
PHYSICAL REVIEW A 97, 062324 (2018)
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We show that bipartite entanglement in an one-dimensional quantum spin model undergoing time evolution
due to local Markovian environments can be frozen over time. We demonstrate this by using a number of
paradigmatic quantum spin models including the anisotropic XY model in the presence of a uniform and an
alternating transverse magnetic field (ATXY), the XXZ model, the XYZ model, and the J1 − J2 model involving
the next-nearest-neighbor interactions. We show that the length of the freezing interval, for a chosen pair of
nearest-neighbor spins, may remain independent of the length of the spin chain, for example, in paramagnetic
phases of the ATXY model, indicating a scale invariance. Freezing of entanglement is found to be robust against a
change in the environment temperature, the presence of disorder in the system, and whether the noise is dissipative
or not dissipative. Moreover, we connect the freezing of entanglement with the propagation of information through
a quantum many-body system, as considered in the Lieb-Robinson theorem. We demonstrate that the variation
of the freezing duration exhibits a quadratic behavior against the distance of the nearest-neighbor spin pair from
the noise source, obtained from exact numerical simulations, in contrast to the linear one as predicted by the
Lieb-Robinson theorem.
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I. INTRODUCTION

Rapid development of quantum information technology
has been possible due to the groundbreaking inventions of
communication and computational schemes, including clas-
sical information transmission via quantum states with or
without security [1–3], quantum state transfer [4,5], quantum
metrology [6], and one-way quantum computation [7]. An
almost universal feature in all these quantum information tasks
is the use of quantum correlation in the form of entanglement
[8] between the constituents of composite quantum systems as
a resource. Over past few years, highly entangled bipartite and
multipartite states have been created in the laboratory using
different substrates such as photons [9], trapped ions [10],
superconducting materials [11], nuclear magnetic resonances
(NMRs) [12], and optical lattices [13], making the implemen-
tation of quantum information processing protocols using few
qubits possible.

A main obstacle in this enterprise is the fragility of en-
tanglement to decoherence [14], which is exhibited by the
rapid decay of entanglement with time in multiparty quantum
systems exposed to noisy environments [15,16]. This restrains
the success of realizing quantum information schemes like
transmission of information through quantum channels and
implementation of quantum gates with high fidelities. One
of the extensively studied scenarios of noisy environments
is the consideration of local perturbation in the system due
to the Markovian environmental interactions [15,16]. Here
the perturbation lasts for a small time interval δt , which is
infinitesimally small compared to our observational timescale,
and as per the Markovian approximation, at the beginning of
the next time interval, the state is again set to be a product state

between the system and the environment, so the memory effect
in the system is not taken into consideration. It has been shown,
both theoretically and experimentally, that entanglement in
a multiparty system decays fast and can even completely
disappear after a finite period of time, when subjected to such
local environments [14]. In contrast, under carefully specified
initial conditions, quantum correlations [17] such as quantum
discord [18], which are independent of entanglement, may
exhibit robustness against similar environmental effects [19]
and can even be preserved for some time [20]. However,
despite a few attempts [21], realizable situations for preserving
entanglement, as yet, remain elusive.

With this motivation, we present scenarios involving real-
izable physical systems and environmental models in which
entanglement of the system, even when exposed to the envi-
ronment, remains constant for a finite interval of time at the
beginning of the dynamics. We refer to this phenomenon as
freezing of entanglement. In recent times, a wide spectrum
of substrates is probed in the laboratories all over the world,
thereby providing a large set of physical systems to search for
the frozen entanglement. A priori, it is not at all clear which of
these systems are preferable for exhibiting such a phenomenon
in comparison to the others. In this respect, we find that
low-dimensional quantum spin models (QSMs), which can be
realized and controlled in different physical systems, including
ion traps [22], optical lattices [23], solid-state materials [24],
NMR [25], and superconducting qubits [26], stand out as
excellent candidates.

In this paper we consider a local dissipative Markovian
noise model in the form of a local repetitive quantum in-
teraction (LRQI) [27,28] (cf. [29]). Such a scenario can be
observed in two physical situations. One of them is repeated
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applications of quantum measurements [27,30], where iden-
tical measurement devices are operated repeatedly, one after
another, on the system or parts of the system, while the second
one can be seen in quantum optical devices, where a sequence
of independent atoms arrives and interacts, one atom after the
other, with a quantized radiation field in a cavity for a short
period of time due to the finite lifetime of atoms [31,32]. Apart
from these two scenarios, LRQI is also relevant in electronic
transport [33], thermalization [34], etc. We also consider a
nondissipative noise model, represented by the local dephasing
noise [16,35,36], which can arise due to a fluctuation in the
external electromagnetic field [37].

We consider a number of paradigmatic one-dimensional
(1D) QSMs defined on spin- 1

2 particles as systems, namely, the
anisotropicXY model in external uniform as well as alternating
transverse fields [38–42] (cf. [43]), the XYZ model [44–
47] including the XXZ model with and without an external
magnetic field [48–50], and the J1 − J2 model [51]. We focus
on a situation where the local environments interact with one or
more selected spins in the system via local repetitive quantum
interaction or by local dephasing. Such a situation may arise
in a quantum computer architecture in which only some parts
of the system are exposed to the environment and moreover
those exposed parts are such that they cannot be deleted from
the system. The inability of deleting parts of a system can, for
example, occur in NMR molecules and solid-state systems.

We show that bipartite entanglement, as quantified by the
logarithmic negativity1 [52,53] over the nearest-neighbor (NN)
spin pairs in one-dimensional quantum spin systems, freezes
for both dissipative and nondissipative noises. This is observed
for all NN spin pairs in the system except for the spin pair(s)
that is (are) adjacent to the environment(s). Freezing of entan-
glement exists in all the phases of the model, while the length of
the freezing duration, corresponding to a chosen NN spin pair,
depends on the choice of the system parameters. We also show
that the duration of freezing corresponding to a specific spin
pair in the spin chain may remain unaffected by a variation
of the system size, thereby exhibiting a scale invariance.
We test the effect of an increase in the temperature of the
environment and introduction of disorder [54,55] in the system
and find that the freezing of entanglement is qualitatively robust
against such disturbances. We demonstrate how the freezing
of entanglement disappears when the number of system spins
affected by the external environments is increased. We also
discuss the relation between the freezing phenomenon and the
Lieb-Robinson theorem [56] on the propagation of information
through quantum many-body systems and point out that the
actual values of freezing duration are considerably higher than
the same predicted by the Lieb-Robinson theorem, thereby
indicating a much slower propagation of noise through the
system, particularly when the system size increases.

The paper is organized as follows. In Sec. II we discuss
the quantum spin models and provide a brief description of
the different noise models considered in this paper. Section III

1The logarithmic negativity [52] of a bipartite quantum state ρAB is
given byL(ρAB ) = log2 ‖ρTA

AB‖1, where ρ
TA

AB is the partially transposed
form of ρAB [53] with respect to the subsystem A and ‖ρ‖1 ≡ tr

√
ρ†ρ.

contains the results on the freezing phenomenon of entangle-
ment, including its scale invariance (Sec. III A), robustness
against thermal noise and disorder in the system (Sec. III B),
and its connection to the Lieb-Robinson theorem (Sec. III D).
Section IV contains a summary.

II. MODELS AND METHODOLOGY

In this section we discuss the important features of the rele-
vant quantum spin models used in this paper. We also provide
a brief description of the dissipative local repetitive quantum
interaction model and local dephasing noise considered in this
paper.

A. Systems

To exhibit the freezing phenomenon, we consider a class of
generic 1D QSMs consisting of L spin- 1

2 particles with open
boundary condition (OBC). It is described by the Hamiltonian
HS , given by

HS =
L−1∑
i=1

J

4

[
(1 + γ )σ i

xσ
i+1
x + (1 − γ )σ i

yσ
i+1
y

]

+
L−1∑
i=1

J�

4
σ i

zσ
i+1
z +

L∑
i=1

1

2
[h1 + (−1)ih2]σ i

z . (1)

Here σα , α = x,y,z, are the Pauli matrices, J > 0 is the
strength of the exchange interaction between NN spins, and
γ and � are the x − y and the z anisotropies, respectively. The
system is in the presence of a transverse uniform magnetic
field of strength h1 and a transverse site-dependent magnetic
field of strength h2 that changes its direction from +z to
−z depending on whether the lattice site is even or odd.
For � = 0, HS describes a 1D alternating transverse-field
anisotropic XY model (ATXY) [38–40]. Other paradigmatic
QSMs emerging from Eq. (1) are (i) the 1D transverse-
field XY model (TXY) (h2/J = 0,� = 0), (ii) the fully
isotropic 1D Heisenberg model (γ = 0,� = 1,h2/J = 0),
(iii) the 1D anisotropic XXZ model in an external uniform
magnetic field (TXXZ) (γ = 0,h2/J = 0) [48,49], and (iv)
the 1D XYZ model in a uniform magnetic field (TXYZ)
(γ �= 0,h2/J = 0).

For the purpose of demonstration, we use the ATXY and the
TXXZ models. We choose the ATXY model over the widely
studied TXY model due to the richer phase diagram of the for-
mer, where an antiferromagnetic (AFM) and two paramagnetic
(PM-I and PM-II) phases appear.2 In the thermodynamic limit
and with the periodic boundary condition (PBC), the phase
boundaries of the ATXY model are given by

(h1/J )2 = (h2/J )2 + 1 (PM-I ↔ AFM),

(h2/J )2 = (h1/J )2 + γ 2 (PM-II ↔ AFM) (2)

2Note that in the earlier papers [38,40], the PM-II phase in the ATXY
model was mentioned as the dimer phase. Our recent analysis [43]
shows that the dimer order parameter [57] in this phase vanishes and
it is indeed paramagnetic in nature. However, such a finding does not
affect the results obtained in this paper as well as the other results in
[38,40].
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FIG. 1. Schematic representation of a 1D system of L spins,
of which Nd spins, labeled as di,i = 1,2, . . . ,Nd , act as the doors
and interact with independent environments, denoted by Edi

. The
enlarged portion describes the local repetitive interaction between the
environment and a door in the system. The spin d1 in the 1D QSM acts
as the door and interacts with a copy of the environment for a short
interval of time δt . In the nth interval of duration δt , the interacting
copy of the environment is Ed1

n . Note here that during the same nth
interval of duration δt , along with the door d1, the door di in the system
(i �= 1) is also interacting with the copy Edi

n of the environment.

on the (h1/J,h2/J ) plane [38,40] (cf. footnote 2 and [43]).
For OBC, we observe that the phase boundaries change only
slightly, even with a moderately small system size, and the
AFM region shrinks.

On the other hand, the TXXZ model also shows three
phases, namely, an AFM, a ferromagnetic (FM) phase, and
an XY (spin flopping) phase, among which the first two are
gapped while the third one has a gapless spectrum. Specifically,
without the external magnetic field, the FM ↔ XY transition
occurs at � = −1, while at � = 1, the XY ↔ AFM transition
takes place. With increasing strength of the external field, the
quantum phase transition point �c = 1 shifts to the left (see
[49] for the phase diagram of the model). Here we point out
that in the FM phase (� � −1), the bipartite entanglement
vanishes for all values of the external field [50].

B. Environments

Let us now consider the situation where at time t = 0, Nd

number of spins, labeled {d1,d2, . . . ,dNd
} (see Fig. 1), from the

system S start interacting with local environments, denoted by
Edi

. We call these spins in the system doors and consider the
type of interaction between each door and the corresponding
environment to be Markovian. The time evolution of the state
of the system ρS(t) is then given by the solution of the Lindblad
quantum master equation [15,16]

dρS

dt
= − i

h̄
[HS,ρS] + D(ρS). (3)

We assume that the environments {Edi
≡ E} are identical and

are independent of each other. The dynamical term D(·) in
Eq. (3) depends explicitly on the physical nature of the environ-
ment(s) and the type of the interaction(s) between the door(s)
and the environment(s). We now briefly describe the different

noise models, corresponding to the different types of environ-
ments considered in this paper.

1. Local repetitive quantum interaction

We first consider a dissipative noise model and start with
the scenario in which there is only one-door spin, denoted by
d, in the system. Consider the system S characterized by the
canonical equilibrium state ρS to be at absolute temperature
TS . The system, via the door, is in contact with a bath in
the form of a collection of N identical and decoupled spins,
denoted by {Ed

1 ,Ed
2 , . . . ,Ed

N }, where N is a large number. To
keep the notation uncluttered, we will discard the superscript
d in the case of the single-door scenario and denote the spins
in the bath by {E1,E2, . . . ,EN }. However, in the multiple
bath scenario to be considered in subsequent discussions, the
bath spins corresponding to the door spin di are denoted by
{Edi

1 ,E
di

2 , . . . ,E
di

N } (see Fig. 1). Each spin in the collection is
at absolute temperature TE and is described by the Hamiltonian
HEi

= Bσz
i in the Hilbert space HEi

. We consider the system-
environment (SE) interaction to be such that S interacts with
only one chosen spin, say, Ei , at a given time instant and the
interaction lasts for a very short time interval δt . During this
interval, all the other spins in the collection {Ej ,j �= i} remain
isolated from S as well as from Ei . The total Hamiltonian
Hi describing altogether the combination of the system S, the
spin from the collection Ei with which S interacts, and the
interaction between S and Ei is defined in the Hilbert space
HS ⊗ HEi

.
Without any loss of generality, we assume that during the

first interval [0,δt], S interacts with E1. The duo of S and
E1, denoted by SE1, has the state ρ0

SE1
= ρ0

S ⊗ ρE1 at t = 0,
where ρ0

S is the state of S at t = 0 and ρE1 is the state of the spin
E1 at temperature TE . The unitary evolution generated by H1

in the interval [0,δt] is given by ρ0
SE1

�→ ρ1
SE1

= U1ρ
0
SE1

U†
1,

where U1 = exp(−iδtH1/h̄). In the next interval [δt,2δt], the
system, having an initial state ρ1

S = trE1 [ρ1
SE1

], interacts with
E2 only and the initial state of SE2 is given by ρ1

S ⊗ ρE2 . In
this interval, the dynamics is governed by the Hamiltonian H2,
which is defined in a way similar to H1. Note here that ρE1

and ρE2 are identical to each other. Continuing this procedure
in all subsequent intervals is equivalent to a local repetitive
interaction between the system S and one spin, denoted by E

and defined by the Hamiltonian HE = Bσz
E , which interacts

with the system via the door. At the beginning of every time
interval, the initial state of the system-environment duo SE is
reset to the product of the state of the environment ρE (which
is the Markovian approximation) and the evolved state of S,
obtained by tracing out the environment from the evolved state
of SE at the end of the previous interval.

In this paper we consider the interaction Hamiltonian to be
of the form

Hint(δt) =
√

k/δt
(
σx

d ⊗ σx
E + σ

y

d ⊗ σ
y

E

)
, (4)

where the subscript d denotes the single door in the system and
k has the dimension of (energy2 × time). The total Hamiltonian
of the system and the environment is of the form

H = HS ⊗ IE + IS ⊗ HE + Hint(δt). (5)
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In a single-door scenario, this leads to a dynamical term of the
form (see the Appendix for a detailed derivation)

Dd (ρS) = 2k

h̄2

1∑
l=0

pl

[
2ηl+1

d ρSη
l
d − {

ηl
dη

l+1
d ,ρS

}]
, (6)

with pl = Z−1
E exp[(−1)lβEB], ZE = tr[exp(−βEHE)], and

ηα
di

= σx
di

+ i(−1)ασ
y

di
. The operator Dd (·) reduces to that

corresponding to the well-known amplitude-damping noise
[16] in the limit of high BβE .

2. Local dephasing noise

The second type of noise that we consider is the nondissi-
pative local dephasing noise on Nd of the parties in S, thereby
leading to a collective dephasing of the chosen parties. Each
door d experiences a pure dephasing noise, being in contact
with a thermal bath of harmonic oscillators with spectral
density {ωi}, defined by the Hamiltonian HE = ∑

i ωia
†
i ai .

Here ai (a†
i ) is the annihilation (creation) operator of the

ith mode. The interaction Hamiltonian is given by Hint =∑
i σ

z
d ⊗ (giai + g∗

i a
†
i ), g being the door-reservoir coupling

constant. Assuming the zero-temperature state to be the initial
state of the reservoir [35], in a single-door scenario, the
dynamical term is given by

Dd (ρS) = γ̃ (t)
(
σ z

d ρSσ
z
d − ρS

)
, (7)

with

γ̃ (t) = [1 + (ωct)
2]−s/2 sin[s tan−1(ωct)]

∫ ∞

0
xs−1e−sdx

(8)

being the zero-temperature time-dependent dephasing rate.
Here ωc is the cutoff spectral frequency and s is the Ohmicity
parameter [36] determining Markovianity (s � 2).

At this point, it is logical to look into the effect of the
presence of multiple doors in the system and the situation
where more than one independent environment is interacting
with the same door spin in the system. The fact that the
environments interacting with different doors in the system are
independent of each other implies that their effect is additive,
which leads to the dynamical term of the multiple-door system
with Nd doors given by

D(ρs) =
Nd∑
i=1

Ddi
(ρs), (9)

whereDdi
(ρS) are of the form given in Eq. (6) or (7), depending

on whether the noise is of LRQI or the dephasing type. One may
also consider a scenario where not one but a finite number rdi

of
environments interact independently on the door di during each
time interval δt . Again, these environments being independent
of each other leads to a simple modification of Eq. (9) as

D(ρs) =
Nd∑
i=1

rdi
Ddi

(ρs). (10)

III. FREEZING OF ENTANGLEMENT

In this section we discuss the main result of this paper,
namely, the freezing of NN bipartite entanglement, as mea-
sured by logarithmic negativity (LN) (see footnote 1 and [52])
in quantum spin models. Note that the results obtained here
remain qualitatively unaltered if one considers other bipartite
entanglement measures such as entanglement of formation [58]
and concurrence [59]. We evaluate LN of the time-evolved state
ρi,i+1(t) = tri,i+1[ρS(t)] of any two NN spins (i,i + 1), i =
1,2, . . . ,L − 1, denoted by Li,i+1(t). Here ρS(t) is obtained by
solving Eq. (3) via employing the fourth-order Runge-Kutta
method, for which the order of the local numerical errors
goes as the fifth power of the length of the time increment
in each iteration step of the algorithm. For our purpose, we
set the length of the time increment as 0.01 such that the
local numerical error is ∼10−10. We consider a canonical
equilibrium state

ρ0
S = exp(−βSHS)

Tr[exp(−βSHS)]
(11)

of S at absolute temperature TS as the initial state. Let us denote
the value of Li,i+1 at t = 0 by L0

i,i+1. We consider Li,i+1(t) to

be frozen over a time interval [0,τ
i,i+1
F ], 0 � τ

i,i+1
F � tl , if for

all t in [0,τ
i,i+1
F ],

|Li,i+1(t) − L0
i,i+1| � δ, L0

i,i+1 > 0, (12)

where we choose δ to be 10−5. We call τF the freezing terminal,
which is a characteristic of the chosen NN spin pair as well
as the parameters defining the system, the environment, and
the system-environment interaction. The typical value of the
quantity tl is large and has to be chosen by a careful inspection
of LN. A time span tl is considered to be large if LN saturates
to a fixed value for t � tl due to the equilibration of the
system or, for instance, some accidental cancellations within
the expressions representing LN, which is not necessarily
equivalent to the equilibration of the entire system. In the
present case, tl ∼ 103. A dimensional analysis of Eq. (3),
taking into account the form of the system Hamiltonian given
in Eq. (1), leads to defining the dimensionless quantities
k → k/(h̄J ), t → J t/h̄, βS → JβS = J (kBTS)−1, and βE →
BβE = B(kBTE)−1 used throughout this paper, where we set
k = 1 for all our calculations.

For demonstration, we first use the ATXY model with a
single door and an environment modeled by the LRQI, and
set JβS = 20 and BβE = 10 for all our calculations. Note
here that the value of BβE > 5 ensures that the LRQI model
effectively represents the local Markovian amplitude-damping
noise and our calculations therefore are performed in the
amplitude-damping regime of the noise model. In the single-
door scenario, we consider the spin 1 as the only door in the
system. The different values of the system parameters used for
demonstration, corresponding to different phases of the ATXY
model, are tabulated in Table I. In all three phases of the ATXY
model, NN entanglement, corresponding to all the spin pairs
except those with a door, remains constant for a finite interval of
time. The preservation of entanglement, corresponding to the
NN spin pair (i,i + 1), 2 � i � L − 1, occurs at the beginning
of the dynamics, thereby exhibiting a freezing of entanglement
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TABLE I. Values of the system parameters chosen for demonstra-
tion in different phases of the ATXY model. The last two columns
indicate the type of variation [monotonic (M) or nonmonotonic (NM)]
of τ

i,i+1
F with i and whether all the spin- pairs show scale-invariant (SI)

freezing in the phase (see Fig. 4 and discussion in Sec. III A). Note,
however, that the results reported here are true even for other system
and environment parameters. All parameters are dimensionless.

Phase Specimen values τ
i,i+1
F vs i SI

PM-I h1
J

= 1.2, h2
J

= 0, γ = 0.8 M all

PM-II h1
J

= 0, h2
J

= 1.2, γ = 0.8 M all

AFM h1
J

= 0.2, h2
J

= 0.2, γ = 0.8 NM selective

with a finite τ
i,i+1
F . For t > τ

i,i+1
F , Li,i+1(t), 2 � i � L − 1,

decays rapidly to zero with increasing time and eventually
undergoes a sudden death. See Fig. 2(a) for a demonstration
with L = 8 and Nd = 1; spin 1 is chosen as the door in
Figs. 2(a)–2(c).

Note here that the freezing phenomenon is different than
saturation [21] (cf. [60]) since the latter occurs only at large
times, while the former takes place right after the system
starts interacting with the environment. It is important to stress
here that the other noisy environments, inevitably present in
experiments and usually ignored in theoretical studies, will
increase their effects on entanglement of the system at later
times, which may disturb the saturation phenomenon while
such possibilities are reduced in freezing of entanglement. Note
also that in contrast to the Markovian system-environment
interaction, there exist instances of revival of LN after a
complete collapse to zero [Fig. 2(a)]. This is a result of the
nonzero interaction between the spins in the system at all time
during the dynamics, including at t = 0, which generates a
memory effect in the bulk of the system.

See Fig. 2(b) for a demonstration of the freezing phe-
nomenon under the Markovian dephasing noise with L = 8
and Nd = 1. Note here that irrespective of the type of noise,
the temperature JβS of the system at t = 0 has to be such that
L0

i,i+1 > 0 to satisfy Eq. (12). In this context, it is worthwhile
to mention that in one-dimensional quantum spin models
with short-range interactions, pairwise entanglement dies out

rapidly as the distance between the spins forming the spin
pair under consideration increases. In the case of the ATXY
model, entanglement for the spin pairs (i,i + m) with m > 1
for the thermal as well as the ground state is nonzero at
t = 0 only for some specific parameter ranges. We find that if
entanglement is present in the spin pair (i,i + m) with m > 1,
then freezing of entanglement takes place if i > 1. In the case
of the PM-II phase of the ATXY model with an open boundary
condition (cf. [61] for a periodic boundary condition) with
system-parameter values given in Table I, entanglement is
nonzero only for the spin pairs (1,3) and (L − 2,L) (i.e., when
m = 2) apart from the cases of m = 1 (NN pairs). Similar to
the NN pair (1,2), entanglement for the spin pair (1,3) does not
freeze, while for the pair (L − 2,L), freezing of entanglement
takes place. Interestingly, we find that the value of the freezing
terminal τF for the pair (L − 2,L) is larger than that for the
pair (L − 2,L − 1), but smaller than that of the pair (L − 1,L).

Keeping the model for system-environment interaction
unchanged at either the LRQI or the dephasing noise, we
observe that the freezing of NN entanglement occurs in the
AFM and PM phases of the TXY model, in the AFM and the
XY phases of the TXXZ model [49] [see Fig. 2(c)], and in
the TXYZ, the fully isotropic Heisenberg, and the 1D J1 − J2

models [51]. The last model is represented by the Hamiltonian
having an additional next-nearest-neighbor interaction term

HS = J1

L∑
i=1

�σi · �σi+1 + J2

L∑
i=1

�σi · �σi+2, (13)

where Jj (j = 1,2) are coupling constants of NN and next-
nearest-neighbor interactions. Note that in the TXXZ model
with OBCs, the freezing phenomenon is present in all the
phases of the model as depicted in Fig. 2(c), where the system
parameters are chosen from the AFM phase of the TXXZ
model (� = 1.5,h1/J = 0.1), except the FM phase, where
bipartite entanglement vanishes at t = 0 due to the alignment
of the spins and remains so when the system interacts with
the environment, thereby violating Eq. (12). These findings
emphasize the potential of the freezing phenomenon to be
generic to the phases of the 1D QSMs. However, in the rest
of the paper, we will focus on the ATXY model to demonstrate
the different features of the freezing of entanglement.

FIG. 2. Freezing dynamics of NN entanglement. The NN entanglement freezes in the PM-II phase of the ATXY model for (a) dissipative
LRQI and (b) local phase-damping noise, where the time axis is in logarithmic scale; the system parameters used in this figure are given in
Table I. (c) Similar dynamics is observed in the case of the AFM phase in the TXXZ model, where we choose � = 1.5 and h1/J = 0.1. All
the axes in all the figures are dimensionless.
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FIG. 3. Time dynamics of entanglement of the spin pair (1,2)
(i) for the PM-II phase of the ATXY model under LRQI, (ii) under
local dephasing (with model parameters given in Table I), and (iii) for
the AFM phase of the TXXZ model under LRQI, where we choose
� = 1.5 and h1/J = 0.1. All the axes in the figure are dimensionless.

Note that, as mentioned before, freezing of entanglement is
observed for all the nearest-neighbor spin pairs in the system,
except the spin pair (1,2). In fact, L1,2(t) exhibits a fluctuating
behavior (see Fig. 3). Interestingly, depending on the choice
of the noise model and the quantum phases of the spin model
L1,2(t) either saturates to a finite value [e.g., the PM-II phase
of the ATXY model under LRQI, whereL1,2(t → tl) ≈ 0.017]
or goes to zero at a large time.

A. Scale invariance

In both PM phases of the ATXY model, the value of τ
i,i+1
F ,

for a specific choice of (i,i + 1), remains unaffected with
a change in the system size, indicating a scale invariance.
Specifically, for fixed (i,i + 1),

τ
i,i+1
F = tc ∀L, (14)

where 0 � tc � tl and tl ∼ 103. The equality is up to our
numerical accuracy (∼10−5). As a result, the variations of

τ
i,i+1
F against i, corresponding to different values of L, coincide

[Figs. 4(a) and 4(b)], indicating an invariance of the variation
of τ

i,i+1
F with i, against varying L. For i � 5, where the values

of τF are considerably high, this variation is a parabolic one,
given by

τ
i,i+1
F = ai2 + bi + c ∀L, (15)

irrespective of the value of L, where a, b, and c are deter-
mined by the system parameters. For instance, in the exam-
ple shown in Fig. 4(a), a = 1.77 × 10−2 ± 1.2 × 10−3, b =
6.6 × 10−1 ± 1.8 × 10−2, and c = −2.59 ± 6.5 × 10−2, and
in the case in Fig. 4(b), a = 2.41 × 10−2 ± 1.5 × 10−3, b =
3.767 × 10−1 ± 2.26 × 10−2, and c = −1.50 ± 8.2 × 10−2.
This equation allows one to estimate τF corresponding toLi,i+1

with increasing distance from the door. The importance of the
above result lies in the fact that if execution of a quantum
information protocol requires a certain time period, say, τ ′

F ,
Eq. (15) provides the estimate of the minimum size of the
system, given by Lm = im + 1, required to attain this value,
where im is obtained as a solution of Eq. (15), by using
τ

i,i+1
F = τ ′

F . Also, in both the PM-I and PM-II phases, the
freezing terminal τ

i,i+1
F shows a monotonic behavior with i

given by

τ
i,i+1
F � τ

j,j+1
F ∀1 < j < i � L − 1 (16)

and thereby imposing a hierarchy among the different NN pairs
in τF .

However, in the AFM phase, scale invariance is observed
for selected NN spin pairs only [Fig. 4(c)]. Therefore, this
feature distinguishes between the paramagnetic and the AFM
phases of the ATXY model. Moreover, the variation of τ

i,i+1
F

with i is nonmonotonic in the AFM phase. The existence of the
scale invariance is however independent of whether the trend
of τ

i,i+1
F with i is monotonic or nonmonotonic [Fig. 4(c)], e.g.,

τ
5,6
F > τ

6,7
F , while τ

5,6
F and τ

6,7
F are independent of L. These

observations indicate that the freezing of entanglement cannot
simply be explained by the attenuation of the decohering power
of the environment as one moves away from the door. It also
requires an understanding of how the disturbance due to the

FIG. 4. Scale invariance. The behavior of τ
i,i+1
F against i, for 6 � L � 11, in the (a) PM-I, (b) PM-II, and (c) AFM phases of the ATXY

model, with the chosen system parameters given in Table I. Different point types correspond to different values of L. In (a) and (b) the points
corresponding to L = 11 are joined by a solid line, which clearly exhibits the monotonicity, while such monotonic behavior is not present in the
case in (c). The green dashed curves, in all the figures, show the variation of freezing terminal τLR

F , as predicted by the Lieb-Robinson theorem,
with i (see the discussion in Sec. III D). All quantities plotted are dimensionless.
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bath propagates through the quantum spin chain. We will again
address this question at the end of this section.

The entire analysis in this paper is based on the system
Hamiltonian with OBC. The use of PBC, instead of the OBC,
imposes a reflection symmetry in the values of τF with respect
to i = L

2 (L−1
2 ), depending on whether L is even (odd). Hence,

it decreases the maximum achievable value of τF compared to
that in a system with OBC. It is also important to point out
here that the scale invariance of τF is found in selected NN
spin pairs of all the other 1D QSMs considered in this paper,
but the monotonic increase of τ

i,i+1
F with i is also absent in

those spin models.

B. Robustness

In order to investigate the robustness of the freezing
phenomenon, we consider two specific situations where the
system-environment duo with a frozen NN entanglement is
subjected to disturbance. The first situation is that of changing
the temperature of the environment from a temperature at
which freezing has occurred in the ATXY model. We find
that the qualitative results regarding the freezing of bipartite
entanglement and its scale invariance remain unchanged with
a change in the environment temperature BβE , although the
entanglement decays more rapidly for t > τF when BβE is low,
i.e., when one moves away from the amplitude-damping limit.
Similar findings are obtained when one uses a nondissipative
noise, such as the local dephasing noise, instead of a dissipative
one.

Next we also consider a disordered ATXY model, where the
strengths of the transverse uniform and alternating magnetic
fields hi

1/J and hi
2/J corresponding to the lattice site i are

chosen randomly from Gaussian distributions with means
〈h1/J 〉 and 〈h2/J 〉, respectively, and with a fixed standard
deviation [54] for all the lattice sites. Such systems can now
also be engineered in the laboratory with currently available
technologies [55]. We assume that the disorder is quenched,
where the quenching is performed under the assumption that
the timescale of the dynamics is much smaller than the
equilibration time of the disorder. A canonical equilibrium
state, corresponding to an initial set of such random values of
the system parameters on all the sites at a finite temperature,
evolves under the noisy environment. The NN entanglement
corresponding to a specific spin pair at every time instant during
the dynamics is computed and averaged over a large number of
initial sets of values of the chosen system parameters; we refer
to this average entanglement as NN quenched entanglement.

Quantum correlations in these disordered systems often
show counterintuitive behavior compared to the corresponding
ordered systems [62]. In the present case, we find that freezing
of NN quenched entanglement occurs with all its qualitative
characteristics retained, thereby exhibiting a robustness against
disorder in the system. However, the value of the freezing
terminal corresponding to a specific spin pair decreases. An
example of the freezing dynamics in the quenched disordered
ATXY model is given in Fig. 5, where hi

2/J is the disordered
system parameter, chosen from a Gaussian distribution of mean
〈h2/J 〉 = 1.2 and standard deviation 0.3, with γ = 0.8 and
hi

1/J = 0 for all lattice sites. Note that in the ordered case,
the chosen values of the system parameters are h2/J = 1.2,

FIG. 5. Variation of NN quenched entanglement with respect to t

under LRQI in the case of the disordered ATXY model, with hi
2/J as

the disordered system parameter. The values of hi
2/J are chosen from

a Gaussian distribution of mean 〈h2/J 〉 = 1.2 with standard deviation
0.3 and we set γ = 0.8 and hi

1/J = 0. The time axis is in logarithmic
scale and all the axes are dimensionless.

h1/J = 0, and γ = 0.8 corresponding to the PM-II phase. The
only qualitative difference between the disordered case and the
one without disorder is a longer sustenance of entanglement
over time, as clearly seen from the figure.

Note that, in Figs. 2 and 5, the time axes are in logarithmic
scale. Therefore, time has been plotted from t = 0.01 instead
of t = 0. However, in the interval from t = 0 to t = 0.01, NN
LN remains constant over time (i.e., frozen) for all the spin
pairs (i,i + 1) with i > 1.

C. Multiple doors and environments

We now move to the case where instead of one door the
environment affects the system via multiple doors. We observe
that the freezing terminal for a given NN spin pair in a spin
chain of length L decreases when a larger portion of the system
is exposed to the environment. For example, in the PM-I phase
of the ATXY model, if more doors are added one by one in the
system, starting from spin 1, τ

10,11
F exhibits a parabolic decay,

given by

τ
10,11
F = 0.033 571 4N2

d − 1.186 43Nd + 7.28, (17)

with an increasing number of doors Nd exposed to the environ-
ment (see Fig. 6). Freezing of entanglement entirely vanishes
if the entire system is exposed to noise.

One may also consider a scenario where instead of one
a fixed and finite number of spins, say, r (>1), interact
independently as environments with the door d at spin 1 in
the QSM during the same time interval δt . The effect of each
of these r environments is additive (see Sec. II B for details).
We here find qualitatively similar results regarding freezing
of entanglement. However, with increasing r , a decrease in
the value of the τF is observed. In the AFM phase of the
ATXY model, the value of τ

i,i+1
F , for a fixed pair of NN spins,

decreases monotonically with increasing r approximately as
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FIG. 6. Variation of τ
10,11
F with Nd in the PM-I phase of the ATXY

model with L = 11, where doors are added one by one in the system,
starting from spin 1. All quantities plotted are dimensionless.

∼r−1. However, in the PM-I and the PM-II phases and for fixed
(i,i + 1), both monotonic and nonmonotonic variations of
τ

i,i+1
F with increasing r are found. The nonmonotonic variation

of τ
i,i+1
F with r is abundant when one moves away from

the phase boundaries. Also, counterintuitively, with r > 1,
Li,i+1(t) for i > 1 is found to remain nonzero for a longer time
after t > τ

i,i+1
F , compared to the time in the case of r = 1,

thereby indicating a robustness of entanglement against the
increase of the number of environments accessing the system
via a single door.

D. Physical interpretation towards freezing of entanglement
and Lieb-Robinson velocity

In the single-door scenario, one may interpret the freezing
terminal τ

i,i+1
F as the time taken by the disturbance introduced

at the door spin d to reach the spin pair (i,i + 1) situated
at a certain distance from the door. Such an interpretation
directly connects the freezing phenomenon of entanglement
with the Lieb-Robinson (LR) theorem [56] in many-body
physics, which provides upper bound on the speed of prop-
agation of information in a many-body system. According
to the LR theorem, the speed of information flow from a
subsystem X to another subsystem Y of a many-body system
is finite and is bounded below by the LR velocity v [56,63].
Therefore, if X is subjected to a local noise, its effects will
be exponentially suppressed if d(X,Y ) > vt , where d(X,Y )
measures the distance between the subsystems X and Y , and t

is the time (see Sec. 3 in [63] for details). Here, let us consider
the freezing of NN entanglement at a specific NN spin pair
(i,i + 1) at a distance i from the door (spin 1) to be occurring
due to a finite time taken by the noise at spin 1 to propagate
along the spin chain to the NN spin pair. The lower bound
of the freezing terminal, according to LR bound, should be
τLR
F ≈ d(X,Y )/v. In our scenario, we apply noise on the spin

1, which is interacting with spin 2, implying that the subsystem
X can be considered as the spin pair (1,2). If the freezing of
entanglement on the spin pair Y = (i,i + 1) is due to the finite
velocity of the effect of noise on X along the spin chain, then
the freezing terminal τLR

F , as estimated from the LR theorem,

is given by

τLR
F ≈ |i − 2|/v. (18)

Since the examples of 1D QSMs used here are of short-range
interactions, the variation of τLR

F against d is predicted to be a
linear one [64], which is indeed the case (see Fig. 4).

However, a comparison between the actual value of the
freezing terminal and the one obtained by using the LR theorem
leads to the following observations.

(i) Although the LR theorem provides an estimate of the
time taken by the noise to travel the distance d(X,Y ) (i.e.,
|i − 2| in the present case (see Eq. (18))) through the spin chain,
the actual value is expected to be greater than or equal to the LR
estimation. Our numerical analysis provides evidence that the
actual propagation time of noise is considerably longer than the
LR prediction and is a quadratic function of d(X,Y ), which is in
contrast to the LR prediction. Although τLR

F and τF may posses
values of similar order when d(X,Y ) is small, with increasing
d(X,Y ), the LR estimation of the freezing terminal becomes
very small compared to the actual value, thereby predicting
a faster propagation of noise, which is actually not the case.
Hence, in the case of large system size, where the distance
between the noise source and the target spin pair is large, the
LR estimation may become qualitatively different (quadratic
vs linear). This is clearly demonstrated in Fig. 4.

(ii) The LR theorem predicts scale invariance of the propa-
gation time in any system under consideration, as is clear from
the expression of τLR

F . However, the LR value provides only
a lower bound on the freezing terminal. In a specific system,
there may exist a scale-invariant freezing terminal at a much
higher value than what is provided by LR prediction. However,
in general, this higher value of the freezing terminal is not
universally scale invariant, unlike the LR one, for example, in
the AFM phase of the ATXY model.

Our analysis provides an alternative way of investigating
the propagation of noise through quantum many-body systems,
independently of the LR theorem. It also relates two seemingly
different directions of research, namely, the investigation
of frozen entanglement under noise and the propagation of
information through quantum many-body systems. Moreover,
our analysis clearly demonstrates that the exact analysis may
provide results that have a large deviation from the LR
predictions and therefore emphasizes the necessity of looking
into the actual results even in cases where LR calculations are
possible.

Towards understanding the scale invariance in the freezing
phenomenon, we study the correlation function

Cij = 〈�σ i · �σ j 〉 − 〈�σ i〉〈�σ j 〉, (19)

where 1 � i < j � L, in the QSM at t = 0. We find that, corre-
sponding to the spin pairs (i,i + 1) exhibiting scale invariance
(e.g., in the PM-I and PM-II phases of the ATXY model) with
spin 1 as the door, the value of the long-range correlation at
t = 0, given by C1i , with i > 1, is low compared to that in
the case of spin pairs that do not exhibit scale invariance
(e.g., selected pairs in the AFM phase of the ATXY model).
Moreover, we point out that the correlation length diverges
[41] at the phase boundaries of the ATXY model, where
the value of the freezing terminal is low. In contrast, well
inside the three phases of the model, the value of the freezing
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terminal increases, thereby validating the interpretation of
the freezing terminal as the propagation time of disturbance
through the spin chain. Note that, while the interpretation
seems simple in the case of a single-door system with OBC,
for systems with multiple doors and PBC, a chosen spin pair
can experience disturbances originating from different doors,
thereby indicating an intricate mechanism for the dependence
of the freezing duration over the distance of the spin pair from
the door(s).

IV. CONCLUSION

Entanglement is known to be an important resource in a
large class of quantum information protocols. Therefore, find-
ing robustness of entanglement under different decoherence
models has attracted a great deal of attention. In this paper we
demonstrated that under local noise, bipartite entanglement of
a quantum many-body system can remain constant, or nearly
constant, within numerical accuracy, over a finite interval
of time, called the freezing terminal. We call this feature
the freezing of entanglement. We showed that the freezing
of bipartite entanglement can take place in a collection of
paradigmatic one-dimensional quantum spin systems, such
as the ATXY model, the TXY model, the TXXZ model, the
TXYZ model, and the J1 − J2 model under both dissipative
and nondissipative environments. As the first kind of noise,
we considered a local repetitive quantum interaction, which
in the low-temperature limit effectively represents the local
amplitude-damping noise. On the other hand, the nondissi-
pative noise is represented by the local dephasing noise. We
showed that freezing of entanglement occurs for both kinds of
noise, as well as in all the phases of the quantum spin models
considered, except in phases where the bipartite entanglement
of the initial state vanishes, as in the case of the ferromagnetic
phase of the TXXZ model.

We found that in the paramagnetic phases of the ATXY
model, the duration of freezing of entanglement, corresponding
to all the nearest-neighbor pairs in the system, is independent
of the system size, thereby exhibiting a scale invariance.
Interestingly, such a scale invariance was present only in the
case of selected nearest-neighbor pairs of spins in the case of
the AFM phase of the ATXY model and in all the phases of
the rest of the quantum spin models considered in this paper.
We also found that irrespective of the choice of the quantum
spin model, freezing of entanglement remains qualitatively
unaffected with a change in the environment temperature or
in a situation where disorder is introduced in the system. We
also investigated the phenomenon where multiple spins in
the system were subjected to noise, or when more than one
environments interacted with the same spin in the system,
and observed the freezing of entanglement to be sustained
with qualitative changes only. However, with an increasing
number of parties in the system that were subjected to noise, the
freezing of entanglement eventually vanished. The quantum
spin models as well as the noise models considered in our
work can be realized in quantum optical devices, nuclear
magnetic resonances, and cold atoms in optical lattices, thereby
making the realization of frozen entanglement in the laboratory
a possible goal. Therefore, our results are expected to have

an impact in the making of quantum devices using quantum
entanglement as a resource.
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APPENDIX: LINDBLAD MASTER EQUATION FOR
LOCAL REPETITIVE QUANTUM INTERACTION

Following the description of LRQI in Sec. II B 1, let us
consider the nth time interval [(n − 1)δt,nδt] during which
the system S interacts with the nth environment spin En only,
n = 1,2, . . . ,N . The evolution of the complete state ρ of the
system S and N copies of the spin {Ei} in this interval is

achieved by ρ �→ ŨnρŨ
†
n, where Ũn and ρ are defined in the

Hilbert space given by Htot = HS

⊗N
n=1 HEn

. The operation
Ũn is given by

Ũn = Un

N⊗
m=1
m�=n

Im, (A1)

where Un = exp (−iδtHn/h̄) in the space HS ⊗ HEn
and Hn

is the total Hamiltonian of the system, the environment and
their interactions in the nth interval. Here Im is the identity
operator defined in the environment Hilbert space. A collective
evolution of the system-environment combination, up to a

time nδt (1 � n � N ), is given by ρ �→ UnρU
†
n, where the

sequence of unitaries {Un} satisfies

Un+1 = Ũn+1Un, U0 = I, (A2)

with I being the identity operator in Htot. We will consider the
unitary evolution given in Eq. (A2) up to a time Nδt , in the
limit N → ∞ and δt → 0, such that Nδt remains finite.

Let us now assume that at the beginning of the nth time
interval of duration δt , the states of S and En are ρS and
ρEn

, respectively. Let us also assume that {Bj
n } is the linearly

independent basis on the operator space of HEn
, which is

orthonormal with respect to the inner product 〈A1,A2〉ρEn
=

tr(ρEn
A1†A2), implying tr(ρEn

Bi
n

†
B

j
n ) = δij . Therefore,

Un =
∑

j

Uj
n ⊗ Bj

n , (A3)

where {Uj
n} are operators on HS .

After the nth time interval, the state of S evolves from ρS

to Dn(ρS), with

Dn(ρS) = trEn
(UnρS ⊗ ρEn

U†
n)

=
∑
ij

Ui
nρSU

j
n

†
tr
(
Bi

nρEn
Bj

n

†)

=
∑

j

Uj
nρSU

j
n

†
, (A4)
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so that the quantum master equation corresponding to the nth
interaction can be derived from

dρS

dt
= lim

δt→0

Dn(ρS) − ρS

δt
. (A5)

Noticing that all the spins {Ei} in the collection are identical
and have Hamiltonians {HEi

≡ HE = Bσz
E} and states {ρEi

≡
ρE}, Eqs. (A3) and (A4) hold true for every interval, implying
that by discarding the index n, Eq. (A5) provides the master
equation for the entire evolution.

Now the total system-environment Hamiltonian H , given by Eqs. (4) and (5), can be written as

H =
(

HS + BIS 2
√

k/δtσ−
d

2
√

k/δtσ+
d HS − BIS

)
, (A6)

where σ±
d = σx

d ± iσ
y

d . In turn, U = exp(−iδtH/h̄) can be written as

U =
(
IS − δt

h̄

(
iBIS + iHS + 2k

h̄
σ−

d σ+
d

) + o(δt2) − 2i
h̄

√
kδtσ−

d + o(δt3/2)

− 2i
h̄

√
kδtσ+

d + o(δt3/2) IS + δt
h̄

(
iBIS − iHS − 2k

h̄
σ+

d σ−
d

) + o(δt2)

)
. (A7)

We consider the thermal state ρE = diag{p0,p1} of the environment at temperature TE to be its initial state, where

p0 = Z−1
E exp(−βEB), p1 = Z−1

E exp(βEB), (A8)

with Z−1
E = tr[exp(−βEBσz

E)] and βE = (kBTE)−1, kB being the Boltzmann constant. From ρE , {Bj } matrices can be defined as

B0 = IE, B1 = 1√
p0

(
0 0

1 0

)
, B2 = 1√

p1

(
0 1

0 0

)
, B3 = 1√

p0p1

(
p1 0

0 −p0

)
(A9)

such that tr(ρβE
Bi

n

†
B

j
n ) = δij . The elements of U in the basis {Bj } are given by

U0 = IS + δt

h̄

(
− iHS + iB(p1 − p0)IS − 2k

h̄
p0σ

−
d σ+

d − 2k

h̄
p1σ

+
d σ−

d

)
+ O(δt2),

U1 = −2i

h̄

√
p0kδtσ+

d + o(δt3/2), U2 = −2i

h̄

√
p1kδtσ−

d + O(δt3/2), U3 = O(δt).

Using these, straightforward algebra leads to∑
j

Uj ρSU
j † = ρS − iδt

h̄
[HS,ρS] + 2kp0δt

h̄2 (2σ+
d ρSσ

−
d − {σ−

d σ+
d ,ρS}) + 2kp1δt

h̄2 (2σ−
d ρSσ

+
d − {σ+

d σ−
d ,ρS}) + O(δt2).

(A10)

We retain terms up to δt and obtain, from Eq. (A5), the Lindblad master equation given by Eq. (3), corresponding to local repetitive
interaction with a single door d. Redefining σ±

d as ηα
d = σx

d + i(−1)ασ
y

d , the dynamical term is given by Eq. (6) (cf. [28]). Note
here that Eq. (6) describes a dissipation process with rate 4kp1

h̄2 and an absorption process with rate 4kp0

h̄2 . For high values of βE ,
p0 ≈ 0 and p1 ≈ 1 and the resulting dynamics is that of a Markovian amplitude-damping noise [16].
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