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We introduce several classes of quantum combinatorial designs, namely quantum Latin squares, cubes,
hypercubes, and a notion of orthogonality between them. A further introduced notion, quantum orthogonal arrays,
generalizes all previous classes of designs. We show that mutually orthogonal quantum Latin arrangements
can be entangled in the same way in which quantum states are entangled. Furthermore, we show that such
designs naturally define a remarkable class of genuinely multipartite highly entangled states called k-uniform,
i.e., multipartite pure states such that every reduction to k parties is maximally mixed. We derive infinitely
many classes of mutually orthogonal quantum Latin arrangements and quantum orthogonal arrays having an
arbitrary large number of columns. The corresponding multipartite k-uniform states exhibit a high persistency of
entanglement, which makes them ideal candidates to develop multipartite quantum information protocols.
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I. INTRODUCTION

One of the key problems in the theory of quantum in-
formation is to identify multipartite quantum states with
the strongest possible quantum correlations. Contrary to the
classical behavior, information stored in multipartite quantum
systems is not equivalent to information provided by the
parties. The extremal situation occurs when information stored
in an N -partite pure quantum state is not present at all in any
subset of k collaborating parties, for some integer k � N/2.
Such pure states are called k-uniform [1–3], meaning that every
reduction to k parties is given by the maximally mixed state.
When k = �N/2�, where k = �.� denotes the floor function,
the state is called absolutely maximally entangled (AME).
Sometimes, these states are also called maximally multipartite
entangled states [4], or MMES for short.

For instance, the generalized Bell states of two subsystems
with d levels each and the tripartite GHZ-like states belong to
the AME class. These highly entangled states find applications
in quantum secret sharing [5], quantum error correction codes
[1], and holographic codes [6]. They can be constructed from
graph states [7,8], orthogonal arrays [3], multiunitary matri-
ces [9], and perfect tensors [1,6]. Furthermore, from gluing
AME states further multipartite classes of such states can be
constructed in higher dimensions [10]. However, to determine

the existence of AME(N,d) for any number of parties N and
internal levels d is a difficult problem, specially if d is not a
power of a prime number [11]. Many approaches were tried in
order to give an answer to this question, including recasting of
the problem in the language of statistical mechanics [12–14].

In this work, we introduce certain classes of combinatorial
designs by extending classical symbols to pure quantum states.
Our starting point is the notion of quantum Latin squares
(QLS) [15], which we generalize to quantum Latin cubes
(QLC) and hypercubes (QLH). We also introduce a notion of
orthogonality between them and identify a crucial ingredient
missing in the previous approach [16]: two orthogonal QLS
could be entangled in such a way that they cannot be expressed
as two separated arrangements. These entangled designs are
intrinsically associated with a larger class of quantum de-
signs that includes all previous quantum Latin arrangements:
quantum orthogonal arrays. After setting up the quantum
combinatorial tools we apply our method to the problem to
construct k-uniform states and absolutely maximally entangled
states in particular, for multipartite systems having an arbitrary
large number of parties.

The paper is organized as follows: In Sec. II, we recall the
standard concepts of (classical) Latin squares, Latin cubes,
Latin hypercubes, and orthogonal arrays and review their basic
properties. In Sec. III we define quantum Latin squares, cubes,
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and hypercubes and introduce a notion of orthogonality be-
tween them. Simple examples in low dimensions are provided.
In Sec. IV, we introduce the concept of quantum orthogonal
arrays. We show that quantum Latin arrangements arise from
quantum orthogonal arrays in the same way that Latin arrange-
ments arise from orthogonal arrays in combinatorics. In Sec. V
we show a connection existing between quantum orthogonal
arrays and multiunitary matrices, the last ones introduced
in Ref. [9]. In Sec. VI we derive simple constructions of
k-uniform and AME states from quantum orthogonal arrays.
A summary of results and concluding remarks are presented
in Sec. VII.

II. LATIN ARRANGEMENTS AND ORTHOGONAL
ARRAYS

In this section, we review some basic combinatorial con-
cepts used in this work. A Latin square LS(d) is a square
arrangement of size d such that every entry, taken from the
set {0, . . . ,d − 1}, occurs once in each row and each column.
For instance, arrangements

0 1
1 0,

0 1 2
2 0 1
1 2 0

,

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

(1)

are Latin squares of size d equal to two, three, and four,
respectively.

An orthogonal array, denoted as OA(r,N,d,k), is an ar-
rangement composed by r rows, N columns, and entries taken
from the set {0, . . . ,d − 1}, such that every subset of k columns
contains all possible combinations of symbols, occurring the
same number (λ) of times along the rows. Here, parameters
k and λ are called strength and index of the OA, respectively
[17]. An OA is called irredundant if every subset of (N − k)
columns contains no repeated rows [3]. Two OA are called
equivalent if one array can be transformed into the other one
by applying permutations or relabeling of symbols in rows or
columns.

It is simple to show that any LS(d) is equivalent to an
OA(d2,3,d,2); see Chapter 8 in Ref. [17]. For example, the
array OA(4,3,2,2) produces a LS(2), as shown below:

OA =

0 0 0
0 1 1
1 0 1
1 1 0

−− −− −−
i j LS

⇒ LS = 0 1
1 0. (2)

Here, the first two columns of the OA identify coordinates (i,j )
of symbols for the LS, whose values are determined by the third
column LS of the OA.

Two Latin squares LSA and LSB of size d are orthogonal if
the set of ordered pairs [(LSA)ij ,(LSB)ij ] is composed by all
possible d2 combinations symbols, where i,j ∈ {0, . . . ,d −
1}. A collection of m LS of order d is called mutually orthogo-
nal (MOLS) if they are pairwise orthogonal. For instance, any
OA(d2,2 + m,d,2) defines a set of m MOLS of size d [17]. In
particular, an OA(9,4,3,2) implies two classical OLS of size 3.
As before, the first two columns (i,j ) of the OA address entries

of OLS, while the two latter yield the values of the squares A
and B,

OA(9,4,3,2) =

0 0 0 0
0 1 2 1
1 0 2 2
1 1 1 0
1 2 0 1
2 1 0 2
2 2 2 0
2 0 1 1
0 2 1 2
− − − −
i j A B

⇒
LSA =

0 2 1
2 1 0
1 0 2

LSB =
0 1 2
2 0 1
1 2 0

.

(3)

Entries of two OLS are typically denoted as ordered pairs in a
single array. For instance, the two OLS of Eq. (3) are denoted
as

OLS =
00 21 12
22 10 01
11 02 20

. (4)

Furthermore, orthogonal arrays can be associated with Latin
cubes. An OA(d3,4,d,3) defines a Latin cube LC(d), which
consists of a cubic arrangement composed by d rows, d

columns, and d files, such that every entry taken from the set
{0, . . . ,d − 1} occurs once in each row, each column, and each
file. For instance, OA(8,4,2,3) defines a LC of size 2, where
now the first three bits (i,j,k) determine the position of a given
element of the cube LC, while the last bit determines its value,

OA(8,4,2,3) =

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
− − − −
i j k LC

, LC = .

(5)

In general, an OA(dk,k + m,d,k) defines m mutually orthog-
onal Latin hypercubes (LH) of size d in dimension k, denoted
MOLH(d). Figure 1 summarizes existing relations between
OA and Latin arrangements.

To emphasize the difference between the above described
standard combinatorial designs and their quantum generaliza-
tions discussed in subsequent sections we will refer to OA,
LS, MOLS, and MOLC as the classical arrangements. An OA
having r rows, N columns, and d symbols can be associated
with a pure quantum state of an N -qudit system having r terms
[3]. Each row of the array corresponds to a single term of the
state, so the left-hand side of the arrangement (3) yields the
unnormalized state of four parties

|φ4,3〉 = |0000〉 + |0121〉 + |1022〉
+ |1110〉 + |1201〉 + |2102〉
+ |2220〉 + |2011〉 + |0212〉. (6)
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FIG. 1. Orthogonal arrays generalize some classes of combi-
natorial arrangements: Latin squares (LS), Latin cubes (LC), and
mutually orthogonal LS and LC (MOLS and MOLC, respectively).
These arrangements can be generalized to Latin hypercubes (LH)
and mutually orthogonal LH (MOLH), respectively. In this work, we
develop a theory of quantum combinatorial designs and show that
quantum Latin arrangements arise from QOA in the same way that
classical Latin arrangements arise from OA.

This state is maximally entangled with respect to the
(4

2

) = 6
possible balanced bipartitions and it is called an absolutely
maximally entangled state, denoted AME(4,3). In this work we
consider unnormalized pure states, for the sake of simplicity.

III. QUANTUM LATIN ARRANGEMENTS

Recently, quantum Latin squares (QLS) [15] and weakly
orthogonal QLS [16] have been introduced, where classical
symbols appearing in entries of arrangements were extended
to quantum states. These concepts were used to define unitary
error bases [15] and mutually unbiased bases [16]. In this
section, we extend those results by introducing some classes
of quantum Latin arrangements, where QLS are a particular
case.

The following notion of quantum Latin squares was intro-
duced by Musto and Vicary [15].

Definition 1. A quantum Latin square of size d is a square
arrangement

QLS(d) =
|ψ0,0〉 . . . |ψ0,d−1〉

...
...

|ψd−1,0〉 . . . |ψd−1,d−1〉
(7)

composed of d2 single-particle quantum states |ψij 〉 ∈
Hd, i,j ∈ {0, . . . ,d − 1}, such that each row and each column
determine an orthonormal basis for a qudit system.

For instance, the following example of a quantum Latin
square was given in Ref. [15],

|0〉 |1〉 |2〉 |3〉
|3〉 |2〉 |1〉 |0〉

|χ−〉 |ξ−〉 |ξ+〉 |χ+〉
|χ+〉 |ξ+〉 |ξ−〉 |χ−〉

, (8)

where the two lower rows contain entangled states, |χ±〉 =
1√
2
(|1〉 ± |0〉), |ξ+〉 = 1√

5
(i|0〉 + 2|3〉), and |ξ−〉 = 1√

5
(2|0〉 +

i|3〉). As a first observation, we realize that any QLS is naturally
related to a tripartite pure state having maximally mixed single-
particle reductions.

Proposition 1. A set of d2 vectors |ψij 〉 ∈ Hd forms a
QLS(d) if and only if every single-particle reduction of the

three-qudit state

|�〉 =
d−1∑
i,j=0

|i〉|j 〉|ψij 〉 (9)

is maximally mixed.
Proof. Let |ψij 〉 ∈ Hd be the d2 entries of a QLS(d) and let

us define the state |�〉 = ∑d−1
i,j=0 |i〉|j 〉|ψij 〉. Therefore

ρA = TrBC |�〉〈�|

= TrBC

⎛
⎝ d−1∑

i,j,i ′,j ′=0

|ij 〉AB〈i ′j ′| ⊗ |ψij 〉C〈ψi ′j ′ |
⎞
⎠

=
d−1∑

i,j,i ′=0

〈ψij |ψi ′j 〉BC |i〉A〈i ′| =
d−1∑

i,j,i ′=0

|i〉A〈i| = Id ,

where we used the fact that |ψij 〉 ∈ Hd defines a QLS(d)
and denoted A,B,C for the first, second, and third party,
respectively. Analogously, ρB = Id , as we work with non-
normalized states. Furthermore, we have

ρC = TrAB

⎛
⎝ d−1∑

i,j,i ′,j ′=0

|ij 〉〈i ′j ′| ⊗ |ψij 〉〈ψi ′j ′ |
⎞
⎠

=
d−1∑
i,j=0

|ψij 〉〈ψij | = Id,

and, therefore, state (9) has every single-particle reduction
maximally mixed. The reciprocal implication works in the
reverse way. �

Let us exemplify Proposition 1 by considering the 1-
uniform state of a three-qudit system,

|φ〉 = Fd ⊗ Fd ⊗ Id |GHZd〉 =
d−1∑

l,m=0

|lm〉|ψl,m〉. (10)

Here |GHZd〉 = ∑d−1
n=0 |nnn〉 denotes a generalized GHZ

state of three subsystems with d levels each, Fd =∑d−1
l,m=0 ωlm|l〉〈m| is the discrete Fourier transform of size d

containing a unimodular number ω = e2πi/d , and the state
reads

|ψl,m〉 =
d−1∑
n=0

ωn(l+m)|n〉. (11)

This construction works for any d � 2. The d2 states from
Eq. (11) determine a QLS of size d, which is equivalent to the
classical [LS(d)]lm = l + m| mod d with l,m = 0, . . . ,d −
1, as the classical arrangement can be obtained by applying
the same suitable local unitary operation to every column of
the QLS. The state (10) is 1-uniform and it is equivalent to the
three-qudit GHZ state, in agreement with Proposition 1. Let us
generalize this fact in the following observation.

Observation 1. A QLS(d) is equivalent to a classical LS(d)
if and only if one arrangement can be transformed into the other
by applying the same local unitary operation to every column.

Furthermore, note that a unitary operation U applied to a
single column of a LS implies a controlled U operation acting
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on the third party of the corresponding three-partite 1-uniform
state (see Proposition 1). As consequence, the entanglement of
the state is changed and the Latin arrangement is spoiled by a
single-column unitary operation.

The notion of a weakly orthogonal QLS has been recently
introduced [16]:

Definition 2. A pair of QLS of size d having entries {ϕij } and
{ϕ′

ij } are weakly orthogonal when for every i,j ∈ {0, . . . ,d −
1}, there exists a unique tij ∈ {0, . . . ,d − 1} such that

d−1∑
l=0

〈ϕli |ϕ′
lj 〉|l〉 = |tij 〉. (12)

This definition reflects some desired aspects in orthogonal
QLS. Indeed, it is reduced to the standard definition of
the LS if the states ϕij belong to the computational basis.
However, other fundamental ingredients seem to be missing
here—for instance, the astonishing property that a pair of
orthogonal QLS are not necessarily equivalent to two QLS
satisfying an orthogonality criteria, as we will see below.
Those sets of orthogonal QLS that cannot be separated will
be called essentially quantum Latin squares. This new concept
of nonseparability of combinatorial designs is analogous to the
nonseparability of quantum states.

Let us now introduce the notion of orthogonality for QLS,
which is not equivalent to orthogonality for two separated
quantum arrangements.

Definition 3. A set of d2 pure quantum states |ψi,j 〉 ∈ H⊗2
d

arranged as

|ψ0,0〉 . . . |ψ0,d−1〉
...

...
|ψd−1,0〉 . . . |ψd−1,d−1〉

(13)

forms a pair of orthogonal quantum Latin squares (OQLS) if
the following properties hold:

(1) The set of d2 states {|ψi,j 〉} are orthogonal and form a
basis in Hd ⊗ Hd .

(2) The sum of every row in the array (13), i.e.,
∑d−1

j=0 |ψi,j 〉,
is a 1-uniform state.

(3) The sum of every column in the array (13), i.e.,∑d−1
i=0 |ψi,j 〉, is a 1-uniform state.
Observation 2. Two OQLS composed of separable states,

|ψAB
i,j 〉=|ηA

ij 〉 ⊗ |ηB
ij 〉 for every i,j ∈ {0, . . . ,d − 1}, imply

that both arrangements {|ηA
ij 〉} and {|ηB

ij 〉} determine QLS,
according to Definition 1.

Indeed, single-party reductions to A and B of the states
defined in items 2 and 3 above are proportional to the max-
imally mixed state, so that every row and every column of
arrangements {|ηA

ij 〉} and {|ηB
ij 〉} form an orthonormal basis.

Moreover, if entries of each QLS are given by elements of
the computational basis then Definitions 1 and 3 reduce to the
classical definition of LS and OLS, respectively (see Sec. II).

As we will show in Sec. IV, OQLS are closely related
to 2-uniform states. In order to achieve higher classes of
multipartite entanglement, i.e., k-uniformity for k > 2, one has
to generalize quantum combinatorial arrangements to higher
dimensions. To this end, let us go a step forward and introduce
quantum Latin cubes.

Definition 4. A quantum Latin cube (QLC) of size d is a
cubic arrangement composed of d3 single-particle quantum
pure states |ψx,y,z〉 ∈ Hd , x,y,z ∈ {0, . . . ,d − 1}, such that
every row, every column and every file form a set of orthogonal
states.

For instance, in the case of a cubic arrangement composed
by qubit quantum states, i.e., d = 2, we have the cube (5).
Let us introduce a notion of orthogonality between cubic
arrangements.

Definition 5. A set of d3 tripartite pure states |ψx,y,z〉
belonging to a composed Hilbert space H3

d , arranged as

forms a triple of mutually orthogonal quantum Latin cubes
(MOQLC) if the following properties hold:

(1) The set of d3 states {|ψx,y,z〉} are orthogonal.
(2) The sum of every row in this array, i.e.,

∑d−1
i=0 |ψx,y,z〉,

is a 1-uniform state.
(3) The sum of every column in this array, i.e.,∑d−1
j=0 |ψx,y,z〉, is a 1-uniform state.

(4) The sum of every file in this array, i.e.,
∑d−1

k=0 |ψx,y,z〉,
is a 1-uniform state.

Analogously to Definition 3, if the d3 states forming a
set of MOQLC are fully separable, i.e., |ψABC

x,y,z 〉 = |ηA
x,y,z〉 ⊗

|ηB
x,y,z〉 ⊗ |ηC

x,y,z〉, then each set of states {ηA
x,y,z〉}, {ηB

x,y,z〉}, and
{|ηC

x,y,z〉} forms a QLS according to Definition 1. Furthermore,
in such a case a fully separable MOQLC is equivalent to a
classical MOLC, in the sense that one can be connected to the
other by applying local unitary operations acting in columns
of the arrangements. This is so because any single-party
orthonormal basis can be transformed into the computational
basis by applying a suitable local unitary transformation.
Also, if the states forming the cube given in Definition 5 are
biseparable with respect to a given partition, e.g., |ψABC

x,y,z 〉=
|ηA

x,y,z〉 ⊗ |ηBC
x,y,z〉 for every x,y,z ∈ {0, . . . ,d − 1}, then the

single-party arrangement {|ηA
x,y,z〉} defines a QLC according

to Definition 5. It is important here to note that the bipartite
arrangement {|ηBC

x,y,z〉} not necessarily forms a pair of OQLC.
This surprising fact is closely related to the lack of some
classes of multipartite absolutely maximal entanglement; e.g.,
AME(N,2) states exist only if the number of qubits is given
by N = 2,3,5,6 [1,18,19].

As the concepts of OQLS and OQLC are settled, let us
define an arbitrary-dimensional kind of quantum combinatorial
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arrangement, called quantum Latin hypercubes. These quan-
tum arrangements can be connected to k-uniform states for
N -qudit systems having d levels each for any k,N , and d, as
we will show in Sec. IV.

Definition 6. A quantum Latin hypercube of size d and
dimension k, denoted QLH(d,k), is an arrangement com-
posed of dk single-particle quantum states |ψi1,...,ik 〉 ∈ H⊗k

d ,
i1, . . . ,ik ∈ {0, . . . ,d − 1}, such that all states belonging to an
edge of the hypercube are orthogonal.

In particular, for k = 2 quantum hypercube QLH(d,2)
reduces to the square QLS(d), while for k = 3 they form a cube,
QLH(d,3) = QLC(d). For instance, the state AME(8,7) with
minimal support determines an m = 4 hypercubes MOQLH
of size d = 7 in dimension k = 4, equivalent to 4 classical
MOLH. These four separable hypercubes can be easily found
from the orthogonal array OA(74,8,7,4) with index equal to
unity, associated with the AME(8,7) state; see Theorem 3 and
Proposition 2 (i) in [3]. This state is also related to a max-
imum distance separable (MDS) code [13,20]. Furthermore,
the AME(8,5) state, which has nonminimal support, defines
m = 4—essentially quantum—orthogonal Latin hypercubes
in dimension k = 4, with entangled entries. This state can be
constructed from ququint codes [21].

We can extend the sets of OQLS and OQLC to sets of m

mutually orthogonal quantum Latin hypercubes (MOQLH) of
size d and dimension k � m. The following definition contains
all previously defined combinatorial designs.

Definition 7. A set of m mutually orthogonal quantum Latin
hypercubes of size d in dimension k, denoted m MOQLH(d),
is a k-dimensional arrangement composed of m-qudit states
|ψi1,...,ik 〉 ∈ H⊗m

d , i1, . . . ,im ∈ {0, . . . ,d − 1}, such that the
following properties hold:

(1) The set of dk states {|ψi1,...,ik 〉} are orthogonal.
(2) The sum of d states belonging to the same edge of

the hypercube, i.e.,
∑d−1

is=0 |ψi1,...,is ,...,im〉 for every 1 � s � m,
forms a 1-uniform state.

In particular, a set of m MOLS are also MOQLS; e.g.,
the classical arrangements (3) agree with Definition 7. In
Sec. IV, we introduce a suitable tool to generate quantum
Latin arrangements, called quantum orthogonal arrays, and
also establish its connection with quantum Latin arrangements.

Bounds for MOQLH

Let us now study upper bounds for the maximal number
of classical and quantum Latin arrangements. The theory of
orthogonal arrays provides a bound [22] for the maximal
number of columns of an OA(dk,2 + mC,d,k), that has index
unity. Therefore, it is easy to derive an upper bound for the
maximal allowed number mC of classical MOLH of size d and
dimension k:

mC �

⎧⎨
⎩

k − 1, if d � k,

d + k − 4, if d > k � 3,

d + k − 3, in all other cases.
(14)

For example, in dimension k = 2 we have that m MOLS
of size d can only exist for mC � d − 1, for any d � 2.
The upper bound m = d − 1 can be saturated for d being
a prime power number. These results, well known in stan-
dard combinatorics, motivate us to derive similar results for

quantum Latin arrangements. However, derivation of such a
generalized bound requires solving a complicated optimization
problem formalized by Scott—see Eqs. (39)–(41) in Ref. [1].
Given the set of parameters N,d,k (n,D,d in the original
notation) these equations can be solved by considering linear
programming techniques. The particular case k = �N/2�, for
which the arrangements are associated with AME states, can
be analytically solved. Therefore, we are able to provide an
analytic bound for the maximal number mQ of MOQLH in the
case of maximal possible dimension k = �N/2� as follows:

mQ �
{

2(d2 − 1), if N is even,

2d(d + 1) − 1, if N is odd.
(15)

For instance, for N = 4 and k = 2 we have that mQ � 2(d2 −
1) MOQLS exist for any size d, which is 2(d + 1) times larger
than the classical bound mC � d − 1. It is important to note
that bounds (15) are not tight, as the bounds provided by Scott
[1] are not tight; see also [19].

Inequalities (14) and (15) can be useful to detect genuine
quantumness in MOQLH. In general, given a set of m MOQLH
it is hard to detect inequivalence to a classical set of MOLS.
Typically, such kind of comparison would require considering
a full set of entanglement invariants. However, for those cases
where m > mC it is ensured that a MOQLH is essentially
quantum. For instance, a single LS of size two exists and there
are no two QOLS of size two. Surprisingly, there exist three
entangled MOQLS of size two, as we will show in Sec. IV.

IV. QUANTUM ORTHOGONAL ARRAYS

In this section, we introduce quantum orthogonal arrays.
This concept allows us to derive a simple rule to generate
infinitely many classes of k-uniform states and absolutely
maximally entangled states, in particular.

Definition 8. A quantum orthogonal array QOA(r,N,d,k)
is an arrangement consisting of r rows composed by N -partite
normalized pure quantum states |ϕj 〉 ∈ H⊗N

d , having d internal
levels each, such that

k

r−1∑
j=0

Tri1,...,iN−k
(|ϕj 〉〈ϕj |) = r Ik, (16)

for every subset of N − k parties {i1, . . . ,iN−k}.
In words, a QOA is an arrangement having N columns,

possibly entangled, such that every reduction to k columns
defines a positive operator valued measure (POVM). We recall
that a POVM is a set of positive semidefinite operators such
that they sum up to identity, determining a generalized quantum
measurement [23].

We can also provide a connection to error correction codes
that suggest considering generalized measurements instead of
projective measurements in QOA. Note that any AME state
(or k-uniform state) can be related to a certain quantum error
correction code [1]. In particular, an AME state of N parties
with local dimension d corresponds to a quantum code—which
can be considered as an injective mapping from the space of
K = 1 messages to a subset C of the set of code words with
length N—often denoted by ((N,K = 1,D = �N/2� + 1))d .
In this notation, the parameter D is the distance of the code,
i.e., the minimal number of local operations performed on
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a single qudit that are needed to create a nonzero overlap
between two code words [24]. The Knill-Laflamme theorem
[25] implies that a subspace C of the Hilbert space H = C⊗N

d

generates an error-correcting quantum code, if there exist
recovery operators R1,R2, . . . such that for any state ρ with
support in C and any collection of error operators A1,A2, . . .

with
∑

e E
†
eEe = 1, we have

∑
r,e RrEeρE

†
eR

†
r = ρ ⊗ 1. In

this case R1,R2, . . . are a finite sequence of operators in H
satisfying the relation

∑
r R

†
rRr = 1. This theorem combined

with the fact that an AME state yields an error correction code
allows us to define quantum orthogonal arrays in a way that
every reduction produces a POVM.

Definition 8 forms a natural extension of the classical
concept of orthogonal arrays to quantum theory: the classical
digits from (0, . . . ,d − 1) are generalized to quantum states
from Hd , while the classical concept of subsets of columns is
replaced by partial trace.

From now on, we assume that columns of quantum arrange-
ments are connected by the Kronecker product. Also, QOA
having the minimal possible number of rows, i.e., r = dk , are
called index unity, as occurs in the classical case.

Let us introduce equivalent classes of QOA as a natural
generalization of its classical counterpart, defined in Sec. II.
Two QOA are equivalent if one can transform one arrangement
into the other one by applying suitable local unitary operations
to columns and permutation of rows or columns. Note that
permutation of columns in quantum states produces states in-
equivalent under local operations and classical communication
(LOCC), in general. Nevertheless, as interchange of particles
does not change the amount of entanglement in quantum states,
from now on we will restrict our attention to QOA inequivalent
under swap operations. Note that the only allowed local
unitary operations in classical OA are permutation matrices,
equivalent to relabeling of symbols. In contrast to quantum
Latin arrangements, in QOA we are allowed to apply any
local unitary operation to any column without spoiling the
orthogonal array. To illustrate these ideas let us consider the
following example:

(I ⊗ σx)
|0〉 |0〉
|1〉 |1〉 = |0〉 |1〉

|1〉 |0〉,

whereσx = {{0,1},{1,0}} is the Pauli shift operator. In this way,
we obtain two equivalent classical OA. Instead, by applying the
Hadamard gate H = {{1,1},{1,−1}} to the second column, i.e.,

(I ⊗ H )
|0〉 |0〉
|1〉 |1〉 = |0〉 |+〉

|1〉 |−〉, (17)

with |±〉 = |0〉 ± |1〉, we obtain a QOA which is equivalent
under local unitary operations to a classical OA. The simplest
essentially quantum orthogonal array consists of five columns,

QOA(4,5,2,2) =
|0〉 |0〉 |0〉 |�+〉
|0〉 |1〉 |1〉 |�+〉
|1〉 |0〉 |1〉 |�−〉
|1〉 |1〉 |0〉 |�−〉

, (18)

where |�±〉 = (|00〉 ± |11〉)/√2 and |�±〉 = (|01〉 ±
|10〉)/√2 denote the Bell basis. To emphasize that some
of these columns are separable (classical) and some
of them are entangled (quantum), we shall also write

QOA(4,3C + 2Q,2,2), as the second argument denotes three
classical and two quantum columns. Note that the number of
classical and quantum columns, i.e., NC and NQ such that
N = NC + NQ, are invariant under local unitary operations
acting on columns of the QOA. Moreover, a QOA is equivalent
to a classical OA if and only if NQ = 0, thus also implying
a classical set of MOLS and a classical error correction
code [17]. Roughly speaking, parameter NQ quantifies how
much quantum is a given QOA and its related MOQLS and
error correction code. As a further comment, note that every
reduction to two columns of the arrangement (18) forms a
POVM, where partial trace should be considered for entangled
columns. The fact that QOA (18) is not equivalent to a classical
OA is in correspondence with the fact that the AME(5,2) state
cannot be written as a convex combination of elements of the
5-qubit computational basis.

As we have seen in Sec. II, OLS arise from OA. The first
two columns of the OA provide address to entries of the first
and second LS, whose values are determined by the third and
fourth columns of the OA; see Eq. (3). In the same way, from
QOA(4,5,2,2) of Eq. (18) we derive three MOQLS of size 2,
which are essentially quantum. A triple of mutually orthogonal
quantum Latin squares reads

MOQLS(2) = |0〉|�+〉 |1〉|�+〉
|1〉|�−〉 |0〉|�−〉. (19)

The first two columns of QOA (18) address entries of the three
MOQLS (19). Note that these three MOQLS are entangled,
which is a direct consequence of the fact that QOA (18) is
not equivalent to a classical one. Indeed, QOA (18) contains
entangled columns. According to the results shown in Sec. III,
a single-party arrangement belonging to a set of MOQLS
determines a QLS, which can be seen from Eq. (19) after
tracing out second and third parties. However, the bipartite
arrangement obtained from taking a partial trace over the first
subsystem of the QOA (19), i.e.,

|�+〉 |�+〉
|�−〉 |�−〉 , (20)

is not a pair of orthogonal QLS. This is simple to observe if
we take into account Definition 3. Indeed, the sum of every
column of the arrangement (20) determines a 1-uniform state
but the sum of every row gives a separable state. It is possible
to prove that such QOA(r,4,2,2) does not exist for any r ∈ N,
which is related to the fact that an AME(4,2) state does not
exist [26].

As a further example, we consider the following array
consisting of three classical and three quantum columns,

QOA(8,3C + 3Q,2,3) =

|0〉 |0〉 |0〉 |GHZ000〉
|0〉 |0〉 |1〉 |GHZ001〉
|0〉 |1〉 |0〉 |GHZ010〉
|0〉 |1〉 |1〉 |GHZ011〉
|1〉 |0〉 |0〉 |GHZ100〉
|1〉 |0〉 |1〉 |GHZ101〉
|1〉 |1〉 |0〉 |GHZ110〉
|1〉 |1〉 |1〉 |GHZ111〉

, (21)
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which produces three MOQLC of size 2:

MOQLC

=

GHZ

GHZ

GHZ

GHZ GHZ

GHZ

GHZ

GHZ

(22)

Here, the tripartite orthonormal basis is composed by eight
states locally equivalent to the 3-qubit GHZ state, |GHZ〉 =
|000〉 + |111〉. These states form an orthonormal basis inH8 =
H2 ⊗ H2 ⊗ H2,

|GHZijk〉 = (−1)αijk σi ⊗ σj ⊗ σk|GHZ〉, (23)

where i,j,k = {0,1} and σ0 and σ1 represent the Pauli matrices
σx and σz, respectively. Global phases given by αijk = 1 if i =
j = k and αijk = 0 otherwise are added to states (23) forming
the GHZ basis, in such a way that the construction (22) forms
a quantum Latin cube.

Let us show that a QOA(r,N,d,k) determines a k-uniform
state of N qudits, in the same way as an irredundant
OA(r,N,d,k) implies a k-uniform state of N subsystems with
d levels each [3].

Proposition 2. The sum of rows of a QOA(r,N,d,k) pro-
duces a k-uniform state of a quantum system composed of N

parties with d levels each.
Proof. Every reduction to k columns of a QOA(r,N,d,k)

defines a POVM, and thus the sum of its elements produces
the identity operator. �

For instance, QOA(4,5,2,2) of Eq. (18), related to the
squares (19), produces the 2-uniform five-qubit state [27]

AME(5,2) = |000〉|�+〉 + |011〉|�+〉
+ |101〉|�−〉 + |110〉|�−〉. (24)

Furthermore, the array QOA(8,6,2,3) presented in Eq. (21),
and related to the cube (22), produces the AME state for six-
qubit systems [28],

AME(6,2) =
1∑

x,y,z=0

|x,y,z〉|GHZxyz〉. (25)

Proposition 2 reveals that QOA generalizes the notion of
irredundant OA and not the entire set of OA. For instance,
the non-irredundant classical array,

OA(4,3,2,1) =
0 0 0
0 1 0
1 0 1
1 1 1

, (26)

is not equivalent to a QOA(r,3,2,1) for any r . This is so because
OA (26) does not produce a 1-uniform state and, by definition,

QLS

QLC

MOQLS

MOQLC

QOA

OA
LS

LC

MOLS

MOLC

FIG. 2. Generalization of orthogonal arrays (OA) to quantum
orthogonal arrays (QOA). This extension allows us to naturally gen-
eralize some classical arrangements to quantum mechanics: quantum
Latin squares (QLS), quantum Latin cubes (QLC), and mutually
orthogonal quantum arrangements (MOQLS and MOQLC).

any QOA produces at least a 1-uniform state. The key differ-
ence existing between classical and quantum OA relies on the
fact that the action of removing columns in classical OA is
not equivalent to taking the partial trace in the quantum case.
Precisely, these operations are equivalent only if the orthogonal
array considered is irredundant. Furthermore, the juxtaposition
of two OA is still an OA, whereas the same statement does not
hold for QOA. This is connected to the fact that the sum of two
k-uniform states is not necessarily k-uniform (see Sec. VI).
Nonetheless, all classical OA(dk,2 + m,d,2), associated with
m mutually orthogonal hypercubes size d, are irredundant [3].
Thus, any set of m mutually orthogonal Latin hypercubes, in
particular any set of m MOQLS, is linked to a QOA; see Fig. 2.
As a natural generalization of this result, we have the following
proposition.

Proposition 3. A QOA(dk,k + m,d,k) generates m MO-
QLH of size d in dimension k.

We generate MOQLH from QOA in the same way in
which MOLH arise from classical OA. That is, first k classical
columns of a QOA address the location of entries and the
remaining m columns determine the values of every entry of
the quantum Latin arrangement.

Let us discuss some important open issues. The lowest-
dimensional open case for MOQLS occurs for k = m = 2 and
d = 6, that is, two OQLS of size six. It is well known that the
classical problem of 36 officers of Euler has no solution [29],
as there are no orthogonal Latin squares of order six. After an
exhaustive numerical exploration we are tempted to advance
the following conjecture.

Conjecture 1. Two orthogonal QLS of size 6 do not exist.
This conjecture is equivalent to saying that the famous

problem of Euler has no solution also in the generalized
quantum setup, as 36 officers are now allowed to be described
by entangled quantum states.

It also would imply a negative answer to the existence of
AME state for a system composed of four systems with 6
levels each; compare related studies in Refs. [3,11]. The ex-
istence of the AME(4,6) state currently represents the lowest-
dimensional open case, and the only open case in the family
of states AME(4,d). We recall that AME(4,d) exist for any
d �= 2,6. Indeed, all of these states have minimal support
and can be easily generated from two classical MOLS(d),
equivalently from OA(d2,4,d,2) [3].
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Let us now relate quantum Latin arrangements defined
through QOA with those established in Definition 7. The
special subset of MOQLH satisfying Definition 7 produces
highly entangled k-uniform states (e.g., cluster states), robust
under the presence of a noisy environment. Indeed, we might
interpret the hyperfaces of MOQLS as a protection of multipar-
tite entanglement contained in lower-dimensional faces of the
hypercube. For instance, the generalized, N -qudit GHZ state,∑d−1

i=0 |i〉⊗N , defines the following set of N MOQLH of size d

defined in dimension k = 1:

| 0, . . . ,0︸ ︷︷ ︸
N

〉 − − | 1, . . . ,1︸ ︷︷ ︸
N

〉 − − | d − 1, . . . ,d − 1︸ ︷︷ ︸
N

〉. (27)

Here, the double line (−−) denotes edges in the same way
as depicted before; cf. Definition 5. Arrangement (27) has a
unique 1-dimensional face, evidencing fragility of entangle-
ment of GHZ states with respect to the noisy environment.
On the other hand, the square (13) produces a state having a
higher robustness, as the square transforms to an edge under
the presence of a local measurement on any of its parties. For
instance, the 5-qubit state produced by three MOQLS of size
d = 2, see Eq. (19), defines a perfect code for quantum error
correction [27].

In order to understand robustness of entanglement produced
by states coming from Definition 7, we need to recall two
quantifiers of robustness [30]:

Maximum connectedness (C). A multipartite quantum state
is maximally connected if any two qudits can be projected, with
certainty, into a Bell state by implementing local measurements
on the complementary subset of parties.

Persistency of entanglement (P). The minimal number
of local measurements to be implemented such that, for all
measurement outcomes, the state is completely disentangled.

Now we are in position to establish the following result:
Proposition 4. A set of m MOQLH {|ϕi1,...,im〉} of size d

defined in dimension k, composed by dk states of m-qudit
systems having d levels each, defines a k-uniform state for
N = k + m qudit systems, given by

|φ〉 =
d−1∑

i1,...,ik=0

|i1, . . . ,ik〉|ϕi1,...,im〉. (28)

Even more, if k′ � k subsystems belonging to the first k qudits
are measured then the remaining entangled state is (k − k′)-
uniform. In particular, if a state |φ〉 can be written in the form
(28) for its

(
N

k

)
possible bipartitions of k parties out of N then

it has maximum connectedness C = k − 1 and persistency of
entanglement P � k.

Proof. The state |φ〉 defined for N = k + m subsystems
with d levels each is k-uniform, since the following two facts
hold: (i) the set of m MOQLH defined in dimension k defines
a QOA(dk,N,d,k) and (ii) Proposition 2 applies. The fact that
maximum connectedness is at least C = k − 1 comes straight
from Property 2 in Definition 7. By the same reason, we have
P � k, as an additional measurement may possibly destroy
the 1-uniformity of the remaining m-partite entangled states
|φ′〉 = ∑d−1

i1,...,ik=0 |ϕi1,...,im〉. �

For instance, the state AME(5,2) defined in (24), con-
structed through MOQLS (19), satisfies C = 1, and defines
a 1-dimensional subspace protected under decoherence [27].

Let us summarize some important connections existing
between classical and quantum arrangements and k-uniform
states derived along this section. First, we start considering
previously known connections. The following standard (“clas-
sical”) notions are equivalent:

(1) QOA with fully separable columns (≡OA) [e.g.,
QOA(9,4C + 0Q,3,2) ≡ OA(9,4,3,2) in Eq. (3)].

(2) Sets of m separable MOQLH(d) in dimension k (≡
MOLH) [e.g., classical LSA and LSB in Eq. (3)].

(3) N -qudit k-uniform states with minimal support [e.g.,
AME(4,3) state in Eq. (6)].

Here, the symbol ≡ denotes equivalence under local unitary
operations applied to columns of an array. Connection 1-2 is
well known in mathematics since the early times of orthogonal
arrays theory; see Chapter 8 in Ref. [17]. Connections 1-3
and 2-3 have been recently established; see Refs. [3] and
[9], respectively. Furthermore, in the case of N = 2k there
exists a link between AME states and multiunitary permutation
matrices [9].

In a similar manner, the following generalized (“quantum”)
notions are equivalent:

(a) QOA with entangled columns ( �≡OA) [e.g., Eqs. (18)
and (21)].

(b) Entangled MOQLH ( �≡ fully separable MOQLH) [e.g.,
Eqs. (19)].

(c) N -qudit k-uniform states with nonminimal support ( �≡
to minimal support states) [e.g., Eqs. (24) and (25)].

The above relations a-b, a-c, and b-c form a novel contri-
bution of the present work. A further connection to general
multiunitary matrices occurs when N = 2k [9].

Note that a QOA having at least one pair of entangled
columns necessarily implies the existence of entangled OQLS
that cannot be separated, in the same way as entangled states
cannot be represented as the tensor product of two single-party
pure states.

V. QOA AND MULTIUNITARY MATRICES

Let us consider a quantum system consisting of N = 2k

parties having d level systems each, where k � 1 and the
system is prepared in the pure state

|φ〉 =
∑

n1 ,...,nk
ν1 ,...,νk

a n1 ,...,nk
ν1 ,...,νk

|n1, . . . ,nk,ν1, . . . ,νk〉, (29)

where every sum goes from 0 to d − 1. The matrix

(A) n1,...,nk
ν1 ,...,νk

= 〈n1, . . . ,nk|A|ν1, . . . ,νk〉 = a n1 ,...,nk
ν1 ,...,νk

is called k-unitary if it is unitary for all possible
(2k

k

)
reordering

of its indices, corresponding to all possible choices of k indices
out of 2k. Matrices k-unitary for k > 1 are called multiunitary
[9]. Furthermore, multiunitary matrices are one-to-one con-
nected with perfect tensors [6], which play an important role
in construction of holographic codes.

For instance, a matrix A is 2-unitary if A,AT2 , and AR

are unitary, where T2 and R stand for partial transposition and
reshuffling operations, respectively; see Appendix 2 in Ref. [9].
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As a remarkable property, a matrix A is k-unitary if and only
if the state (29) is AME(2k,d).

A multiunitary matrix A of size dk allows us to write a
multipartite pure state as the action of a nonlocal gate acting
on k parties over a generalized Bell-like state, that is,

|φ〉 =
∑

n1,...,nk

(Idk ⊗ A) |n1, . . . ,nk〉|n1, . . . ,nk〉

= (Idk ⊗ A)
∑

n1,...,nk

|n1, . . . ,nk〉|n1, . . . ,nk〉. (30)

For any AME state |φ〉, the operator A is a nonlocal k-unitary
gate acting on k parties. Furthermore, if A is a 2-unitary matrix
of size d2, then the quantum arrangement

A|0,0〉 . . . A|0,d − 1〉
...

...
A|d − 1,0〉 . . . A|d − 1,d − 1〉

(31)

forms a pair of QLS. In particular, A is a 2-unitary permutation
matrix if and only if the arrangement (31) is a classical
MOLS(d). This implies that a matrix A being 2-unitary but
not permutation defines a quantum QOA. Even more, if
the QOA is not equivalent under LOCC to a QOA having
associated a permutation matrix A then the QOA is essentially
quantum. This is the case of the essentially quantum array
QOA(4,3C + 2Q,2,2), presented in Eq. (18). In general, A is a
k-unitary permutation matrix if and only if the state |φ〉 defined
by (30) is an AME(2k,d) state with a minimal support.

In the same way, a 3-unitary matrix of size d3 defines a set
of 3 MOQLC. As an interesting observation, from Eq. (30)
we realize that any AME(2k,d) state can be associated with a
QOA having at leastNC = k classical columns and the minimal
possible number of rows r = dk; i.e., it always has index unity.

Let us generalize these finding in the following proposition.
Proposition 5. A k-unitary matrix A of order dk defines

m = 2k MOQLH of size d in dimension k. Even more, if A

is a permutation matrix then the MOQLH are equivalent to a
classical set of MOLH.

Proof. A k-unitary matrix A of size dk defines an AME
state composed by N = 2k subsystems with d levels each.
Due to Proposition 2 such a state defines a QOA(dk,2k,d,k)
and according to Proposition 3 implies a MOQLH of size d

in dimension k. The last implication was already proven in
Ref. [9]. �

In terms of bipartite quantum gates [31], the fact that the
classical problem of 36 officers has no solution implies that
there is no multiunitary permutation matrix of size 62 = 36.
That is, there is no permutation matrix P36 of order 36 such
that its partial transpose P

T2
36 and its reshuffling P R

36 are both
unitary (for an explicit definition of T2 and R see Appendix B
in Ref. [9]). As a generalization to quantum mechanics, there
exists a solution of 36 quantum officers of Euler if and only if
a multiunitary matrix of size 36 exists. Multiunitary matrices
are relevant in quantum information theory as they saturate the
upper bound of the entangling power [9,32,33]. We remark that
on one hand Conjecture 1 is consistent with earlier observations
by Clarisse et al. [31] and by recent numerical investigations
[34–36]. On the other hand, the existence of the AME(4,6) state
cannot be excluded by applying the currently known bounds

for AME states [1,19,37], so this interesting problem remains
still open.

VI. AME STATES FROM QUANTUM ORTHOGONAL
ARRAYS

As we have seen in Proposition 2, quantum arrays
QOA(r,N,d,k) imply the existence of k-uniform states for
N -qudit systems having d levels each. In this section, we derive
k-uniform states with maximal possible value k = �N/2� for
N = 5 and arbitrary d � 2 from QOA. Those states determine
AME states for 5-qudit systems.

Let us present a simple construction for AME(5,d) states
for every d � 2 derived from QOA. These states are known to
exist [38] but their explicit closed form has not been presented
before, as far as we know. We first define the state

AME(3,d) =
d−1∑
i=0

|i,j,i + j 〉, (32)

which has associated a classical array IrOA(d2,3,d,1). Here
and from now on, sums inside kets are understood to be modulo
d. By considering this state and the generalized Bell basis for
2-qudit systems, we are going to construct a QOA composed
of 5 columns and d2 rows that defines an AME(5,d) state
for every integer d. The first three classical columns of the
quantum arrangement are induced by the state (32), whereas
the remaining two essentially quantum columns are given by
elements of the Bell basis

|φi,j 〉 =
d−1∑
l=0

ωil|l + j,l〉, (33)

where ω = e2π i/d . We are now in a position to establish the
following result.

Proposition 6. The following three existing quantum ob-
jects, determined by a collection of d2 states |φi,j 〉 ∈ H⊗2

d , are
equivalent:

(A) QOA(d2,3C + 2Q,d,2)

|0〉 |0〉 |0〉 |φ0,0〉
|0〉 |1〉 |1〉 |φ0,1〉
...

...
...

...
|d − 1〉 |d − 1〉 |d − 2〉 |φd−1,d−1〉

. (34)

(B) Triple of MOQLS of size d

|0〉|φ0,0〉 . . . |d − 1〉|φ0,d−1〉
...

. . .
...

|d − 1〉|φd−1,0〉 . . . |d − 2〉|φd−1,d−1〉
. (35)

(C) Quantum state

AME(5,d) =
d−1∑
i,j=0

|i, j, i + j 〉|φi,j 〉, (36)

for any integer d � 2.
Proof. Proof of (A) follows from two facts: (i) every

subset of two columns produces an orthonormal basis, and (ii)
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every reduction to three columns contains orthogonal rows.
These conditions ensure that every reduction to two columns
produces a POVM. These two properties are an extension
of the so-called uniformity and irredundancy, considered to
construct k-uniform states from classical OA (see Sec. IV in
Ref. [3]). Equivalence between (A) and (C) follows directly
from Proposition 2, while the last relation between (A) and
(B) can be obtained by Proposition 3. �

For instance, in the case of d = 2, this construction reduces
to QOA (18), MOQLS (19), and the AME(5,2) state (24). Note
that the QOA (34) has its last two columns entangled, implying
that MOQLS (35) are necessarily entangled and AME state
(36) does not have minimal support. This is consistent with
the summary of results presented at the end of Sec. IV.

Observation 3. QOA allow us to add a classical column to
arrangement (34) in order to define the following 2-uniform
states of 6 qudits, i.e.,

|ψ(6,d)〉 =
d−1∑
i,j=0

|i,j,i + j,i + 2j 〉|φi,j 〉, (37)

where d is an odd prime number and both sums in kets
are taken modulo d. When d is a prime power number, it
is convenient to use a polynomial representation based on
irreducible polynomials. In such cases, the 2-uniform states
of 6 qubits can be written as

|ψ(6,d)〉 =
d−1∑
i,j=0

|i,j,i + j,i + a1j 〉|φi,j 〉,

where a1 is the first element of the finite set using the
polynomial representation for which a1 �= 0,1.

Here, note that the classical and quantum parts of the
underlying QOA are composed of four and two columns,
respectively. It is simple to check that this arrangement is a
QOA(d2,4C + 2Q,d,2).

In the constructions presented above, the key point was
to produce a QOA from combining a classical OA and an
orthonormal basis composed of generalized Bell states. It
is simple to realize that multiplication of quantum columns
produces another QOA having a larger number of columns.
For example, the QOA (18) can be extended by considering m

copies of the quantum part in the following way:

1 1 1 |�+〉 . . . |�+〉
0 0 1 |�−〉 . . . |�−〉
0 1 0 |�+〉 . . . |�+〉
1 0 0 |�−〉 . . . |�−〉︸ ︷︷ ︸

m

, (38)

which produces a 2-uniform state of 3 + 2m qubit systems.
Furthermore, constructions (36) and (39) can be generalized
in the same way. That is, we construct 2-uniform states for an
odd number of N = 5 + 2m qudits

|ψ(5 + m,d)〉 =
d−1∑
i,j=0

|i, j, i + j 〉 |φi,j 〉 · · · |φi,j 〉︸ ︷︷ ︸
m

,

and also 2-uniform states for an even number of N = 6 + 2m

qudits

|ψ(6 + m,d)〉 =
d−1∑
i,j=0

|i,j,i + j,i + 2j 〉 |φi,j 〉 · · · |φi,j 〉︸ ︷︷ ︸
m

,

where d is a prime number. As we described in Eq. (39), when
d is a prime power we should consider the set of polynomial
representation of the finite sets. For these constructions it is
straightforward to check that every reduction to two parties
forms a POVM.

We recently learned that QOA composed by six columns
exist for any prime number of levels d. By using qudit graph
states [8], the following solution can be found [39] for any
prime number of levels d:

|AME(6,d)〉 =
d−1∑

i1,i2,i3=0

|i1,i2,i3〉|φi1,i2,i3〉, (39)

where

∣∣φi1,i2,i3

〉 =
d−1∑

i4,i5,i6=0

ωAi1 ,...,i6 |i4,i5,i6〉, (40)

with ω = e2πi/d and

Ai1,...,i6 = i1i2 + i2i3 + i3i4 + i4i5 + i5i6 + i6i1

+i1i3 + i4i6 + i2i5. (41)

Note that these states determine the d3 entries of three MOQLC
of a prime size d. Furthermore, these states also imply the
existence of a 3-unitary complex Hadamard matrix of size d3

whose entries are given by Mμ,ν = ωAμ,ν , where μ = d2i1 +
di2 + i3 and ν = d2i4 + di5 + i6, with μ,ν = 0 . . . d3 − 1.

VII. SUMMARY AND CONCLUSIONS

A generalization of classical combinatorial arrangements to
quantum mechanics has been established. We introduced the
notion of quantum Latin squares (QLS), quantum Latin cubes
(QLC), and quantum Latin hypercubes (QLH) and established
a suitable notion of orthogonality between them; see Sec. III.
We also introduced the notion of quantum orthogonal arrays
(QOA) in Sec. IV, that generalizes all the classical and quantum
arrangements studied in Secs. II and III. Moreover, we derived
quantum Latin arrangements from QOA in the same way as
classical Latin arrangements can be obtained from classical
OA; see Proposition 3.

Our findings allowed us to realize that a pair of orthog-
onal quantum Latin arrangements not necessarily implies
the existence of two separated arrangements satisfying an
orthogonality criteria. Indeed, orthogonal Latin arrangements
can be entangled in the same way as quantum states are
entangled; see for instance Eqs. (19) and (22). This astonishing
property is one-to-one related to the fact that columns of QOA
can be entangled; see Eqs. (18) and (21). This turned out
to be a crucial property in order to reproduce some classes
of highly entangled multipartite states, so-called AME states
with nonminimal support, for instance the states AME(5,2) and
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FIG. 3. Connection between the quantum combinatorial arrangements introduced in this work, i.e., mutually orthogonal quantum Latin
arrangements (see Sec. III) and quantum orthogonal arrays (see Sec. IV). This also shows the connections existing between our findings,
k-uniform states, and multiunitary matrices.

AME(6,2) consisting of five and six qubits; see Eqs. (24) and
(25), respectively.

Furthermore, QOA define k-uniform states; see Proposi-
tion 2. We demonstrated that k-uniform states constructed
from quantum Latin arrangements have high persistency of
entanglement, which makes them ideal candidates for quantum
information protocols; see Proposition 4. We also established
a link between multiunitary matrices and mutually orthogonal
Latin arrangements; see Proposition 5.

We constructed three genuinely entangled MOQLS of size
d, QOA composed of five columns and an arbitrary number d

of internal levels and AME states for five parties with d levels
each, for every d � 2; see Proposition 6. This result shows the
usefulness of the quantum combinatorial designs introduced
in this work.

Figure 3 summarizes the relations existing between the
studied concepts and the most relevant results derived in this
work. On one hand, we proposed new mathematical tools
and described original techniques to construct multipartite
quantum states with remarkable properties. On the other hand,
we established some further links between problems and
objects studied in classical combinatorics and quantum theory.
We are tempted to believe that such an approach might be
fruitful in future as it can lead to further development of
“quantum combinatorics,” a branch of mathematics which
investigates various arrangements composed of elements of
the continuous and connected space of d-dimensional quantum

states instead of elements of a discrete set containing d

elements.
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