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Solving the Toeplitz systems, which involves finding the vector x such that Tnx = b given an n × n Toeplitz
matrix Tn and a vector b, has a variety of applications in mathematics and engineering. In this paper, we present
a quantum algorithm for solving the linear equations of Toeplitz matrices, in which the Toeplitz matrices
are generated by discretizing a continuous function. It is shown that our algorithm’s complexity is nearly
O(κpoly(log n)), where κ and n are the condition number and the dimension of Tn, respectively. This implies
our algorithm is exponentially faster than its classical counterpart if κ = O(poly(log n)). Since no assumption on
the sparseness of Tn is demanded in our algorithm, it can serve as an example of quantum algorithms for solving
nonsparse linear systems.
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I. INTRODUCTION

Quantum information processing has been shown to be
enormously advantageous in preserving security and privacy
in communication and information retrieval [1,2], as well
as in computing for solving certain problems [3], such as
association rules mining [4]. In recent years, since the first
example—a quantum algorithm for linear systems of equations
(HHL algorithm)—was presented by Harrow et al. [5], a
number of quantum algorithms for other problems in numer-
ical computation, such as linear regression [6,7], Poisson’s
equation [8], and the finite element method [9], have been
subsequently proposed with significant speedup over their
classical counterparts. These works motivate us to design fast
quantum algorithms for solving more problems in numerical
computation.

One of the most important problems in numerical computa-
tion is solving linear equations with a Toeplitz matrix. Solving
this linear system has a variety of applications in many areas
of science and engineering, such as signal processing [10],
time series analysis [11], image restoration problems [12],
queueing problems [13], minimum realization problems in
control theory [14], and numerical integration problems [15].
In general, the Toeplitz systems are obtained by discretization
of continuous problems and the dimension n is related to
the grid parameter of the discretization. More specifically,
the given Toeplitz matrices Tn are generated by a generating
function, f , i.e., the elements of every diagonal of Tn are given
by the Fourier coefficients of f . Therefore, the linear systems
usually are of very large dimensions so that more efficient
algorithms for solving these systems deserve to be explored
[16].

In the past decades, many scholars have paid their attention
to developing the methods for speeding up the solving of
Toeplitz systems. A number of advanced methods have been
presented, such as fast direct methods [17], iterative methods
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[18], and circulant approximation methods [19]. There is a
wonderful treasury of classical algorithms for solving Toeplitz
systems. Nevertheless, since the time complexity of these
methods is �(n), it is still hard work to tackle Toeplitz systems
with very large n on a classical computer.

As of now, some work regarding Toeplitz matrices has been
done in the quantum setting. In 2016, Mahasinghe and Wang
presented an efficient quantum algorithm for implementing
sparse or Fourier-sparse Toeplitz matrices [20]. Whereafter,
the algorithm presented in Ref. [21] provided a better way
to implement Toeplitz matrices, requiring few resources and
without the sparsity assumption on Tn. These two algorithms
have some significant applications in physics, mathematics,
and engineering-related fields. It should be noted that, although
Ref. [21] has shown how to implement Tn|b〉 by embedding Tn

in a larger circulant matrix (a special kind of Toeplitz matrix),
as well as how to invert a circulant matrix efficiently, it is easy to
see that inverting Tn cannot be realized by this trick. However,
as mentioned above, many problems can be transformed into
solving Toeplitz systems. That is to say, in these practical
applications, what is really relevant is the inverse of such
matrices rather than the matrices themselves. This is exactly
what we focus on in this paper.

Specifically, we present a quantum algorithm to solve
the Toeplitz systems, i.e., finding a quantum state |x〉 =∑

i xi |i〉/‖
∑

i xi |i〉‖ satisfying the linear equation Tnx = b,
in which the vector b is given by |b〉 = ∑

i bi |i〉/‖
∑

i bi |i〉‖
and Tn is generated by a continuous function and not limited to
sparse. The basic idea of our algorithm is that, due to the fact
that the Toeplitz matrices can be well approximated by some
easier-to-tackle circulant matrices, our quantum algorithm
solves the linear equations of Toeplitz matrices by resorting
to solve those of the circulant matrices. In addition, we make
full use of the relationship between circulant matrices and
the generating function, so that we can directly acquire the
eigenvalues of the circulant matrices by computing the corre-
sponding value of the generating function. Thus the performing
of the phase estimation which requires higher complexity to
reveal corresponding eigenvalues can be avoided. It is shown
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that our algorithm is exponentially faster than the classical
methods when the generating functions f are strictly positive
continuous real-valued functions and the Toeplitz matrices
Tn are well-conditioned. We call Toeplitz matrices well-
conditioned when κ = O(poly(log n)), where κ is the ratio
between the largest eigenvalue and the smallest eigenvalue.
Moreover, since the solution is encoded in the final quantum
state of our algorithm, it is advantageous to extract some
interesting features of the solution and it can also be used as
an ingredient in other quantum algorithms.

The rest of this paper is organized as follows. In Sec. II,
we review some basic concepts and properties of Toeplitz
matrices. And we describe the details of our quantum algorithm
in Sec. III. The error and runtime analysis of this algorithm are
given in Sec. IV. We then study some special cases and give
some discussions in Secs. V and VI, respectively. In the last
section, we draw conclusions.

II. A REVIEW ABOUT TOEPLITZ MATRICES

A Toeplitz matrix, Tn, is a matrix of size n × n whose
coefficients along each diagonal are constant. More precisely,
a Toeplitz matrix has the form

Tn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t0 t−1 t−2 . . . t−(n−1)

t1 t0 t−1
. . .

...

t2 t1 t0
. . . t−2

...
. . .

. . .
. . . t−1

t(n−1) . . . t2 t1 t0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

where tk,j = tk−j ; thus, it can be determined by the sequence
{tk}n−1

k=−n+1 with only 2n − 1 entries.
As we mentioned above, in many applications, the Toeplitz

matrices are obtained by discretization of continuous prob-
lems. More explicitly, let C+

2π be the set of all 2π -periodic
strictly positive continuous real-valued functions defined on
[0,2π ]. For all f ∈ C+

2π ,

tk = 1

2π

∫ 2π

0
f (λ)e−ikλdλ, k = 0, ± 1, ± 2, . . . (2)

are the Fourier coefficients of f . Then, let Tn(1 � n < ∞) be
the sequence of Toeplitz matrices whose entries along the kth
diagonal are tk . The function f is called the generating function
of the sequence of Toeplitz matrices Tn (see Ref. [22]), and the
sequence of matrices Tn is often denoted as Tn(f ). We are
interested in solving the Toeplitz systems Tn(f )x = b.

The properties of Toeplitz matrices are well known and
easily derived. We describe a simple version here; for details,
see Ref. [23]. The Toeplitz matrices Tn(f ) will be Hermitian
if f is real-valued function. In fact,

t∗k = 1

2π

∫ 2π

0
f ∗(λ)eikλdλ

= 1

2π

∫ 2π

0
f (λ)eikλdλ

= t−k.

Another useful property is that when Tn(f ) is Hermitian,
let λk be the eigenvalues of the Toeplitz matrix Tn(f ), then

fmin � λk � fmax,

where fmin and fmax represent the smallest value and the largest
value of f , respectively. In particular,

lim
n→∞ max

k
λk = fmax,

lim
n→∞ min

k
λk = fmin.

Note that the generating function f is strictly positive then
the Toeplitz matrix Tn(f ) is nonsingular. Another thing worth
emphasizing is that in practical applications, we are often given
the generating functions f instead of the Toeplitz matrices
Tn(f ). Typical examples of generating functions can be found
in Refs. [10,12,18,22,24].

There is a common special case of Toeplitz matrix where
every row of the matrix is a right cyclic shift of the row above
it. In this case, the structure becomes

Cn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c0 c1 c2 . . . c(n−1)

c(n−1) c0 c1 . . . c(n−2)

c(n−2)
. . .

. . .
...

...
. . . c1

c1 . . . c(n−1) c0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

A matrix of this form is called a circulant matrix. The follow-
ing theorem summarizes the properties regarding eigenvalues
and eigenvectors of circulant matrices, and more details can be
found in Ref. [23].

Theorem 1 [23]. Every circulant matrix Cn can be diago-
nalized by the Fourier matrix Fn. That means it has the form
Cn = F

†
n�nFn, where the entries of Fn are given by

[Fn]j,k = 1√
n
e−2πijk/n, 0 � j,k � n − 1,

and �n is a diagonal matrix whose corresponding eigenvalues
are given by

ψm =
n−1∑
k=0

cke
−2πimk/n, m = 0,1, . . . ,n − 1. (4)

Apparently, Cn is normal.
Corollary 1 [23]. Let C and B be n × n circulant matrices

with eigenvalues

ψm =
n−1∑
k=0

cke
−2πimk/n, βm =

n−1∑
k=0

bke
−2πimk/n,

respectively. Then we have the following.
(i) C and B commute and

CB = BC = F †
nγFn, (5)

where γ = diag(ψmβm) and CB is also a circulant matrix.
(ii) C + B is a circulant matrix and

C + B = F †
n�Fn, (6)

where � = diag{(ψm + βm)}.
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(iii) If ψm 	= 0, m = 0,1, . . . ,n − 1, then C is nonsingular
and

C−1 = F †
n�−1

n Fn. (7)

One technique to solve the problem involving Toeplitz
matrices is to construct a sequence of circulant matrices
which are asymptotically equivalent to the Toeplitz matrices.
Obviously the choice of constructing a sequence of circulant
matrices to approximate the sequence of Toeplitz matrices is
not unique; therefore we need to choose a construction which
has the most desirable properties. It will prove useful to adopt
the circulant matrices defined in Refs. [22,23]. In particular,
define Cn(f ) to be the circulant matrix with the top row
(c0,c1, · · · ,cn−1), where

ck = 1

n

n−1∑
j=0

f (2πj/n)e2πijk/n. (8)

According to Theorem 1, the eigenvalues of Cn(f ) are simply
f (2πm/n):

ψm =
n−1∑
k=0

cke
−2πimk/n

=
n−1∑
k=0

⎛
⎝1

n

n−1∑
j=0

f (2πj/n)e2πijk

⎞
⎠e−2πimk

=
n−1∑
j=0

f (2πj/n)

{
1

n

n−1∑
k=0

e2πi(j−m)k

}

= f (2πm/n), m = 0,1, . . . ,n − 1,

(9)

by using the orthogonality of the complex exponentials [23].
Cn(f ) are called associated circulant matrices of Tn(f ) [25].
To put it simply, the associated circulant matrices have
the form

Cn(f ) = F †
n�nFn,

where

�n = diag{f (0),f (2π/n), . . . ,f [2π (n − 1)/n]}.
It has been observed that in many applications the sub-

stitution of Tn(f ) with Cn(f ) often leads to very useful and
dramatic simplification [25]. Our quantum algorithm also
follows this idea to achieve exponential speedup over the
classical algorithm.

III. QUANTUM ALGORITHM

Now, we design the quantum algorithm to solve the lin-
ear system of associated circulant matrices. In particular,
from Eqs. (7) and (9), we know C−1

n (f ) = F
†
n�−1

n Fn, where
�−1

n is a diagonal matrix with the corresponding eigenvalue
1/f (2πj/n). Thus, the essential problem is how to implement
�−1

n . It is a natural candidate for applying the HHL algorithm
[5]. Surprisingly, because of the distinctive structure of the
associated circulant matrices, we can bypass the phase estima-
tion.

For the Toeplitz system, bi can usually be regarded as
some function value of a continuous function. There are some

efficiently implementable schemes that have been presented
to provide |b〉 when

∑i2
i=i1

|bi |2 are efficiently computable
[26,27], or one can use the quantum random access memory
(qRAM) [28] to load bi and then perform the conditional
rotation and postselect to provide |b〉 when bi are close to
uniform. In general, preparing an arbitrary initial quantum
state is really challenging and deserves specialized study.
For simplicity in the subsequent comparison, we follow the
assumption of most of the previous quantum algorithms that
the preparation of the initial state |b〉 is efficient; i.e., we assume
that there exists a unitary Ub which can produce the state |b〉
in time O(poly(log n)).

To extract the eigenvalues, we assume there is an oracle that
accesses the values of the generating function f . Specifically
it allows us to perform the following map:

n−1∑
j=0

bj |j 〉 oracle−−−→
n−1∑
j=0

bj |j 〉|f (2πj/n)〉.

We don’t consider the computation complexity of the or-
acle since the generating function f is always efficiently
computable. In fact, it can be implemented efficiently by
using the quantum circuit model. Section 3.2.5 of Ref. [29]
shows that given a classical circuit for computing f there
is a quantum circuit of comparable efficiency which com-
putes the transformation Uf on a quantum computer. Some
quantum algorithms and circuits of fundamental numerical
functions proposed by Bhaskar et al. [30] may be helpful
to implement Uf . For our purposes, we can regard it as a
black box.

The specific process of our quantum algorithm is summa-
rized by the following five steps.

(i) Apply Fourier transform on |b〉 and denote the outputted
state by |b′〉.

(ii) Decompose |b′〉 in the computational basis, i.e., |b′〉 =∑n−1
j=0 bj |j 〉, and use the oracle to obtain

n−1∑
j=0

bj |j 〉|f (2πj/n)〉.

The query complexity to prepare this state is O(1).
(iii) Add a qubit and perform a controlled-rotation on

|f (2πj/n)〉, yielding

n−1∑
j=0

bj |j 〉|f (2πj/n)〉
(√

1− m2

f 2(2πj/n)
|0〉+ m

f (2πj/n)
|1〉

)
,

where m is an appropriate constant and m � minj |ψj |, and ψj

are the eigenvalues of Cn(f ).
(iv) Uncompute the second qubit and use the amplitude

amplification [31] on the last register to obtain |1〉; hence we
will have the following state with higher probability:√

1∑n−1
j=0 m2|bj |2/|f (2πj/n)|2

n−1∑
j=0

bj

m

f (2πj/n)
|j 〉,

which is proportional to �−1|b′〉 = ∑n−1
j=0 bj/f (2πj/n)|j 〉 up

to normalization and denoted by |b∗〉.
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(v) Perform the inverse Fourier transform and get

|x∗〉 = F †
n |b∗〉.

Here |x∗〉 is the quantum state that we desired, and in the
following section we prove it is close to the normalized solution

|x〉 = T −1
n (f )|b〉

‖T −1
n (f )|b〉‖ of the Toeplitz system.

IV. ERROR ANALYSIS AND RUNTIME

In this section we show that the error of the final state of
our algorithm to the ideal state can always be small enough.
Furthermore, we demonstrate two significative corollaries to
ascertain the magnitude of error ε for certain cases. We also per-
form analysis on the time complexity of our quantum algorithm
and show its runtime advantage over the classical algorithm.

As our main idea is substituting Tn(f ) with Cn(f ), in
order to make such a substitution meaningful, the sequence
of Toeplitz matrices needs to converge to their associated
circulant matrices. We define convergence of the matrices as
the following theorem.

Theorem 2. Let Tn(f ) be a sequence of Toeplitz matrices
generated by a strictly positive continuous real-valued func-
tion, Cn(f ) is the associated circulant matrices defined in
Eq. (8), then

lim
n→∞

‖Tn(f ) − Cn(f )‖F

‖Tn(f )‖F

= 0, (10)

where ‖A‖F denotes the Frobenius norm of a matrix A.
Proof. See Appendix A.
Let

x∗ = C−1
n (f )b, x = T −1

n (f )b,

|x∗〉 = C−1
n (f )|b〉

‖C−1
n (f )|b〉‖ , |x〉 = T −1

n (f )|b〉
‖T −1

n (f )|b〉‖ ,

where ‖x‖ =
√

xH x denotes the 2-norm of a vector x.
Recalling Theorem 2, for a given ε, we can always choose

an n large enough, so that
‖Tn(f ) − Cn(f )‖F

‖Tn(f )‖F

� ε.

Then, from the relevant conclusion of Ref. [32, Sec. 5.8], we
know that

‖x∗ − x‖
‖x‖ =

∥∥C−1
n (f )b − T −1

n (f )b
∥∥∥∥T −1

n (f )b
∥∥ � εκ

1 − εκ
, (11)

where κ is the condition number of Tn(f ), and

‖ |x∗〉 − |x〉‖

=
∥∥∥∥ C−1|b〉
‖C−1|b〉‖ − T −1|b〉

‖T −1|b〉‖
∥∥∥∥

=
∥∥∥∥ (‖T −1|b〉‖ − ‖C−1|b〉‖)C−1|b〉

‖C−1|b〉‖ ‖T −1|b〉‖ − T −1|b〉 − C−1|b〉
‖T −1|b〉‖

∥∥∥∥
� | ‖T −1|b〉‖ − ‖C−1|b〉‖ |

‖T −1|b〉‖ + ‖T −1|b〉 − C−1|b〉‖
‖T −1|b〉‖

� 2
‖T −1|b〉 − C−1|b〉‖

‖T −1|b〉‖

= 2
‖T −1b − C−1b‖

‖T −1b‖ � 2εκ

1 − εκ
. (12)

For simplicity, we write C−1
n (f ) and T −1

n (f ) as C−1 and T −1,
respectively, in this inequality. Apparently, the output of our
algorithm can approximate the normalized solution of a well-
conditioned Toeplitz system with desired precision as long as
we choose an n large enough.

The above process proves the correctness of the algorithm in
a certain sense. Naturally, we also need to seek ways to provide
error-bound estimates. Depending on different properties of
the associated sequence {tk}, we get different error estimates
as shown in the following corollaries.

Corollary 2. Let Tn(f ) be a sequence of well-conditioned
Toeplitz matrices generated by a strictly positive continuous
real-valued function. If the associated sequence {tk} satisfies
|tk| � M/k, where k = 1,2, . . . and M is a constant, then
we can acquire a normalized solution of the corresponding
Toeplitz system with error ε = O( poly(logn)√

n
).

Proof. See Appendix B.
The error of solving many Toeplitz systems can be estimated

conveniently from this corollary, such as Toeplitz systems
generated by primitive functions, since it is well known that
the magnitude of Fourier coefficients of most of primitive
functions is o( 1

k
), where o denotes the higher-order infinitely

small quantity, i.e.,

lim
k→∞

|tk|
1/k

= 0.

This implies that there must be an M̃ such that
|tk|
1/k

� M̃ ⇒ |tk| � M̃/k.

And the magnitude of Fourier coefficients of a more general
generating function can be estimated by combining the Fourier
expansion of primitive functions. Thus the final error can
be estimated from this corollary or by performing a similar
analysis. Moreover, some useful judgment theorems about
the magnitude of Fourier coefficients of functions are listed
in Ref. [33]. These theorems show that the magnitude of
Fourier coefficients of many functions (such as absolutely
continuous functions and bounded variation functions) satisfy
the condition as stated in Corollary 2; thus the final error will
also be bounded by O( poly(log n)√

n
).

Corollary 3. Let Tn(f ) be a sequence of Toeplitz matrices
generated by a strictly positive continuous real-valued func-
tion. If the associated sequence {tk} satisfies

∑∞
k=−∞ |ktk| < ∞

and the spectrum norm ‖Tn‖ � 1, for a vector with the form

b = (0, . . . ,0,b−L, . . . ,b0, . . . ,bL,0, . . . ,0)

we can acquire a normalized solution of the corresponding
Toeplitz system with error ε = O(1/

√
n).

Proof. See Appendix C.
This corollary is based on the results of literature [25]. It

extends the convergence theorem to a form in which b has only
a finite number of nonzero terms. Moreover, a large class of
communication receiver design problems involving a similar
form can be solved efficiently.

Based on these corollaries, we can conveniently estimate
the scale of ε for a specific Toeplitz system. This seems to
be different from the normal way we design and analyze
algorithms of which the accuracy ε and the dimension n are
given beforehand. We would like to emphasize that the Toeplitz
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systems are often given by a continuous function, and we are
required to design an algorithm to solve the problem with
the accuracy ε. In the actual operation, we first discretize the
continuous function and then solve this discrete system. Thus,
the dimension n is not fixed but operational, and it depends
on the desired accuracy and can be deduced by the above
corollaries or by performing a similar analysis.

Reviewing our algorithm, the state |b〉 can be produced in
time O(poly(log n)), the (inverse) quantum Fourier transform
takes time O(log2n), and the cost of invoking the oracle is O(1)
while the computation complexity of the oracle can be ignored.
Then, we consider the success probability of the postselection
in the process of implementing �−1

n . Since m � minj |ψj |,
for choosing m = fmin, the success probability is �(1/μ2),
where μ = fmax/fmin, and O(μ2) measurements are required.
Using amplitude amplification, we need only repeat O(μ)
times. Putting these all together, our quantum algorithm takes
time O(μpoly(log n)). Noting that the condition number κ

approximates fmax/fmin when n is getting large, the time
complexity of our algorithm is also nearly O(κpoly(log n)).

Replacing Toeplitz matrices with their associated circulant
matrices has been widely used to solve the problems involving
the inverses of Toelplitz matrices. It takes two steps to complete
this process by classical algorithms: (i) compute the top row
of the circulant matrix, and (ii) solve the linear system of
circulant matrices. Both of these steps can be performed using
the classical fast algorithm. In particular, the top row can be
computed in O(n) [23]. And according to Theorem 1, the linear
systems of circulant matrices can be solved in time O(n log n)
using the fast Fourier transform. Therefore, our quantum algo-
rithm is exponentially faster than the corresponding classical
algorithm when the condition numbers of the Toeplitz matrices
are O(poly(log n)). In addition, there are also some exact
classical algorithms (n is fixed, such as in the iterative method)
for solving Toeplitz systems. Since the exact algorithm and
the asymptotic algorithm have different measurements of the
complexity, a direct comparison of exact classical algorithms
and the asymptotic quantum algorithm is not appropriate. We
are looking forward to more research on the exact quantum
algorithm for solving Toeplitz systems.

V. SPECIAL CASE

Sometimes, there might be some problems in practical situ-
ations where we only know the sequence of Toeplitz matrices
Tn but not the generating function f . Fortunately, the problems
will often begin with Toeplitz matrices in the Wiener class [23].
A sequence of Toeplitz matrices for which the sequence {tk}
is absolutely summable is said to be in the Wiener class, i.e.,
the infinite sequence {tk; k = . . . , − 2, − 1,0,1,2, . . . } which
defines the matrices Tn satisfies

∞∑
k=−∞

|tk| < ∞. (13)

As mentioned in Ref. [23], one natural idea for estimating
the eigenvalues is to approximate the generating function by

f̂n(λ) =
n−1∑

k=−(n−1)

tke
ikλ, λ ∈ [0,2π ]. (14)

On the one hand, the function f̂n(λ) defines a circulant
matrix sequence Cn(f̂n) by Eq. (8). Note that, since the
sequences {tk} are absolutely summable, they are also square
summable:

∞∑
k=−∞

|tk|2 �
{ ∞∑

k=−∞
|tk|

}2

< ∞.

Thus, according to the proof in Appendix A, it can be seen that
the circulant matrices Cn(f̂n) converge to Tn(f ) in the form
(10). Based on this convergence theory, our quantum algorithm
is still feasible.

On the other hand, the eigenvalues of circulant matrices
Cn(f̂n) are

f̂n(2πj/n) =
n−1∑

k=−(n−1)

tke
2πijk/n

=
n−1∑
k=0

tke
2πijk/n +

n−1∑
k=0

t−ke
−2πijk/n − t0,

where j = 0,1, . . . ,n − 1. Apparently, they can be seen as the
results of performing discrete Fourier transformation on the
sequences {tk} and then subtracting an extra t0.

In order to solve these Toepltiz systems, we first rescale
the matrices Tn by the factor fmax, such that λk ∈ [1/μ,1].
Then we use the algorithm presented in Ref. [34] to perform
Fourier transformation and encode the Fourier coefficients in
the computational basis. More formally, the quantum Fourier
transform in the computational basis (QFTC) can perform the
transformation

|j 〉 QFTC−−−→ |j 〉|yj 〉,
where yj = ∑n−1

k=0 tke
2πijk/n in this context.

Since the |j 〉 is only used to control the application of
quantum operators acting on other registers, we can do the
similar operations in the additional registers and get

n−1∑
j=0

bj |j 〉|0〉|0〉|t0〉 →
n−1∑
j=0

bj |j 〉|yj 〉|y ′
j 〉|t0〉,

where y ′
j = ∑n−1

k=0 t−ke
−2πijk/n. Then, we calculate yj + y ′

j −
t0 by the quantum adder [35] and encode the result in another
register:

n−1∑
j=0

bj |j 〉|yj 〉|y ′
j 〉|t0〉|f̂n(2πj/n)〉.

Finally, we uncompute the ancillas to obtain
n−1∑
j=0

bj |j 〉|Ancj 〉|f̂n(2πj/n)〉 →
n−1∑
j=0

bj |j 〉|f̂n(2πj/n)〉.

The above process actually completes step (ii) of our
algorithm, i.e.,

n−1∑
j=0

bj |j 〉 oracle−−−→
n−1∑
j=0

bj |j 〉|f̂n(2πj/n)〉.

Proceeding to the next steps of the algorithm, where m =
O(1/μ), we can get a quantum state approximating the solution
of the Toeplitz system.
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It is worth noting that the algorithm QFTC requires an oracle
Ot , where Ot |0〉 = ∑n−1

k=0 tk|k〉. The oracle can be efficiently
implemented if {tk}n−1

k=0 is efficiently computable or using the
qRAM [28]. And the QFTC can be performed to accuracy
ε with fidelity 1 − δ using O[log2n/(δε)] one- or two-qubit
gates. According to the error analysis in Ref. [5], taking the
error as O(ε0/μ) in computing f̂n(2πj/n) induces a final error
ε0 of |x∗〉. Thus, employing the QFTC as a subroutine to extract
the eigenvalues, the complexity of our quantum algorithm is
nearly O[κ2poly(log n)/(δε0)]. This suggests that our algo-
rithm is exponentially fast when 1/ε0,κ = O(poly(log n)).

VI. DISCUSSION

We notice that some meaningful results about the asymp-
totic equivalence of Toeplitz matrices and the associated
circulant matrices have been presented recently [36]. These
results establish the individual asymptotic convergence of the
eigenvalues between Tn and Cn while Theorem 2 of this
paper actually characterizes the certain collective asymptotic
behaviors of the eigenvalues. The individual asymptotic equiv-
alence seems to be stronger than the collective asymptotic
equivalence. We describe these results here to demonstrate that
our algorithm might achieve a faster convergence rate if the
sequence {tk} satisfies certain conditions.

Theorem 3 [36]. Suppose that the sequence {tk} is absolutely
summable and Cn are the associated circulant matrices of the
Toeplitz matrices Tn. Then

lim
n→∞ max

l∈n
|λl(Tn) − λρ(l)(Cn)| = 0, (15)

where λl(Tn) are the eigenvalues of Tn satisfying λ0(Tn) �
· · · � λn−1(Tn), and λρ(l)(Cn) are the eigenvalues of Cn satis-
fying λρ(0)(Cn) � · · · � λρ(n−1)(Cn).

Theorem 4 [36]. Suppose that the tk = 0 for all |k| > r , i.e.,
Tn is a band Toeplitz matrix when n > r . Then

max
l∈n

|λl(Tn) − λρ(l)(Cn)| = O

(
1

n

)
(16)

as n → ∞.
In addition, because the kernel idea of our algorithm is

adopting associated circulant matrices to substitute the Toeplitz
matrices, it must be intractable to solve the ill-conditioned
Toeplitz system. Evidently, the error of the solution may not be
controlled from Eq. (11) when the condition number of Tn is
unbounded. Fortunately, in some cases, when |b〉 is in the well-
conditioned part of Tn (i.e., the subspace spanned by the eigen-
vectors with large eigenvalues), we can also implement the
inversion. The corresponding process has been demonstrated
in detail in Ref. [5]. Another way to handle ill-conditioned
Toeplitz systems is to precondition the Toeplitz matrices.
A number of preconditioners developed for ill-conditioned
Toeplitz systems have been presented, including band-Toeplitz
preconditioners [37] and circulant preconditioners [38]. Since
the product of two circulant matrices is a circulant matrix, and
the product of a circulant matrix times a vector is available
by our quantum algorithm with a little change, our algorithm
can run much faster with a suitable circulant preconditioner
even for ill-conditioned Toeplitz systems. Moreover, how to
establish the quantum version of these preconditioners is an
interesting problem, and that is our next work.

VII. CONCLUSION

Solving the Toeplitz systems plays a pivotal role in many
areas of science and engineering. We have addressed this
problem in the quantum settings and proposed an efficient
quantum algorithm to solve it. Taking advantages of quantum
computation and the structure of Toeplitz matrices, our algo-
rithm achieves exponential speedup over classical algorithms
for the well-conditioned Toeplitz matrices.

Besides solving linear equations with a Toeplitz matrix,
our quantum algorithm can deal with many other problems
regarding the approximation of a Toeplitz matrix by its asso-
ciated circulant matrix. In fact, many different convergence
forms, such as the weak convergence form [23] and the
finite-term quadratic form [25], of approximation between
Toeplitz matrices and their associated circulant matrices have
been exploited for different applications. Although the matrix
convergence forms are different, similar to our algorithm, all
of these methods adopt the idea of substituting the Toeplitz
matrices with their associated circulant matrices to solve
corresponding problems. Therefore, the common methodology
makes it possible for our quantum algorithm to be successfully
applied to these applications.

Solving linear systems of equations is a fundamental prob-
lem that arises frequently in science and engineering. The
quantum algorithms for solving sparse linear systems have
been well studied [5,39,40]. More recently, Wossnig et al.
[41] presented a quantum linear system algorithm for dense
matrices based on a new data structure which prepares quantum
states corresponding to the rows and the vector of Euclidean
norms of the rows of the matrices. The algorithm achieved a
polynomial improvement over known quantum linear system
algorithms when the spectral norm of the dense matrix was
bounded by a constant. Simply applying this algorithm to solve
the Toeplitz systems gives only a polynomial improvement.
Thus, designing efficient quantum algorithms for solving non-
sparse linear systems with certain special structures remains
a crucial challenge. Our work is a significant addition to this
direction. It is an interesting open question if one can achieve an
exponential improvement for solving Toeplitz systems in the
model of Ref. [41] or given a black-box access to the matrix
elements.

Moreover, Ye and Lim pointed out that every matrix is a
product of Toeplitz matrices [42], and their conclusion that
every n × n matrix can be decomposed into �n/2 + 1 Toeplitz
matrices is exciting. That is, if a large nonsparse matrix A

has a known Toeplitz decomposition, one can solve the corre-
sponding linear systems with lower time complexity by a high-
efficiency quantum algorithm for Toeplitz systems (though we
still do not know how to compute Toeplitz decompositions
efficiently). It should be noted that our algorithm is not suitable
for this method because of the asymptotic equivalence, but
this method opens up a new horizon in solving general linear
equations and deserves further investigation.
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APPENDIX A: PROOF OF THEOREM 2

In this appendix, we prove the conclusion in Theorem 2. For
simplicity, we write ‖A‖F as |A| in the following processes.
We first give some involved theories.

Lemma 1. The Frobenius norm of an n × n matrix A =
[ak,j ] is equal to

‖A‖F =
⎛
⎝n−1∑

k=0

n−1∑
j=0

|ak,j |2
⎞
⎠

1/2

= [tr(A∗A)]1/2 =
[

n−1∑
k=0

λk(A∗A)

]1/2

. (A1)

Lemma 2. Let A be a matrix with eigenvalues λk , then

n−1∑
k=0

λk(A∗A) �
n−1∑
k=0

λ2
k (A2)

with equality if and only if A is normal.
Theorem 5 (Parseval’s identity). Let f (λ) be a function that

is square integrable on [0,2π ]; then the sum of the squares of
the Fourier coefficients of the function is equal to the integral
of the square of the function:

∞∑
−∞

|tk|2 = 1

2π

∫ 2π

0
f (λ)2dλ.

Consider the truncated Fourier series

f̂n(λ) =
n−1∑

k=−(n−1)

tke
ikλ, λ ∈ [0,2π ]. (A3)

After some simple analysis and calculation, we know that

1

2π

∫ 2π

0
f (λ)f̂n(λ)dλ = 1

2π

∫ 2π

0
f̂ 2

n (λ)dλ =
n−1∑

k=−(n−1)

|tk|2.

Therefore

1

2π

∫ 2π

0
[f (λ) − f̂n(λ)]2dλ

= 1

2π

{∫ 2π

0
f 2(λ)dλ − 2

∫ 2π

0
f (λ)f̂n(λ)dλ +

∫ 2π

0
f̂ 2

n (λ)dλ

}

= 1

2π

∫ 2π

0
f 2(λ)dλ −

n−1∑
k=−(n−1)

|tk|2.

Since

1

2π

∫ 2π

0
[f (λ) − f̂n(λ)]2dλ � 0,

it follows that
n−1∑

k=−(n−1)

|tk|2 � 1

2π

∫ 2π

0
f 2(λ)dλ.

This means the sequence {tk} is square summable as n → ∞.
Thus given ε, there is a single N , such that

−n∑
k=−∞

|tk|2 +
∞∑

k=n

|tk|2 � ε if n � N.

Because the generating function is a continuous function on
[0,2π ], it is square integrable. Using Parseval’s identity, when
n � N , we have

1

2π

∫ 2π

0
[f (λ) − f̂n(λ)]2dλ

= 1

2π

∫ 2π

0
f 2(λ)dλ −

n−1∑
k=−(n−1)

|tk|2

=
∞∑

−∞
|tk|2 −

n−1∑
k=−(n−1)

|tk|2

=
−n∑

k=−∞
|tk|2 +

∞∑
k=n

|tk|2

� ε.

Similar to the proof in Ref. [23], we define a circulant matrix
Cn(f̂n) which has the top row (ĉ0,ĉ1, . . . ,ĉn−1), where

ĉk = 1

n

n−1∑
j=0

f̂n(2πj/n)e2πijk/n. (A4)

Since Cn(f ) − Cn(f̂n) is a circulant matrix and it is a normal
matrix (Corollary 1), we know from Eqs. (A1) and (A2) that

|Cn(f ) − Cn(f̂n)|2 =
n−1∑
k=0

|f (2πk/n) − f̂n(2πk/n)|2,

and hence for n � N

|Cn(f ) − Cn(f̂n)|2
|Tn(f )|2

=

n−1∑
k=0

|f (2πk/n) − f̂n(2πk/n)|2

n−1∑
k=−(n−1)

(n − |k|)|tk|2

�
∫ 2π

0 [f (λ) − f̂n(λ)]2dλ

n−1∑
k=−(n−1)

(n − |k|)|tk|2

� ε. (A5)

From the result of Ref. [23],

Cn(f̂n) − Tn(f ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 tn−1 tn−2 . . . t1
t−(n−1) 0 tn−1

t−(n−2) t−(n−1) 0
...

...
. . .

t−1 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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Therefore

|Cn(f̂n) − Tn(f )|2
|Tn(f )|2

=

n−1∑
k=−(n−1)

|k||tk|2

n−1∑
k=−(n−1)

(n − |k|)|tk|2

=

N∑
k=−N

|k||tk|2

n−1∑
k=−(n−1)

(n − |k|)|tk|2
+

−(N+1)∑
k=−(n−1)

|k||tk|2 +
n−1∑

k=N+1
|k||tk|2

n−1∑
k=−(n−1)

(n − |k|)|tk|2

�

N∑
k=−N

|k||tk|2

n−1∑
k=−(n−1)

(n − |k|)|tk|2
+

−(N+1)∑
k=−(n−1)

|k||tk|2 +
n−1∑

k=N+1
|k||tk|2

n|t0|2

�

N∑
k=−N

|k||tk|2

N∑
k=−N

(n − |k|)|tk|2
+

−(N+1)∑
k=−∞

|tk|2 +
∞∑

k=N+1
|tk|2

|t0|2

� N

n − N
+ O(1)ε. (A6)

Since ε is arbitrary,

|Cn(f ) − Tn(f )|
|Tn(f )|

�
(

|Cn(f ) − Cn(f̂n)|
|Tn(f )| + |Cn(f̂n) − Tn(f )|

|Tn(f )|

)

�
√

N

n − N
. (A7)

Thus,

lim
n→∞

|Cn(f ) − Tn(f )|
|Tn(f )| = 0. (A8)

APPENDIX B: PROOF OF COROLLARY 2

In this appendix, we analyze the magnitude of ε, when

|tk| � M/k, k = 1,2, . . . ,

M is a constant. From Eqs. (A5), (A6), and (A7),

‖Cn(f ) − Tn(f )‖F

‖Tn(f )‖F

� ‖Cn(f ) − Cn(f̂n)‖F + ‖Cn(f̂n) − Tn(f )‖F

‖Tn(f )‖F

�

√
−n∑

k=−∞
|tk|2 +

∞∑
k=n

|tk|2 +
√

n−1∑
k=−(n−1)

|k||tk|2
√

n−1∑
k=−(n−1)

(n − |k|)|tk|2

=

√
2

∞∑
k=n

|tk|2 +
√

2
n−1∑
k=0

k|tk|2
√

nt2
0 + 2

n−1∑
k=1

(n − k)|tk|2

�

√
π2M2

3 +
√

2M2

1 + 2M2

2 + · · · + 2M2

n−1√
nt2

0

= O

(√
ln n

n

)
,

where the final two steps use the fact

lim
n→∞

(
1 + 1

2
+ 1

3
+ · · · + 1

n
− ln n

)
= γ,

∞∑
n=1

1

n2
= 1 + 1

22
+ 1

32
+ · · · = π2

6
,

and γ is a Euler-Mascheroni constant. In view of Eq. (12), for
the well-conditioned Toeplitz matrices, the magnitude of the
final error is

O

(
poly(log n)√

n

)
,

with the consideration of the equivalency of ln n and log n in
the notation O.

APPENDIX C: PROOF OF COROLLARY 3

The corollary is proven from following theorem.
Theorem 6 [25]. Let Tn be a family of Toeplitz Hermitian

matrices associated with the sequence {tk}, and let F (λ) be
the discrete-time Fourier transform of {tk}. If |F (λ)| 	= 0 for
λ ∈ [0,2π ] and

∑∞
k=−∞ |ktk| < ∞, for a vector with the form

x = (0, . . . ,0,x−L, . . . ,x0, . . . ,xL,0, . . . ,0),

the quadratic form is bounded by

∥∥(
T −1

n − C−1
n

)
x
∥∥

‖x‖ � O(1/
√

n).

It is easy to verify that the conditions of the theorem are met
when the generating function is a strictly positive continuous
real-valued function. Besides, because of λmax(Tn) � 1,

∥∥(
T −1

n − C−1
n

)
x
∥∥∥∥T −1

n x
∥∥ �

∥∥(
T −1

n − C−1
n

)
x
∥∥

‖x‖ � O(1/
√

n).

Thus, the magnitude of the final error is O(1/
√

n).
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