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Standard randomized benchmarking protocols entail sampling from a unitary 2-design, which is not always
practical. In this article we examine randomized benchmarking protocols based on subgroups of the Clifford group
that are not unitary 2-designs. We introduce a general method for analyzing such protocols and subsequently apply
it to two subgroups, the group generated by controlled-NOT, Hadamard, and Pauli gates and that generated by
only controlled-NOT and Pauli gates. In both cases the error probability can be estimated to within a factor of 2 or
less where the factor can be arranged to be conservative and to decay exponentially in the number of qubits. For
randomized benchmarking of logical qubits even better accuracy will typically be obtained. Thus, we show that
sampling a distribution which is close to a unitary 2-design, although sufficient, is not necessary for randomized
benchmarking to high accuracy.
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I. INTRODUCTION

Randomized benchmarking is widely used for character-
izing the performance of quantum information processing
devices [1–8]. Standard randomized benchmarking protocols
require the capability to sample from a unitary 2-design [9–12],
for which the Clifford group, or certain subgroups of the
Clifford group which are nonetheless unitary 2-designs, are
usually used. Sampling from a 2-design can be challenging,
however, particularly for the case of randomized benchmarking
of logical qubits, where the set of high-fidelity logical gates that
can be implemented in a straightforward manner is invariably
restricted.

For many quantum codes, techniques such as state injection
and distillation are required to implement some generators of
the logical Clifford group. Clifford gates incorporating such
generators suffer from much higher overhead and probability
of error. Logical qubits are likely to be in short supply for
some time, so overhead is a significant concern for near-
term demonstrations of randomized benchmarking on logical
qubits. Furthermore, incorporating logical Clifford gates with
low utility and poor performance in logical randomized bench-
marking is undesirable as it results in an overly pessimistic
assessment of the logical gate set. The latter issue might
be resolved by benchmarking individual logical gates via
interleaved randomized benchmarking [13] except that this
technique has been found to perform poorly for gate sets with
wildly varying error probabilities [14]. Faced with these issues,
an obvious question to ask is whether the offending gates are
truly necessary for randomized benchmarking. We show here
that in many cases they are not.

It should be said that the question of randomized bench-
marking using groups that do not form a unitary 2-design
has been considered previously. Specifically, dihedral bench-
marking, which utilizes the group generated by X, CX, and
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single-qubit phase rotations, has been proposed for use in
benchmarking non-Clifford gates [15,16].

The fundamentals of randomized benchmarking are briefly
reviewed in Sec. II. Section III introduces randomized bench-
marking using subgroups of the Clifford group and analyzes
the performance in the aforementioned cases of interest.
Concluding remarks appear in Sec. IV.

II. RANDOMIZED BENCHMARKING

A. Setting and assumptions

The goal of randomized benchmarking is to determine the
average fidelity of the error channels of a group of unitary gates
of interest G. For the benchmarking procedure to accurately
return this value, the set of error channels associated with the
gates must satisfy the following properties:

(i) Markovianity. For any target U ∈ G the true evolution of
the quantum device can be expressed as a completely positive
map EU ◦ Û , where

EU ◦ Û (ρ) =
∑

i

EiUρU †E†
i .

(ii) Weak gate dependence. The error channel does not
depend strongly on the gate applied. That is, if EU is the error
channel associated with U and E = 1

|G|
∑

U∈G EU then

‖E − EU‖1 � 1,

where the norm used is the induced operator 1-norm.
Recently, some complications with regard to weak gate

dependence have been noted [17,18]. For simplicity, we further
assume that the error channel is completely independent of the
gate applied.

B. Twirling

The basic approach utilized by randomized benchmarking
is to symmetrize a quantum channel E , with respect to a group
of unitary gates G, by performing a random gate from G on

2469-9926/2018/97(6)/062323(6) 062323-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.97.062323&domain=pdf&date_stamp=2018-06-15
https://doi.org/10.1103/PhysRevA.97.062323


WINTON G. BROWN AND BRYAN EASTIN PHYSICAL REVIEW A 97, 062323 (2018)

the input and its inverse on the output of the channel. Once
symmetrized, the channel can be described by a small number
of parameters which may then be determined efficiently by a
simplified tomography procedure.

Specifically, performing a random gate U , sampled from G,
on the input of the channel E while performing its inverse U †

on the output results in the channel

ẼG = EU∼G[Û † ◦ E ◦ Û ],

where EU∼G represents an average over all U sampled uni-
formly from G. The channel ẼG is symmetrized in that it is
invariant under conjugation by elements of the group G, that
is,

Û † ◦ ẼG ◦ Û = ẼG ∀U ∈ G.

This symmetrization procedure is referred to as G twirling.
Formally, G twirling projects the channel onto the invariants
of G.

For the group SU(2n) there are two linearly independent
invariants under twirling. These may be taken to be the
identity channel Î (ρ) = ρ and the completely depolarizing
channel D(ρ) = 1

4n

∑
μ PμρPμ. Given an expression for an

error channel in terms of Pauli operators,

E(ρ) =
∑
μν

xμνPμρPν,

the corresponding fully twirled channel is

ẼSU(2n)(ρ) = (1 − p)ρ + p

4n − 1

∑
μ �=I

PμρPμ

= λρ + 1 − λ

4n
D(ρ),

where p = ∑
μ �=I xμμ is the entanglement infidelity and

λ = 1 − p
4n

4n − 1

is the eigenvalue of the channel for nonidentity Pauli oper-
ators, i.e., ẼSU(2n)(Pμ) = λPμ for all Pμ �= I . Thus, twirling
by SU(2n) is sufficient to convert any error channel to one
specified by a single real number.

Twirling by SU(2n) is not practical experimentally, but
neither is it necessary. It suffices to twirl by any group G
satisfying the following condition: For any polynomial that is
second order and homogeneous in both the matrix elements of
U and U † (in the fundamental representation), the expectation
value is the same whether U is sampled uniformly from SU(2n)
or G. Groups with this property are referred to as 2-designs
[19]. A 2-design for SU(2n) can equivalently be defined as a
group G satisfying

aμν(U ) = 0, [aμν(U )]2 = 1

4n − 1

for all μ,ν �= I where the overline denotes an average over U

and

UPμU † =
∑

ν

aμν(U )Pν.

In words this means that each nonidentity Pauli operator is
mapped to every nonidentity Pauli operator with an average

amplitude of zero and equal average square amplitude. It is
straightforward to see that the Clifford group satisfies these
conditions, as well as certain subgroups thereof, such as, in the
case of a single qubit, the group generated by eiπ/(3

√
3)(X+Y+Z)

and the X gate. Twirling by 2-designs such as these forms the
basis of standard randomized benchmarking.

C. Standard randomized benchmarking protocol

Given the gate error channel

E(ρ) =
∑
μν

xμνPμρPν,

the goal of randomized benchmarking is to determine the
entanglement infidelity

p =
∑
μ �=I

xμμ

or some simple function thereof.1 The standard randomized
benchmarking protocol [11] consists of many repetitions of
the following experiment. (i) Prepare an initial state ρ0 such
that ρ0 is the +1 eigenstate of a projector P. (ii) Perform a
random gate sequence Ul−1, . . . ,U1 where each gate is selected
independently from a unitary 2-design. (iii) Perform one final
unitary gate chosen such that in the absence of errors the unitary
gate sequence performs the identity2

Ul =
l−1∏
t=1

U−1
t .

(iv) Measure P.
Averaged over many runs, the measurement statistics yield

a fidelity for the experiment which depends only on the twirled
error channel and the preparation and measurement errors. In
order to isolate state preparation and measurement errors Ep

andEm, respectively, the length l of the gate sequences is varied.
The average fidelity for gate sequences of length l is given by

fl = tr[PEm(Ẽ l(Ep(ρ0)))] = E|U|=l(fU),

where fU is the fidelity for a given sequence of unitaries U =
(U1, . . . ,Ul). The average sequence fidelities as a function of
length are then fit to the decay curve

fl = c0 + c1λ
l,

where λ is as defined above.
The total number of measurements required is minimized

when a different random sequence is selected for each run, but
for practical reasons, each gate sequence is typically repeated
many times in order to determine the fidelity fU for each gate
sequence U. This also allows additional information about

1In fact, randomized benchmarking papers often quote the average
infidelity, which is related to the entanglement infidelity by pave =
2np/(2n + 1) [20]. We focus on the entanglement infidelity instead
since it is more relevant for multiqubit states and corresponds to
the error parameter typically used in simulations of quantum error
correction.

2It is worth mentioning that in practice it is better to return to the
starting eigenbasis rather than the starting state.
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the error channel to be extracted, notably its coherence and
nonunitality [9]. The minimum number of gate sequences
needed to estimate fl to a given accuracy depends on the
variance of the gate sequence fidelities

vl =
∑
|U|=l

(fU − fl)
2,

for which general bounds are derived in the literature [21,22].

III. CLIFFORD SUBGROUP TWIRLING

In this section, the standard randomized benchmarking
protocol is adapted to sampling from subgroups of the Clifford
group which are not unitary 2-designs. All of the groups we
consider contain the Pauli group, that is, the group generated
by all single-qubit Pauli gates, and so are unitary 1-designs.
It is important to note that twirling with respect to the Pauli
group converts an arbitrary channel

E(ρ) =
∑
μν

xμνPμρPν

into the corresponding stochastic Pauli channel

ẼP(ρ) =
∑

μ

xμμPμρPμ.

Each Pauli operator is an eigenoperator of every Pauli channel,
that is, ẼP(Pμ) = λμPμ. The corresponding eigenvalue is given
by

λμ =
∑

ν|[Pν,Pμ]=0

xνν −
∑

ν|[Pν,Pμ]�=0

xνν.

For any subgroup of the Clifford group S, the orbit of each
Pauli operator under the action of S forms one of a set of k

blocks {B0, . . . ,Bk−1}, each containing Ni(n) Pauli operators.
Twirling with respect to a subgroup of the Clifford group which
also contains the Pauli group therefore results in a channel of
the form

ẼS(ρ) = (1 − p)ρ +
k−1∑
i=1

pi

Ni(n)

∑
μ∈Bi

PμρPμ,

where B0 = {I },

pi =
∑
μ∈Bi

xμμ, p =
k−1∑
i=1

pi.

In a case of imperfect mixing such as this, the fidelity decay
curve has the form

fl = c0 +
k−1∑
i=1

ciλ
l
i ,

where

ci = tr

⎡
⎣PEm

⎛
⎝∑

ν∈Bi

tr[PνEp(ρ0)]Pν

⎞
⎠

⎤
⎦,

ρ0 is the ideal initial state, and P is the projector of interest.
Notably, in the multiqubit case, the final multiqubit measure-
ment is typically implemented via many single-qubit projective

measurements. Using the measurement results from each qubit
separately, many such curves can be extracted concurrently or
only a single one of particular interest (e.g., such that only one
ci �=0 is significant).

In theory, the parameters pi can be determined if it is
possible to prepare and measure states in the eigenspace of
at least one Pauli operator from each block, either sequentially
or all at once using a multiqubit initial state of the form

ρ0 = 1

2n

∏
μ

(I + Pμ).

Often, however, preparing an eigenstate for one Pauli operator
from each block is impractical in situations where imple-
menting the gate(s) required to convert between blocks is
impractical.

Alternatively, if there exists a Pauli operator P that com-
mutes with approximately the same fraction of the Pauli
operators within each block, then the entanglement fidelity
of the error channel can be determined approximately by
preparing an eigenstate of P and measuring the decay of the
expectation value of the corresponding projector as a function
of gate sequence length. This is the primary approach taken in
the remainder of the paper.

A. The real Clifford group

Consider the subgroup of the Clifford group that preserves
the evenness or oddness of the number of Y elements in a Pauli
string. This group is referred to as the real Clifford group and
is generated by Hadamard, controlled-NOT, and single-qubit
Pauli gates.

Twirling with respect to the real Clifford group results in
a channel with two nontrivial blocks (i) B1 consists of the
nonidentity Pauli operators with an even number of Y elements
(real Pauli operators). The size of B1 is

N1(n) =
∑

l∈even

(
n

l

)
3n−l = 4n + 2n

2
− 1.

(ii) B2 consists of the Pauli operators with an odd number of
Y elements (imaginary Pauli operators). The size of B2 is

N2(n) =
∑
l∈odd

(
n

l

)
3n−l = 4n − 2n

2
.

Given a channel

E(ρ) =
∑
νμ

xμνPμρPν,

twirling with respect to the real Clifford group results in the
channel

ẼR(ρ) = (1 − p)ρ + p1

N1(n)

∑
μ∈B1

PμρPμ

+ p2

N2(n)

∑
μ∈B2

PμρPμ,

where

p1 =
∑
μ∈B1

xμμ, p2 =
∑
μ∈B2

xμμ.

062323-3



WINTON G. BROWN AND BRYAN EASTIN PHYSICAL REVIEW A 97, 062323 (2018)

A real Pauli operator anticommutes with N1(n − 1) +
N2(n − 1) + 1 real Pauli operators and exactly the same num-
ber of imaginary Pauli operators. An imaginary Pauli operator
anticommutes with 2N1(n − 1) + 2 real Pauli operators and
2N2(n − 1) imaginary Pauli operators. It follows that each real
Pauli operator is an eigenvector of the twirled channel ẼR with
eigenvalue

λ1 =1 − 2p1
N1(n − 1) + N2(n − 1) + 1

N1(n)

− 2p2
N1(n − 1) + N2(n − 1) + 1

N2(n)

=1 − p1
4n

4n + 2n − 2
− p2

2n

2n − 1

=1 − p2 − p1 + p1 − p2

2n
+ O(2−2n),

while each imaginary Pauli operator is an eigenvector of ẼR

with eigenvalue

λ2 = 1 − 4p1
N1(n − 1) + 1

N1(n)
− 4p2

N2(n − 1)

N2(n)

= 1 − p1
2n

2n − 1
− p2

4n − 2n+1

4n − 2n

= 1 − p2 − p1 + p2 − p1

2n
+ O(2−2n).

To determine the parameters p1 and p2 it is sufficient to
prepare and measure state(s) which are eigenstates of both
a real and an imaginary Pauli operator,3 but this is typically
challenging in cases where only real Clifford gates are avail-
able. In particular, codes for which only the real Clifford gates
are transversal generally lack a straightforward procedure for
preparation and measurement in the logical Y basis. Instead,
consider the case where the initial state is only an eigenstate
of real Pauli operators and therefore only λ1 can be extracted.

Recalling that p = p1 + p2, we see that given λ1, the
entanglement infidelity can be bounded as follows:

2n − 1

2n
(1 − λ1) � p � 4n + 2n − 2

4n
(1 − λ1).

Using the upper bound as our estimate of p corresponds
to assuming that p2 = 0 and leads to overestimating the
entanglement infidelity by a factor of at most (2n + 2)/2n, that
is, by a factor of 2 or less. For the purpose of benchmarking
logical qubits, however, the estimate will typically be much
better since logical Y errors are strongly suppressed for many
popular codes due to such errors having higher weight and/or
separate syndrome measurement and decoding for physical X

and Z errors. In the toric code, for example, twice as many
physical errors are required to generate a logical Y error as to
generate a logical X or logical Z error.

3Note that any multiqubit state that is an eigenstate of more than
one Pauli operator is an eigenstate of at least one nontrivial real Pauli
operator.

B. Controlled-NOT and Pauli gates

Now consider the subgroup of the Clifford group generated
by controlled-NOT and the single-qubit Pauli gates. Controlled-
NOT gates generate the group GF2 through their action on Pauli
operators containing only X and I elements and separately on
Pauli operators containing only Z and I elements. Twirling
with respect to this group results in a channel consisting of
four blocks

ẼC(ρ) =(1 − p)ρ + p1

N1(n)

∑
μ∈B1

PμρPμ

+ p2

N2(n)

∑
μ∈B2

PμρPμ + p3

N3(n)

∑
μ∈B3

PμρPμ

+ p4

N4(n)

∑
μ∈B4

PμρPμ,

where (i) B1 consists of the nonidentity Pauli operators con-
taining only Z and I elements. The size of B1 is

N1(n) = 2n − 1.

(ii) B2 consists of the nonidentity Pauli operators containing
only X and I elements. The size of B2 is

N2(n) = 2n − 1.

(iii) B3 consists of the nonidentity Pauli operators containing
an even number of Y elements and not belonging to B1 or B2.
The size of B3 is

N3(n) = 4n − 3 × 2n

2
+ 1.

(iv) B4 consists of those Pauli operators containing an odd
number of Y elements. The size of B4 is

N4(n) = 4n − 2n

2
.

The eigenvalues of ẼC with respect to the Pauli operators of
each block are

λ1 = 1 − (p2 + p3 + p4)
2n

2n − 1

= 1 − (p2 + p3 + p4)

(
1 + 1

2n

)
+ O(2−2n),

λ2 = 1 − (p1 + p3 + p4)
2n

2n − 1

= 1 − (p1 + p3 + p4)

(
1 + 1

2n

)
+ O(2−2n),

λ3 = 1 − (p1 + p2 + p4)
2n

2n − 1
− p3

4n − 2n+2

4n − 3 × 2n + 2

= 1 − p + p3 − p1 − p2 − p4

2n
+ O(2−2n),

λ4 = 1 − (p1 + p2 + p3)
2n

2n − 1
− p4

2n − 2

2n − 1

= 1 − p + p4 − p1 − p2 − p3

2n
+ O(2−2n).

The ability to prepare and measure eigenstates of X, Y , and
Z would enable the reconstruction of all four parameters p1,
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p2, p3, and p4. For logical qubits, at least, preparation and
measurement in the X and Z logical bases are often relatively
straightforward as most codes of interest are Calderbank-
Shor-Steane codes. As discussed in the preceding section,
however, preparing and measuring in the logical Y basis is
often problematic. The entanglement infidelity averaged over
the gates set p can be estimated for two or more qubits by
performing benchmarking on eigenstates of Pauli operators
in B1 and eigenstates of Pauli operators in B2 independently.
Given λ1 and λ2, the entanglement infidelity can be bounded
as follows:

2n − 1

2n+1
(2 − λ1 − λ2) � p � 2n − 1

2n
(2 − λ1 − λ2).

Using the upper bound corresponds to assuming that p3,p4 =
0 and leads to an overestimate of p by at most a factor of
2 independent of the number of qubits in the benchmarking
experiment. For logical qubits the estimate will typically be
much better because p3 and p4 are likely to be much smaller
than p1 and p2 for the reasons discussed in the preceding
section. Alternatively, for n > 2 preparation and measurement
of an eigenstate of a Pauli operator in B3 (e.g., |+00〉) allows
λ3 to be extracted from the decay curve. Given λ3, the bounds
on p are

2n − 1

2n
(1 − λ3) � p � 4n − 3 × 2n + 2

4n − 2n+2
(1 − λ3),

where the upper bound corresponds to taking p3 to be the
only nonzero probability. This is an unrealistic but conservative
assumption, causing us to overestimate p by at most a factor
of (2n − 2)/(2n − 4). For logical qubits the lower bound

will typically yield a better estimate of the entanglement
infidelity.

IV. CONCLUSION

In this article we have introduced a method for analyzing
the behavior of randomized benchmarking as it applies to
subgroups of the Clifford group that do not form 2-designs
with respect to SU(2n). We have additionally applied this
method to two subgroups of interest. The first subgroup
considered was the real Clifford group, which is generated
by controlled-NOT, Hadamard, and Pauli gates. We described
a protocol for performing randomized benchmarking on n

qubits using only the real Clifford group that estimates the
entanglement infidelity of the average error channel to within
a factor of (2n + 2)/2n. The second subgroup considered was
that generated by controlled-NOT and Pauli gates. Given the
ability to prepare and measure both |0〉 and |+〉, we found
that the entanglement infidelity can be estimated to within a
of factor of either 2 or (2n − 2)/(2n − 4) depending on which
decay constants are extracted. These results demonstrate that
highly accurate approximate randomized benchmarking can
be performed using subgroups of the Clifford group which are
not unitary 2-designs.

Note added. Recently, we learned of closely related, in-
dependent work by Hashagen et al. in which they develop
a randomized benchmarking protocol for the real Clifford
group [23].
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