two technologies. First,
parallelizing operations through the adaptation of MBQC.
Second, combining conditional by-product operations to sup-
press the influence of gate errors. Our protocol, MQNC, takes
advantage of both QNC and MBQC using local operations
and classical communication (LOCC) and the entangled pairs
created on repeater network links. Unlike the other network
coding schemes for quantum communication that directly
encode qubits to combine messages, and the classical network
coding based algorithms performed on quantum channels,
MQNC focuses on generating two end-to-end paths, which
partially takes the idea of QNC but without a single use of parity
measurements. The basic idea of MQNC is to create a six-qubit
butterfly cluster state from the seven shared entangled pairs,
and to treat the generated state as a resource state for network
level MBQC, which allows us to topologically achieve the
same goal as QNC. The developed protocol’s pictorial model
is shown in Fig. 4. Two-qubit entangled states across nodes are
assumed to be ready, and therefore the link-timing architecture
[15,16] for entanglement distributions has not been taken into
consideration here.

The encoding procedure for MQNC can be divided into
three major steps (see Fig. 4), with an assumption of accessible
entangled resources across quantum repeaters:

[Wo) = 1Go0,1)|G2,3)|G45)1G6,7)1Gs0)|G1o,11)|G12,13), (2)

where |Gy 1) denotes a cluster state of qubit O and qubit 1.
The first step simply connects all local qubits via controlled-
Z (Cz) operations in parallel, forming a single cluster state.
The second step is the creation of the butterfly-shaped six-
qubit cluster state using only LOCC and the resources prepared
in the first step. Qubits are removed via ¥ measurements and

the neighboring qubits are directly connected up to the by-
product phase operations.

The last step completes the measurement-based quantum
network coding by creating two crossover independent cluster
states out of the butterfly graph. Qubit 9 and qubit 8 at the
bottleneck are measured with respect to the X basis.

As shown in Table I, in order to fix the phase to a desired
state, either Z gates or X gates can be performed. When using
Z gates, two Z gates are applied to qubit 0 and qubit 4 as
a conditional by-product of qubit 8 measurement. Similarly,
two Z gates are applied to qubit 1 and qubit 5 as a conditional
by-product of measurement on qubit 9. Alternatively, one can
achieve the same goal by performing X gates on qubit O and
qubit 4 as a by-product of measuring qubit 9, and on qubit 1
and qubit 5 as a by-product of measuring qubit 8.

Using the X by-product operators is preferred, for the
simple reason that they require slightly less classical communi-
cation. The X operators are applied one hop away from where
the measurement occurs, whereas the Z by-product operators
would be applied two hops away from the measurement
operation.

Taking full advantage of the gate commutativity allows us
to parallelize some encoding operations, which contributes to
reducing the circuit depth. All CZ gate operations can be applied
in a parallel manner at the beginning of the protocol, and
measuring qubits can be done afterwards. As a result, MQNC
has achieved a 56.5% reduction of circuit depth compared to
QNC.

TABLE I. Stabilizer set of qubits 0-5 after X measurements in
step 3. f3 and t9 are the measurement outcome of qubits 8 and 9,
respectively.

Qubits
Stabilizer 1 Xo —1 Zs
Stabilizer 2 X, —1" Zs
Stabilizer 3 Z —11 X4
Stabilizer 4 Zy —1% X5
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FIG. 5. Measurement-based quantum network coding over grail network. For quantum channels across repeaters, the subgraph of the grail

network equates to the butterfly network.

This scheme can also be directly applied for the bottleneck
problem that occurs in the quantum repeater grail network (see
Fig. 5), which is also one of the fundamental topologies with
a bottleneck solvable via network coding [17].

IV. ANALYSIS

We studied the behavior of the proposed protocol through
Monte Carlo simulation by tracking error propagations classi-
cally with various error sources. The results of the simulations
are compared statistically with other alternative implemen-
tation methods, which include quantum network coding for
repeater networks (QNC) and two types of buffer space
multiplexing using entanglement swapping, one that performs
entanglement swapping step by step based the classical mes-
sage flow for path selection (ES) and another that performs
all entanglement swapping operations simultaneously (ESp).
The buffer space multiplexing assumes two links available at
the bottleneck; therefore, both transmissions can be completed
simultaneously using entanglement swapping (see Fig. 6 for
the pictorial model of ES). The circuit for ES is shown in

Message qubit

Step 1 Step 2
) Y
O O
Q
1) 6 Bell pairs 2) Entanglement swapping 3)gmpleting teleportation

%12 qubits

FIG. 6. Buffer space multiplexing using entanglement swapping
(ES). Each resource at the center link is assigned for completing
different communications simultaneously. Step (1) can be omitted
by performing all entanglement swapping operations simultaneously
(ESp).

Fig. 7(b) and the circuit for ES,, is in Fig. 7(c). In MQNC and
ES,, we deferred by-product operations to achieve fewer gates
[see Fig. 7(d) for the circuit of MQNC]. The other circuits,
QNC and ES, will be kept untouched and reused from the paper
[8]. Each protocol’s statistical characteristics are summarized
in Table II.

The first two error sources are the gate errors, which include
the single-qubit gate error and the controlled gate error. The
third error source is faulty qubit measurement. An error on
the measured qubit may also cause a faulty measurement
result, which propagates to other qubits through misleading
by-product operations. The fourth error is the memory error,
which simulates the decoherence on qubits. These errors will
be applied to qubits per time step over the circuit. The last error
source is the initial resource error, which determines whether
the state of a preshared entangled resource across two quantum
repeaters, such as a Bell pair, is defective or not.

Only one operation per qubit is allowed in each time step.
Consequently, for two different controlled gates with two dif-
ferent target qubits, if they share the same control qubit, a total
of depth 2 at minimum is required to finish both operations.
Also, the physical distance between each node is not taken into
consideration in the simulation. Thus each node is assumed to
be capable of perfectly delivering the classical feedforward
message to the destination node within one time step.

TABLE II. Basic characteristics of protocols. The scaler K Q is
calculated as the product of the number of qubits (Q) and the circuit
depth (K) [18].

MQNC QNC ES ES,

Number of qubits 14 14 12 12
Number of entangling operations 7 7 6 6
Number of single-qubit gates 14(14) 16(11) 12(8) 8(4)
(by-product operators)

Number of two-qubit gates 8 8 4 4
Number of measurements 10 10 4 4
Circuit depth 10 23 12 6
KQ 140 322 144 72
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FIG. 7. Evaluated quantum circuits. The first two steps of each circuit are the initialization part, which is independent from the protocol.
(a) Quantum circuit for quantum network coding over repeater networks (QNC). (b) Quantum circuit for buffer space multiplexing using
entanglement swapping (ES). (¢) Quantum circuit for buffer space multiplexing using simultaneous entanglement swapping (ES,). (d) Quantum
circuit for measurement-based quantum network coding over repeater networks (MQNC).

In this paper, for simplicity, the term input fidelity refers
to the average fidelity of all preshared seven entangled pairs
across repeaters and output fidelity refers to the joint fidelity
of the resulting two end-to-end entangled pairs at the end of
each protocol.

Here, fidelity F = 1 — p = (Y|p|¥), where p is the error
rate and |y) is the ideal pure state. The output fidelity is
calculated by Foupu = 1 — p’, where p’ is the probability of
at least one error being present on either entangled output at
the end of the protocol. For each data point, a maximum of 20
thousand residual errors have been accumulated or 1 million
trials have been performed.

The rest of this section is constructed as follows. In sub-
section A, we first discuss the impact of the biased input error
model with ideal local gate operations in all four protocols,
one case with only Z errors and another with only X errors.

Then, we discuss a more realistic model including all types
of errors, such as /Y and ZX error on Bell pair, keeping local
gate operations ideal. In subsection B, we analyze the behavior
of all four protocols under the total error model with imperfect
initial resources and local gate operations.

A. Input error propagation

The first scenario simulates the artificial input error model
with only Z errors stochastically present on the preshared
entangled pairs of qubits. Local gate operations are assumed
to be ideal. For simplicity, errors are assumed to only exist
on the qubits that are labeled with odd numbers, after the
initialization, as in Fig. 7. As an example, the initial entangled
resource of qubit O and qubit 1 may have a state of (Ip ®
Z1)|¥o.1) with probability P,.., = p, or (Ip ® I1)|¥o,1) with
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FIG. 8. Impactofinput fidelity on output fidelity in four protocols.
Probabilistic Z error on qubits labeled with odd numbers. Local
operations are assumed to be ideal.

probability P..., = 1 — p. The simulation result is shown
below at Fig. 8.

Opverall, ES, has the highest initial resource Z error toler-
ance among the protocols. ES and QNC have similar results
with lower and higher fidelity, and the difference between
ES and QNC output fidelity becomes | Foypu — Fonpu 1> 1%
when 67% < Fippur < 98%. QNC, ES, and ES,, have higher
output fidelity compared to MQNC because with this biased
input error model, for each output pair, one-fourth of the input
error combinations result in stabilizing the output state. On the
other hand, no Z errors on initial resources end up stabilizing
the cluster state in MQNC.

The second scenario is similar to the first scenario but with
X errors present on the preshared entangled pairs of qubits
labeled with odd numbers. The simulation result is shown in
Fig. 9.

The X error tolerance of QNC and ES is symmetric to
the case with only Z errors. In contrast, MQNC has slightly
better X error tolerance than Z error. The X error tolerance
of ES, drops significantly from the case with only Z error.
For reasons similar to the case with only Z error, this biased
error model results in a joint fidelity of 1/16 = 6.25% for
MQNC and ES;, and 1/4 = 25% for QNC and ES, when input
fidelity is minimum Fjypy = 50%. The difference in MQNC
and QNC output fidelity | Fouhu — Fonpu 1< 1% when
Funput > 96%.

If a physical system has a biased error model, ES might be
stronger than the other three protocols.

Finally, not only /Z or IX errors but any other errors,
such as ZZ error on a two-qubit cluster state, can exist on
any initial resources. Errors on entangled resources have the
same weighted probability. This scenario tells us the overall
input error sensitivity for each protocol.

As shownin Fig. 10, MQNC and ES have similar initial error
tolerance and QNC is slightly left behind, while ES;, is slightly
ahead. In order to retain an output fidelity of Foupu = 50%,
ES,, requires an input fidelity of at least Fi,pu = 87%, ES and
MQNC require at least Fippye = 89%, while QNC requires an
extra 2% for achieving the same goal.

Most input errors in QNC, ES, and ES;, develop as X error,
Z error, or X Z error. The error distribution caused by input

= ES

+ QNC
MQNC
ES_p

098 0982 0984 098 0988 099 0992 0994 0.99 0.998 1
Accuracy of qubit memories

FIG. 9. Impactofinput fidelity on output fidelity in four protocols.
Probabilistic X error on qubits labeled with odd numbers. Local
operations are assumed to be ideal.

errors in MQNC is equally weighted to all types (for details,
refer to Appendix B).

B. Total error model

Finally, we consider the comprehensive error model, with
all sources and error types included. A single-qubit operation
may emit one error out of three possibilities, X, Y, and Z error,
with equal probability. Similarly, after a two-qubit operation,
there is no error, or at least one X, Y, or Z error is present on
either qubit. Simulations have shown that purifying Bell pairs
to F = 98% is feasible [19]. Therefore, fidelity for preshared
resources are assumed to be maintained at Fiypye = 98% during
waiting time. Other local operation error rates are changed
concurrently with equal magnitude from Foperation = 98% to
Foperation = 100% with A Foperation = 0.05%. The simulation
result is shown in Figs. 11 and 12.

As shown, with the model of all error sources, ES;, obtains
the highest output fidelity at any local operation accuracy and
MQNC is in between ES,, and ES. Although MQNC, ES, and
ES, tolerate more than twice the local error rate of QNC, the
output fidelity of each protocol reaches to a similar point with a
sufficiently high local operation accuracy. The output infidelity
when Foperation = 99.95% is 13.9% for MQNC, 10.7% for ESp,
14.4% for ES, and 20.2% for QNC. The output fidelity of QNC
is more sensitive to the local error rate than the other three
protocols.

The change in error distribution over the change in local
operation accuracy for MQNC is plotted in Fig. 13.

As the result shows, MQNC mostly suffers from / X and X1
error in all situations—a bit-flip error on either qubit. Those
errors combined account for approximately one-fourth of the
total probability. On the other side, with a fixed initial resource
error of Fiypu = 98%, the probability of ZZ and XX error
drops gradually to P(ZZ) ~ 0.03% and P(XX) ~ 0.36% as
local operation accuracy approaches 1. As those error rates
converge to a certain point, not much benefit can be obtained
from further improvement of local operation accuracy, when
the local operation accuracy is high enough. The error rate
for ZZ error drops by 0.006% by an improvement of local
operation accuracy Foperation = 99.995% t0 Foperation = 100%.
While the slope of ZZ error and XX error gets flatter,
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FIG. 10. Impact of input fidelity on output fidelity in four proto-
cols. All combinations of observable errors stochastically present on
all qubits. Local operations are assumed to be ideal.

other error types’ probabilities drop more aggressively as the
local operation accuracy approaches to 1. The /X error rate
decreases by 0.46% when local operation accuracy is improved
from Foperation = 99.995% t0 Foperation = 100%.

C. Total error model with ideal qubit memories

Finally, it is worth separating the effect of gate errors from
memory errors. Qubit memories are assumed to be ideal and,
therefore, idle qubits are immune to noise. Other error variables
including gates and measurements stay as the independent
variable with a domain of Fyperation = 98% t0 Foperaion = 100%
and a constant initial resource fidelity of Fiypy = 98%. The
simulation results are shown in Fig. 14.

Unlike the simulation results with the total error model, both
protocols based on entanglement swapping obtain a higher
output fidelity than network coding. All four protocols end up
with similar output fidelities as the local operation accuracy
approaches 1. While ES,, obtains the highest error tolerance
with better qubit memories, in all four protocols, memory
imperfection is the dominant error and is the main cause of
faulty communication.

0.9
0.8
0.7
Z
T 0.6
Sos
3
Q.
504
(<]
0.3 = ES
02 *QNC
’ MQNC
0.1 ES_p

098 0982 00984 0098 0988 099 0.992 0994 0.996 0.998 1
Accuracy of local operation

FIG. 11. Impact of local operation accuracy on output fidelity in
four protocols. Input fidelity is fixed to Fippy = 98% and the local
operation accuracy is changed from Foperaion = 98% t0 Foperation =
100% with A Fyperation = 0.05%.

Lastly, gate and measurement accuracies are fixed to
Foperation = 99%, initial resource fidelity is fixed to Fiia =
98%, and memory accuracy is changed from Fiemory = 98% to
Fremory = 100% using A Femory = 0.05%, in order to assess
the impact of memory accuracy on the protocol robustness.
The simulation result is shown in Fig. 15.

Because the robustness of MBQC mainly comes from
shorter circuit depth, the higher the memory error rate relative
to other error sources, the bigger the gap in output fidelity.
The output fidelity of MQNC is higher than that of ES when
Femory < 99.8%.

V. CONCLUSION

Using Monte Carlo simulation, this paper discussed the sim-
ulated error propagation of four different protocols, MQNC,
QNC, ES, and ES,, on a butterfly network. This work has not
attempted to prove optimality and, therefore, results in this
paper are specific to the protocols in Fig. 7. Thus the issue of
optimal circuit design for both classes, MQNC and QNC, still
remains an open question.

MQNC is more sensitive to Z errors and has no practical
advantage over ES in terms of initial error tolerance with ideal
local gate operations. Unlike QNC and ES, the correlation
between the input and output fidelity differs from Z errors to
X errors, as only X errors propagate through Cz gates. In the
asymptotic limit with the artificial model of only a single error
type, MQNC fares worse than either QNC, ES, or ES,, because
both X and Z errors develop in the final two-qubit cluster states.
In general, however, our measurement-based quantum repeater
network coding scheme significantly simplified the network
coding procedure and showed a substantial improvement of
overall error tolerance compared to QNC, and is even slightly
better than ES with the total error model.

One should also be reminded that buffer space multiplexing
requires an extra entangled state at the bottleneck to complete
both transmissions simultaneously. As a conclusion, MQNC is
more broadly applicable than QNC, but the choice of MQNC or
buffer space multiplexing still depends on the situation and the
network topology. If resources for networking are abundant,
ES may be more useful. In contrast, MQNC is more practical
for resolving critical resource contentions over networks.
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APPENDIX A: STEP-BY-STEP EXPLANATION
OF QUANTUM NETWORK CODING
FOR REPEATER NETWORKS

A six-step procedure takes us from the seven separate Bell
pairs to two end-to-end Bell pairs via QNC.
We begin with

[Wo) = | @ )| D3 3) 1Py 5) PG ) PG o) [Py 1) [P 15), (AD)
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FIG. 12. Error distribution on entangled outputs. (a) Error distribution of end-to-end cluster state composed of qubit 0 and qubit 5 in MQNC.
(b) Error distribution of end-to-end Bell pair composed of qubit 0 and qubit 5 in QNC. (c) Error distribution of end-to-end Bell pair composed
of qubit 0 and qubit 5 in ES. (d) Error distribution of end-to-end Bell pair composed of qubit 0 and qubit 5 in n ES,,. Distribution at input fidelity
Finpu = 98% and local operation accuracy Fyperaion = 98%. The error distribution is symmetrical over two outputs for all protocols.

where the subscripts correspond to the numbered qubits in
Fig. 2.

Using the given resources, the first step of the protocol
connects a particular set of Bell pairs to generate two three-
qubit GHZ states. Therefore, the overall system after step (1)
can be described as

\W1) = |GHZo,13)|GHZ457) |94 9) |y 1) P13 15). (A2)

The bottleneck link is manipulated to bridge the GHZ
states to the left and right via a parity measurement as

14
12 -
-=IX
~ 10
S ~=TY
S =iz
s
0 ==X1
= 6
& XX
o
5 4 —YI
=
Mo, 7]
=77
0 LI e e e T T T I e L B e 1
098 09825 0985 09875 099 09925 0.995 0.9975 1

Local operation accuracy

FIG. 13. Error distribution versus local operation accuracy of
output cluster state composed of qubit 0 and qubit 5 in MQNC. Input
fidelity is fixed to Fiypy = 98%.

in step (2):
|Wa) = [P 13)
®(5(1060103040507) + [191113141517))[00)
+35(1000103141517) + |090103141517))|10)).
(A3)

Step (3) requires the FANOUT operations, which generally
involve an arbitrary quantum state and two Bell pairs such as

[Woetore) = (@|00) + BI1o)) DT ,) 3 4).

(A4)

504 “ES
0.3 - *+ QNC
0.2 MQNC
01 4 ES_p

0.98 0982 0.984 098 0988 099 0.992 0.994 0.996 0.998 1
Accuracy of local operations

FIG. 14. Impact of local operation accuracy on output fidelity in
four protocols. Memory error rate is fixed t0 Fipemory = 100%. Input
fidelity is fixed to Fiypy = 98%.
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FIG. 15. Impact of qubit memory imperfection on output fidelity
in four protocols. Local operation accuracy, excluding memory, is
fixed to Foperation = 99%. Input fidelity is fixed to Fippy = 98%.

Using the given resources, the FANOUT operation results in a

system:
[Vaier) = (|0000,2,4) + BI1110,1,3)). (AS)

In step (3), the FANOUT operation is applied to the parity
qubit, which in this case is qubit 9:

|¥3) = 1(1000103040507) + 11011 13141517))|090;1013)

In step (4), the CNOT operation will be applied to qubits at both
target nodes:
|Wa) = 5(1000103040507) + [1o1;13141517))[0601,013)

+ 3(1001103140517) + [100113041507))[ 19111 113).
(A7)

In step (5), parity qubits at both target nodes are removed from
the graph by performing Z measurements:

|Ws) = 2(1060103050507) + [191;13141517))[00)
+ 3(1001103140517) + [160;13041507))[15).  (A8)

Similarly, the parity qubit at the bottleneck link is removed
in step (6):

|We) = 1(1000103040507) + 1111 13141517))
+ 3(1001103140517) + [10;13041507)).  (A9)

In the last step, the remaining qubits at the bottleneck node are
removed from the graph to form two crossover Bell pairs:

|W7) = 1(100010405) + 1911 1415))
+ 1(10011150s) + [160,0415))

+ 11000103 141517) + 100,03 1415170 1o 111 113). = 1955) ® 1), o
(A6)
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FIG. 16. Accumulated error types developed throughout the circuit from input errors in all protocols. Local operation accuracy is Foperaton =

100% and input fidelity is Fiypu = 50%.
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FIG. 17. Error distribution of the one output state for all protocols. Local operation accuracy is Foperaion = 100% and input fidelity is

Finpul = 50%.

This completes the sequence and results in two end-to-end
Bell pairs, which can be used to teleport the message qubit
from source to destination directly.

APPENDIX B: PROPAGATION OF INPUT ERRORS

Let us explain in more detail the propagation of errors from
the initial Bell pairs to the output states and the behavior of
errors that cancel out, acting as stabilizers on the output states.
For simplicity, we review the behavior of all four protocols for
the conditions corresponding to the left edge of Fig. 10: local
operations are perfect (Foperaion = 100%), but for illustration
the fidelity of the initial two-qubit entangled states is only 50%
(Finput = 50%)

Figure 16 shows the direct action of errors introduced by the
simulator, before taking into account that certain error patterns
are stabilizers. In the entanglement swapping protocols, fewer
initial Bell pairs influence each output Bell pair, so the
output fidelity is slightly different from the measurement-based
protocols. In practice, the errors that are stabilizers (e.g., ZZ
errors for ES,) are indistinguishable from /7, and in Fig. 17 are
folded back into the 7 I state. The exact error patterns differ, but
in all four protocols the output states are stabilized two-qubit
states, so the same number of error cases result in no detectable
error. If the probability of X, Y, and Z errors are the same,
therefore, the final fidelities are not very different, but with
asymmetric error processes, the results can be rather different,
as shown in Figs. 8, 9, and 10.
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