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Rapid preparation, manipulation, and correction of spin states with high fidelity are requisite for quantum
information processing and quantum computing. In this paper, we propose a fast and robust approach for
controlling two spins with Heisenberg and Ising interactions. By using the concept of shortcuts to adiabaticity,
we first inverse design the driving magnetic fields for achieving fast spin flip or generating the entangled Bell
state, and further optimize them with respect to the error and fluctuation. In particular, the designed shortcut
protocols can efficiently suppress the unwanted transition or control error induced by anisotropic antisymmetric
Dzyaloshinskii-Moriya exchange. Several examples and comparisons are illustrated, showing the advantages of
our methods. Finally, we emphasize that the results can be naturally extended to multiple interacting spins and
other quantum systems in an analogous fashion.
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I. INTRODUCTION

Efficient initialization and manipulation of quantum states
have been long pursued in the fields of quantum optics,
quantum control, and even quantum simulation, due to their
significance for information storage, processing, and comput-
ing in various systems [1,2]. Along this research line, different
approaches including π (or π/2) resonant pulse [3], adiabatic
passages, and its variations [4,5] have been proposed to achieve
such desirable goal. As compared to simple resonant pulses,
adiabatic passages are usually robust against the systematic
errors, but take a long time, due to adiabatic criteria. The
shortcoming is that the long-time state evolution will be spoiled
due to decoherence effects in a noisy environment. To remedy
it, several complementary methods, i.e., composite pulses
[6–8] and optimal control [9–11], have been proposed.

In recent years, an alternative concept of “shortcuts to
adiabaticity” (STA) [12] has been put forward to speed up
the slow adiabatic process without final excitation, with broad
applications, ranging from atomic, molecular, and optical
physics to solid-state physics. Among them, two specific
protocols, inverse engineering [13] and counterdiabatic driv-
ing (or equivalently the quantum transitionless algorithm)
[14–16], are popular for different motivations and proposals.
In principle these two methods are mathematically equivalent,
but the physical implementations are quite different [17]. For
instance, ultrafast internal state manipulation [18–21] and ion
transport in phase space [22] have been realized in state-
of-the-art experimental implementations. The disadvantage,
however, is that the counterdiabatic terms are sometimes
infeasible or completely unphysical [23]. Also, the inverse
engineering stems from the Lewis-Riesenfeld (LR) dynamics
invariant [24], which was first proposed for fast frictionless
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atom cooling in harmonic traps [13] and demonstrated exper-
imentally as well [25,26]. More importantly, such shortcut
provides more freedom for further optimization when the
dynamics is designed only from the appropriate initial and final
boundary conditions [27–29]. Actually, other methods can also
reproduce similar results from the inverse engineering strategy
[30–33].

Particularly, the applications of STA in spin-1/2 systems are
always amazing, since the (optimal) control of its dynamics is
demanding in nuclear magnetic resonance (NMR) [34–36],
nitrogen-vacancy centers in diamond [19,21], and quantum
dots [37–39], and such system also resembles ubiquitous two-
level quantum systems, for instance, superconducting circuits
[40], and optomechanical systems [41]. For single spin, the
controllable magnetic fields are shaped, respectively, from STA
methods of counterdiabatic driving [15], inverse engineering
[30,42–44], and fast-forward scaling [45–47]. Also, the manip-
ulation of two spins with isotropic and anisotropic exchange
interactions becomes naturally attractive for entangled state
generation and quantum annealing. The system of two inter-
acting spins with four internal levels, satisfying SU(4) Lie
algebra, allows one to design the STA by using the LR invariant
[48]. Recently, the inverse engineering for four-level systems
with specific coupling configurations was further developed
by using four-dimensional double rotation [49]. But, in certain
cases the four-level system can be simplified to three-level
or two-level systems in terms of adiabatic elimination. As
a consequence, the counterdiabatic terms [50,51] are easily
calculated and implemented. Again, we shall emphasize that
inverse engineering [43,52] really provides an efficient way for
speeding up the conventional adiabatic passage [53], and pro-
ducing the efficient quantum gates as well [44]. However, the
optimization of STA with respect to the error and fluctuation,
contributed from control field and perturbative interaction,
has not been explored yet, which is an important issue in
practice.
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FIG. 1. Schematic diagram for the two-spin system with the
Heisenberg or Ising interaction J and Dzyaloshinskii-Moriya inter-
action D, resulting from anisotropic antisymmetric exchange.

In this paper, we shall study systematically the optimal
control of two interacting spins through time-dependent mag-
netic fields by using the technique of STA. For simplicity,
we consider fast control of spin states in two coupled spins
systems (see Fig. 1), in the presence of isotropic Heisenberg
or anisotropic Ising interaction, and the controllable magnetic
fields are designed inversely correspondingly. By combining
with time-dependent perturbation theory, the spin dynamics is
further optimized with respect to the errors and fluctuations.
Moreover, we shall consider the influence of Dzyaloshinskii-
Moriya (DM) interaction in two-spin systems, which is an
anisotropic antisymmetric interaction, due to spin-orbit cou-
pling. This non-negligible term contributes to control error
in quantum information processing [54]. Our strategy is to
treat it as perturbative error, rather than counterdiabatic term
[51], and to improve the fidelity by suppressing the unwanted
transition or canceling the control error. All these results are
demonstrated by numerical examples, and compared with the
resonant and composite pulses, showing the advantage of
robustness.

The paper is organized as follows. In Sec. II, we consider
the two Heisenberg-interacting spins to design the fast and
robust spin flip with systematic errors and perturbative DM
interactions. In Sec. III we design such shortcuts again for two
Ising-interacting spins in the presence of systematic errors and
DM interaction, to generate the entangled Bell state with a short
time scale. We finally present the discussion and summary in
Secs. IV and V.

II. TWO HEISENBERG-INTERACTING SPINS

First of all, we consider the two-spin system of spin
quantum numbers �S1 and �S2 with isotropic exchange coupling
in the presence of a time-dependent magnetic field, which is
described by the Hamiltonian

H (t) = J �S1 · �S2 + �B(t) · (�S1 + �S2), (1)

where J > 0 describes antiferromagnetic coupling (J < 0
ferromagnetic coupling), and �B(t) is the rotating magnetic
field with three components, Bi (i = x,y,z). (Noting that we
consider the isotropic one for simplicity, and there also exist
other anisotropic Heisenberg models, see the Appendix.) In
the basis of {Sz,S

2},

|ψ1,1〉 = |↑↑〉, (2)

|ψ1,0〉 = 1√
2

(|↑↓〉 + |↓↑〉), (3)

|ψ0,0〉 = 1√
2

(|↑↓〉 − |↓↑〉), (4)

|ψ1,−1〉 = |↓↓〉, (5)

the Hamiltonian has the following matrix form (by setting
h̄ ≡ 1):

H (t) =

⎛
⎜⎜⎜⎝

J
4 + Bz

Bx−iBy√
2

0 0
Bx+iBy√

2
J
4 0 Bx−iBy√

2
0 0 − 3J

4 0
0 Bx+iBy√

2
0 J

4 − Bz

⎞
⎟⎟⎟⎠, (6)

where the time dependence is omitted for simplicity. By shift-
ing the energy J/4, we can further simplify the Hamiltonian
as follows:

H (t) =

⎛
⎜⎜⎜⎝

Bz
Bx−iBy√

2
0 0

Bx+iBy√
2

0 0 Bx−iBy√
2

0 0 −J 0
0 Bx+iBy√

2
0 −Bz

⎞
⎟⎟⎟⎠. (7)

Since there exists one level decoupled to the other three, the
Hamiltonian can be further reduced to

H (t) =

⎛
⎜⎝

� 1√
2
� 0

1√
2
� 0 1√

2
�

0 1√
2
� −�

⎞
⎟⎠, (8)

when we impose � = Bx , � = Bz, and By = 0. Here � and
� refer to two components of magnetic fields, which resemble
the Rabi frequency and detuning in quantum optics as well.
With this interaction in such type of two coupled spins, one
cannot reach the Bell state |ψ1,0〉, from |ψ1,1〉, since there is
no energy gap between these two states. Instead, the time-
dependent magnetic field can drive the states from |ψ1,1〉 to
|ψ1,−1〉. But the adiabatic passage takes a long time to satisfy
the widely used adiabatic condition, T ad � �0/a [55]. As an
example, the Landau-Zener scheme, � = �0 and � = a(t −
T/2), requires T ad 	 20, with constant Rabi frequency �0 = 8
and chirp a = 4. Our motivation is to speed up and optimize
the spin-flip process by using inverse engineering.

This Hamiltonian (8) for the three-level model maps into a
spin-1 system, and can thus be rewritten as H = �Jx + �Jz,
where Jν (ν = x,y,z) are spin-1 generator matrices, satisfying
SU(2) algebra, [Jμ,Jν] = iJγ εμνγ , with the structure constants
εμνγ (see [56]). Consequently, the dynamic invariant I (t),
satisfying dI (t)/dt ≡ ∂I (t)/∂t + (1/ih̄)[H (t),I (t)] = 0, can
be constructed as [24]

I (t) = B0

⎛
⎜⎝

cos θ 1√
2

sin θe−iβ 0
1√
2

sin θeiβ 0 1√
2

sin θe−iβ

0 1√
2

sin θeiβ − cos θ

⎞
⎟⎠,

(9)

where B0 is a constant magnitude of magnetic field, guar-
anteeing the same dimension as H (t). The eigenstates of
the invariant I (t), I (t)|φn(t)〉 = λn|φn(t)〉 (we use the labels
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n = 0,1,2), can be easily obtained as

|φ0(t)〉 = 1√
2

⎛
⎝− sin θe−iβ√

2 cos θ

sin θeiβ

⎞
⎠, (10)

|φ1(t)〉 =
⎛
⎝cos2 θ

2 e−iβ

1√
2

sin θ

sin2 θ
2 eiβ

⎞
⎠, (11)

|φ2(t)〉 =
⎛
⎝sin2 θ

2 e−iβ

− 1√
2

sin θ

cos2 θ
2 eiβ

⎞
⎠, (12)

with corresponding eigenvalues λ0 = 0 and λ1,2 = ±B0/2.
Based on LR theory, the dynamics of such three-level sys-
tem, described by the time-dependent Schrödinger equation,
ih̄∂t |�(t)〉 = H |�(t)〉, is in general governed by the superpo-
sition of orthogonal “dynamical mode” [24]

|�(t)〉 = �ncne
iγn |φn(t)〉, (13)

where cn is a time-independent constant and the LR phases γn

are solved as γ0 = 0:

γ1,2 = ±
∫ t

0
dt ′

(
θ̇ cot β

sin θ

)
. (14)

From the condition for the dynamical invariant, we have the
following auxiliary differential equations:

θ̇ = −� sin β, (15)

β̇ = � − � cot θ cos β, (16)

by which the magnetic-field components, � and �, are con-
nected with two parameters θ andβ. Now it is ready to apply the
inverse engineering for achieving the fast spin flip from |ψ1,1〉
to |ψ1,−1〉 within a short time. The unperturbative solution is
along the single dynamical mode |ψ1(t)〉, and we impose the
boundary conditions

θ (0) = 0, θ (T ) = π, (17)

θ̇ (0) = 0, θ̇ (T ) = 0. (18)

Note that the boundary conditions (17) are necessary for spin
flip, while the others (18) make the fields smooth at the edges.
Once θ and β are interpolated by the polynomial ansatz [52]
with the appropriate boundary conditions (17) and (18), the
magnetic fields can be inversely designed from Eqs. (15)
and (16). In principle, inverse engineering has more flexibilities
than counterdiabatic driving, since there are thousands of
possible paths to connect the boundary conditions. One has to
optimize the shortcut by combining with the time-dependent
perturbation theory [27], or numerical recipe [57]. In what
follows, we shall optimize the magnetic fields with respect to
the systematic error, and also suppress the unwanted transition,
induced by anisotropic antisymmetric DM interaction.

A. Systematic error

The existence of noises, errors, and fluctuations is un-
avoidable during the state control for most practical quantum

systems. The optimization of STA with respect to systematic
errors is helpful, since the rotating magnetic field might have
imperfection, resulting in the shift δ in the amplitude of �B.
Here we describe such sole systematic error by the perturbative
Hamiltonian, that is,

H ′(t) =

⎛
⎜⎝

δ� 1√
2
δ� 0

1√
2
δ� 0 1√

2
δ�

0 1√
2
δ� −δ�

⎞
⎟⎠, (19)

which means the two components of the magnetic field are
simultaneously shifted as � → �(1 + δ) and � → �(1 + δ).

By using time-dependent perturbation theory, we have

|�(T )〉 = |�1(T )〉 − i

∫ T

0
dtU0(T ,t)H ′|�1(t)〉 −

∫ T

0
dt

×
∫ t

0
dt ′U0(T ,t)H ′U0(t,t ′)H ′|�1(t ′)〉 + . . . ,

(20)

where the unperturbed time evolution operator U0(T ,t) =∑
n |�n(T )〉〈�n(t)| with |�n(t)〉 = eiγn(t)|φn(t)〉 where n =

0,1,2.
The fidelity to find the final state |ψ1,−1〉 from initial state

|ψ1,1〉 along one of the dynamical modes, |�1(t)〉, is defined
as F = |〈�1(T )|�(T )〉|2, and can be further estimated as, by
keeping the second order,

F 	 1 −
∑
n=1

∣∣∣∣
∫ T

0
dt〈�1(t)|H ′|�n(t)〉

∣∣∣∣
2

. (21)

By defining the systematic error sensitivity as [27]

qS = −1

2

∂2F

∂δ2

∣∣∣
δ=0

, (22)

we have

qS = 1

2

∣∣∣∣
∫ T

0
dt(−β̇ sin θ − iθ̇ )eim(t)

∣∣∣∣
2

, (23)

with m(t) = −γ1. This quantity resembles the fidelity suscep-
tibility [58], which is the second-order derivative of the fidelity
with respect to δ, and describes the response of the fidelity to
a small error. So, to minimize or nullify the systematic error
sensitivity can somehow improve the fidelity.

In the simplest case of a flat π pulse, we have θ = πt/T and
β = −π/2, therefore the error sensitivity gives qS = π2/2,
independent of T . It is consistent with other results that the
error sensitivity is only relevant to boundary conditions but
irrelevant to the duration time T [27,29,44].

Inspired by [28,29], we assume that

m(t) = 2θ + 2α sin 2θ, (24)

to nullify the error sensitivity (23), by choosing an appropriate
α. After substituting Eq. (14) into the equation γ1 = −2(θ +
α sin 2θ ), we can solve for

β = −arccot [2(1 + 2α cos 2θ ) sin θ ]. (25)

To achieve the goal of spin flip, the form of θ is assumed to be

θ = 3π

(
t

T

)2

− 2π

(
t

T

)3

, (26)
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FIG. 2. Optimal shortcut for spin flip in two Heisenberg-
interacting spins with rotating magnetic fields, by taking into account
the systematic error. (a) Optimal protocol of two components of
magnetic field, � (red, solid line) and � (blue, dashed line), in the
unit of B0. (b) Dynamics of spin, described by the probability of state
|ψ1,1〉 (blue, dashed line), |ψ1,0〉 (black, dotted line), and |ψ1,−1〉 (red,
solid line). (c) Fidelity vs the systematic error δ in the amplitude of
rotating magnetic field, where the optimal shortcut (red, solid line)
and flat π pulse (blue, dashed line) are compared. Parameters: T = 1
and α = 0.125.

from which we obtain α = 0.125 in Eq. (25) to make qS =
0. By using Eqs. (15) and (16), the two components of the
magnetic field, � and �, can be further inferred for optimal
shortcut with respect to the systematic error.

Figure 2 presents the optimal protocol of spin flip in such
two-coupled spins. The two components, � and �, of the
rotating magnetic field [see Fig. 2(a)] are smooth enough to
implement easily in practice. By using the designed magnetic
field, the spin dynamics is also illustrated in Fig. 2(b), where
the spin flip from |ψ1,1〉 to |ψ1,−1〉 is perfectly achieved.
Moreover, Fig. 2(c) illustrates that the fidelity is better than
the flat π pulse, where the fidelity is calculated by solving the
time-dependent Schrödinger equation with Hamiltonian (8),
by using the designed magnetic fields.

B. Dzyaloshinskii-Moriya interaction

Next, we shall consider the optimal shortcuts, by taking
account of the DM term, since the non-negligible magni-
tude results in the control errors in quantum information
processing [54]. This DM interaction, originally introduced
by Dzyaloshinskii [59] and Moriya [60], is an anisotropic
antisymmetric exchange interaction arising from the spin-orbit
coupling, and has the following form:

HDM(t) = �D · (�S1 × �S2), (27)

where �D can be simply chosen as the constant DM vector D

along the z axis. In the basis of {Sz,S
2}, the Hamiltonian is

written as

HDM(t) =

⎛
⎜⎜⎝

0 0 0 0
0 0 − i

2D 0
0 i

2D 0 0
0 0 0 0

⎞
⎟⎟⎠, (28)

which leads to the total Hamiltonian H̃ (t) = H (t) + HDM(t),
by combining with Eq. (8):

H̃ (t) =

⎛
⎜⎜⎜⎝

� 1√
2
� 0 0

1√
2
� 0 − i

2D 1√
2
�

0 i
2D −J 0

0 1√
2
� 0 −�

⎞
⎟⎟⎟⎠. (29)

Obviously, the DM interaction has the imaginary couple, which
plays the same role as counterdiabatic driving, for example,
when flipping the spin from |↑↓〉 to |↓↑〉 [51]. But in this case,
we would like to design the shortcut to adiabatic state evolution
along the dynamical mode |�1(t)〉 for achieving the spin flip
from |ψ1,1〉 to |ψ1,−1〉. If one looks at the dynamical mode
in Eq. (11), the state |ψ1,0〉 is involved and populated during
the shortcut path. Therefore, such additional coupling between
|ψ1,0〉 and |ψ0,0〉 definitely induces an unwanted transition, and
finally lowers the fidelity as a consequence.

Now, we shall apply the STA, combining with optimization,
by reducing the effect of the DM interaction. According to LR
dynamical invariant theory, the solutions of the time-dependent
Schrödinger equation with D = 0 are the set of orthogonal
solutions:

|�0(t)〉 = 1√
2

⎛
⎜⎜⎝

− sin θe−iβ√
2 cos θ

sin θeiβ

0

⎞
⎟⎟⎠eiγ0 , (30)

|�1(t)〉 =

⎛
⎜⎜⎝

cos2 θ
2 e−iβ

1√
2

sin θ

sin2 θ
2 eiβ

0

⎞
⎟⎟⎠eiγ1 , (31)

|�2(t)〉 =

⎛
⎜⎜⎝

sin2 θ
2 e−iβ

− 1√
2

sin θ

cos2 θ
2 eiβ

0

⎞
⎟⎟⎠eiγ2 , (32)

|�3(t)〉 =

⎛
⎜⎝

0
0
0

eiJ t

⎞
⎟⎠, (33)
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where the ancillary functions of θ , β, and γ fulfill
Eqs. (14)–(16) with the boundary conditions (17) and (18).

We treat the DM interaction as perturbation, and apply time-
dependent perturbation theory to obtain estimated fidelity to
find the final state |ψ1,−1〉 from initial state |ψ1,1〉 along the
state evolution |�1(t)〉:

F 	 1 −
∑
n=1

∣∣∣∣
∫ T

0
dt〈�1(t)|HDM(t)|�n(t)〉

∣∣∣∣
2

, (34)

from which the definition of transition sensitivity [61],

qD = −1

2

∂2F

∂D2

∣∣∣
D=0

, (35)

is calculated as

qD = 1

8

∣∣∣∣
∫ T

0
dt sin θ (t)eiJ t eim(t)

∣∣∣∣
2

, (36)

with m(t) = −γ1(t) as before. This quantifies how sensitive
a given protocol is concerning the unwanted transition to the
state |ψ0,0〉. Similar to the previous part, we can have the same
functions of θ and β as Eqs. (25) and (26), by imposing m(t)
[see Eq. (24)]. The numerical calculation gives α = 0.059 to
nullify the transition sensitivity (36), i.e., qD = 0.

Figures 3(a) and 3(b) demonstrate the shortcut to adiabatic
spin flip driven by the optimal magnetic fields, with two
components � and �, with respect to the influence of the
DM term. By using the designed protocol, we solve the
time-dependent Schrödinger equation with Hamiltonian (29).
As a result, the unwanted transition to the state |ψ0,0〉 can be
efficiently suppressed, and the fidelity for spin flip can be above
> 0.9999, when D/B0 � 2. In addition, Fig. 3(c) shows that
the robustness of our designed protocol is better than the flat
π pulse, in which qD is constant, qD = 1/2π2, irrelevant to
final time T . As a matter fact, the optimal shortcut is quite
insensitive to DM interaction, since the fidelity is reasonable
when DM interaction is less than the magnitude of magnetic
fields, �/B0 	 10.

III. TWO ISING-INTERACTING SPINS

In this section, we shall consider the two coupled spins,
described by a simple transverse Ising model, a minimum
model for quantum annealing [45,47]. The anisotropic interac-
tion allows us to generate the entangled Bell state, i.e., |ψ1,0〉,
which is crucial in quantum information processing with atoms
or spins [52,53]. The Hamiltonian has the simple form

H (t) = JSz
1 · Sz

2 + �B(t) · (�S1 + �S2), (37)

where J is the exchange interaction, �S1 and �S2 are the two
respective spin operators, and �B(t) is the time-dependent
rotating magnetic field. Similar to Sec. II, in the basis of
{Sz,�S2}, the Hamiltonian is rewritten as

H (t) =

⎛
⎜⎜⎜⎝

At �√
2
e−iωt 0 0

�√
2
eiωt −J/2 0 �√

2
e−iωt

0 0 −J/2 0
0 �√

2
eiωt 0 −At

⎞
⎟⎟⎟⎠, (38)

FIG. 3. Optimal shortcut for spin flip in two Heisenberg-
interacting spins with rotating magnetic fields, by taking into account
the perturbative DM interaction. (a) Optimal protocol of two com-
ponents of magnetic field, � (red, solid line) and � (blue, dashed
line), in the unit of B0. (b) Dynamics of spin, described by the
probability of state |ψ1,1〉 (blue, dashed line), |ψ1,0〉(black, dotted
line), |ψ0,0〉 (purple, dot-dashed line), and |ψ1,−1〉 (red, solid line).
(c) Fidelity vs constant vector D, representing the magnitude of
such anisotropic antisymmetric exchange, where the optimal shortcut
(red, solid line) and flat π pulse (blue, dashed line) are compared.
Parameters: J/B0 = 10, D/B0 = 1, T = 1, and α = 0.059.

in which the magnetic-field components we choose are Bx =
� cos ωt , By = � sin ωt , and Bz = At . Here the time depen-
dence is omitted for simplicity. Obviously, one of the states is
decoupled from the other three, thus the Hamiltonian, after the
phase transformation, can be reduced to [53]

H (t) =

⎛
⎜⎝

−ω + At 1√
2
� 0

1√
2
� − J

2
1√
2
�

0 1√
2
� ω − At

⎞
⎟⎠, (39)
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from which we learn that level crossing happens at three differ-
ent times, t12 = (ω − J

2 )/A, t13 = ω/A, and t23 = (ω + J
2 )/A.

Actually, the energies of the adiabatic states have avoided
crossings at certain times, which helps us treat them as an
effective two-level problem (see the details in [52,53]).

To prepare the entangled Bell state, we choose |ψ1,1〉 and
|ψ1,0〉 as initial and final state, respectively. So, in order to avoid
other crossings except for these two states, we can choose a �

centered at t12. And the Hamiltonian, involving only these two
states, can be eventually simplified as

H (t) = 1

2

(
�

√
2�√

2� −�

)
, (40)

where � = At − ω + J/2. Here � and � are slightly different
from the previous section, and refer to the amplitude and fre-
quency of the magnetic field. Typically, the adiabatic passage
for transferring the state from |ψ1,1〉 to |ψ1,0〉 requires a time
scale of 30/J [43,52], which gives T ad ≈ 3 when J = 10.
Later, we shall apply STA to shorten the time, and choose
T = 1.

For the effective two-level system, there exist dynamical
invariants as follows [27,29]:

I (t) = B0

2

(
cos θ sin θe−iβ

sin θeiβ − cos θ

)
, (41)

where θ and β are the polar and azimuthal angles in the Bloch
sphere. The eigenstates are

|φ+(t)〉 =
(

cos θ
2 e−iβ

sin θ
2

)
, |φ−(t)〉 =

(
sin θ

2

− cos θ
2 eiβ

)
, (42)

corresponding to the eigenvalues, λ± = ±B0/2. Similar to
Sec. II, the solution of the time-dependent Schrödinger equa-
tion, ih̄∂t |�(t)〉 = H |�(t)〉, can be written as

|�(t)〉 = �ncn|φn(t)〉eiγn , (43)

where cn is a time-independent constant and the LR phases γn

are calculated as

γ± = ±1

2

∫ t

0
dt ′

(
β̇ + θ̇ cot β

sin θ

)
. (44)

To satisfy the condition for the dynamical invariant, the
time-dependent control parameters θ and β are connected to
� and � by the following equations:

θ̇ = −
√

2� sin β, (45)

β̇ = � −
√

2� cot θ cos β, (46)

from which we can design state evolution inferred for the
driving fields, fulfilling the appropriate boundary conditions.
This invariant-based inverse engineering provides an efficient
way to design a shortcut for generating the entangled Bell state.
To do this, we assume the state evolves along the dynamical
mode |φ+(t)〉, and the same boundary conditions, Eqs. (17)
and (18), are also imposed. Once the functions of θ and β

satisfy the boundary conditions, the driving magnetic field can
be designed to prepare the entangled Bell state from initial state
|ψ1,1〉 to final state |ψ1,0〉 within a short time scale [43,52].
However, the freedom to choose the function leaves flexibility
for further optimization, which we shall address below.

A. Systematic error

We shall consider the optimization of STA, since there may
exist systematic errors in both Rabi frequency and detuning,
simultaneously, since they refer to the control error in the
amplitude and frequency of the magnetic field, �B(t). First, we
describe the systematic error only in the Rabi frequency by the
following form:

H ′(t) = 1

2

(
0

√
2δ�√

2δ� 0

)
, (47)

which means the amplitude of the magnetic field is changed as
� → �(1 + δ) due to the fluctuation. By using time-dependent
perturbation theory, we have

|�(T )〉= |�+(T )〉−i

∫ T

0
dtU0(T ,t)H ′|�+(t)〉 −

∫ T

0
dt

×
∫ t

0
dt ′U0(T ,t)H ′U0(t,t ′)H ′|�+(t ′)〉 + . . . ,

(48)

where the unperturbed time evolution operator U0(T ,t) =
|�+(T )〉〈�+(t)| + |�−(T )〉〈�−(t)| with |�±(t)〉 =
eiγ±(t)|φ±(t)〉.

Accordingly, we can calculate the estimated fidelity to be
found at the final state |ψ1,1〉 from initial state |ψ1,0〉:

F 	 1 −
∣∣∣∣
∫ T

0
dt〈�+(t)|H ′|�−(t)〉

∣∣∣∣
2

. (49)

Similarly, by defining the error sensitivity [27],

q� = −1

2

∂2F

∂δ2

∣∣∣∣
δ=0

, (50)

we will have

q� = 1

4

∣∣∣∣
∫ T

0
dtθ̇ sin2 θeim(t)

∣∣∣∣
2

, (51)

with m(t) = 2γ− − β. Thus the fidelity is approximated as
F 	 1 − q�δ2, keeping the second order. In the special case,
m(t) = 0 and q� = π2/4, independent of T . With the choice
of β = −π/2, the result will recover the flat π pulse.

Following [27,28], we can obtain q� = sin2(nπ )/(4n2) by
imposing m(t) = n(2θ − sin 2θ ), so that q� = 0 is achieved,
if n = 1,2,3, . . .. In the case of n = 1, we have

β = −arccot (4 sin3 θ ), (52)

which results in q� = 0. When q� is nullified, the minimum
of q� is achieved, which gives the maximal robustness with
respect to amplitude variations of magnetic field. As an
example, we choose smooth function

θ = π

2

[
1 + sin

π (2t − T )

2T

]
, (53)

satisfying Eqs. (17) and (18). Notice that we use a different
ansatz from the previous one, to show the versatility. As a
consequence, we can solve for � and � through Eqs. (45)
and (46).

Figure 4 illustrates the optimal design of the driving mag-
netic field with respect to amplitude error, and corresponding

062317-6



FAST AND ROBUST CONTROL OF TWO INTERACTING SPINS PHYSICAL REVIEW A 97, 062317 (2018)

FIG. 4. Optimal designed protocol for fast generation of the en-
tangled Bell state in two Ising-interacting spins with driving magnetic
fields, by taking into account the amplitude error. (a) Optimal protocol
of time dependence � (red, solid line) and � (blue, dashed line), in
the unit of B0. (b) Dynamics of spin, described by the probability of
state |ψ1,1〉 (blue, dashed line) and |ψ1,0〉 (red, solid line). (c) Fidelity
vs the systematic error δ, comparing the optimal shortcut (red, solid
line) with the flat π pulse (blue, dashed line). Parameter: T = 1.

spin evolution from |ψ1,1〉 to |ψ1,0〉. The dynamics and fidelity
are calculated numerically by solving the time-dependent
Schrödinger equation with Hamiltonian (40). The comparison
between the shortcut protocol and flat π pulse is made to show
the maximum robustness. Besides, we can also optimize the
shortcut with respect to the systematic error in detuning, as
in [29]. We will discuss a similar situation below.

B. Dzyaloshinskii-Moriya interaction

We turn to consider the effect of DM interaction on the
Bell state generation and further reduce the control error
by optimizing STA. After phase transformation, the total

Hamiltonian, with the DM term, is written as

H̃ (t) =

⎛
⎜⎜⎜⎜⎜⎝

Bz
�√

2
e−iωt 0 0

�√
2
eiωt −J/2 −iD �√

2
e−iωt

0 iD −J/2 0

0 �√
2
eiωt 0 −Bz

⎞
⎟⎟⎟⎟⎟⎠, (54)

from which we can further obtain the effective Hamiltonian
for the three-level system, by adiabatic elimination [20]:

H̃ (t) =

⎛
⎜⎜⎝

Bz
�√

2
e−iωt 0

�√
2
eiωt −J/2 + δ �√

2
e−iωt

0 �√
2
eiωt −Bz

⎞
⎟⎟⎠, (55)

with δ = 2D2/J . By choosing Bx = � cos ωt , By = � sin ωt ,
and Bz = At as before, the Hamiltonian, after the phase
transformation, becomes

H̃ (t) =

⎛
⎜⎜⎝

−ω + At 1√
2
� 0

1√
2
� − J

2 + δ 1√
2
�

0 1√
2
� ω − At

⎞
⎟⎟⎠, (56)

from which we learn that level crossing happens at three
different times, t12 = (ω − J

2 + δ)/A, t13 = ω/A, and t23 =
(ω + J

2 − δ)/A. By comparing the Hamiltonian (56) with (39),
we finally find the Hamiltonian, involving only two states of
|ψ1,1〉 and |ψ1,0〉, as follows:

H̃ (t) = 1

2

(
� − δ

√
2�

√
2� −� + δ

)
, (57)

where � is the same as before. As a result, the DM term in this
case can be considered as the shift of detuning, and described
by the perturbative Hamiltonian

H ′(t) = 1

2

(
−δ 0

0 δ

)
. (58)

Similar to Eqs. (49) and (51), we can finally obtain [29]

q� = 1

4

∣∣∣∣
∫ T

0
dt sin θeim(t)

∣∣∣∣
2

. (59)

Again, we may assume m(t) in Eq. (24) to nullify q�, with
free parameter α. After some straightforward calculations,
we finally obtain q� = 0 with the parameter α = −0.206.
Figure 5 demonstrates the optimal protocol and corresponding
spin dynamics designed by STA, in which the flat π pulse,
q� = (T/π )2, is also compared. Since δ = 2D2/J , the error
induced by DM could be negative and positive depending on
antiferromagnetic coupling J > 0 or ferromagnetic coupling
J < 0. When δ = 4, we have D = 14.4 in the unit of B0,
with the parameter J = 10. Thus, it is proved, by solving the
time-dependent Schrödinger equation with Hamiltonian (40),
that our designed protocol is insensitive to the DM interaction
[see Fig. 5(c)], when D is less than the magnitude of the
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FIG. 5. Optimal designed protocol for fast generation of the en-
tangled Bell state in two Ising-interacting spins with driving magnetic
fields, by taking into account the DM interaction. (a) Optimal protocol
of time dependence � (red, solid line) and � (blue, dashed line), in
the unit of B0. (b) Dynamics of spin, described by the probability of
state |ψ1,1〉 (blue, dashed line) and |ψ1,0〉 (red, solid line). (c) Fidelity
vs the systematic error δ, relevant to the DM term, comparing the
optimal shortcut (red, solid line) with the flat π pulse (blue, dashed
line). Parameters: J/B0 = 10, D/B0 = 1, T = 1, and α = −0.206.

driving magnetic field. This is extremely useful to generate
the entangled Bell state in two coupled spin systems.

IV. DISCUSSION

In this section, we shall discuss the robustness of designed
shortcut protocols, by comparing with the flat π pulse and
a composite pulse π

2 (x)π (y)π
2 (x). Especially, the techniques

of composite pulses, originally proposed in NMR [6], are
popular in robust high-fidelity quantum control [7,62]. First,
we consider the spin-flip case when the Heisenberg interaction
is present, in Sec. II. When the initial state is |ψ1,1〉, the state

evolution can be represented as |ψ(t)〉 = U (t,0)|ψ1,1〉, where
U (t,0) is the propagator, connecting the initial state with final
state. For instance, when the Hamiltonian H = �Ji (i = x,y),
the propagator, Ui(T ,0) = exp(−iH t), is calculated as

Ui(t,0) = I − i sin(�t)Ji + [cos(�t) − 1]J 2
i , (60)

where Ji (i = x,y) are generator matrices of spin 1, as defined
before. Considering the flat π pulse with the systematic error
δ, the Hamiltonian is described by H = �(1 + δ)Jx with
�T = π . By using the propagator in Eq. (60), the fidelity,
F = |〈ψ1,−1|U (T ,0)|ψ1,1〉|2, to be found in the desired sate
|ψ1,−1〉, is thus analytically solved as

F = cos4

(
πδ

2

)
	 1 − π2δ2

2
. (61)

This recovers that qS = π2/2, as discussed in Sec. II. For a
composite pulse, we consider the typical one, π

2 (x)π (y)π
2 (x),

in order to minimize resonance offset effects, where the
combination x, y refers to the two components of magnetic
field and spin-1 operators, Jx and Jy , involved [6]. Similarly,
we can calculate the propagator by using Eq. (60), and finally
obtain the fidelity

F = cos8

(
πδ

2

)
+ sin2(πδ) cos2

(
πδ

2

)
	 1 − π4δ4

8
.

(62)

Interestingly, we notice that for the composite pulse the error
sensitivity, defined in Eq. (23), is null. This suggests that
the composite pulse can improve the robustness, but more
sequences require more time, as compared to the optimally
robust shortcut protocol with single-shot pulse. Figure 6(a)
demonstrates that the optimal shortcut with respect to the
systematic error, as shown in Fig. 2, is more robust, as
compared with the flat π pulse and composite pulse.

Regarding the generation of the entangled Bell state in
two Ising-interaction spins, we consider the effective two-level
Hamiltonian. In this case, we calculate the fidelities

F = cos2

(
πδ

2

)
	 1 − π2δ2

4
, (63)

for the flat π pulse with
√

2�T = π and

F = 1 − sin4

(
πδ

2

)
	 1 − π4δ4

16
, (64)

for composite pulse π
2 (x)π (y)π

2 (x), with Pauli matrix, σx

and σy , involved instead. For comparison, we calculate that
q� = π2/4 for the flat π pulse and q� = 0 for the composite
pulse, based on Eq. (51), which are consistent with the
discussion in Sec. III. Figure 6(b) confirms that the optimally
shortcut protocol, as shown in Fig. 4, is ultrarobust against the
systematic error, and its stability is better than the flat π pulse
and composite pulse.

In this closing section, we shall emphasize the extension
of the present optimal shortcuts to the many-spin system. For
instance, we can consider the Hamiltonian

H (t) = J

3∑
i=1

∑
j =i

Sz
i S

z
j + �B(t) ·

(
3∑

i=1

�Si

)
, (65)
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FIG. 6. Robustness of designed shortcut protocols (red, solid
line), by comparing with flat π pulse (black, dotted line) and
composite pulse (blue, dashed line), where (a) Heisenberg interaction
and (b) Ising interaction are considered. Parameters: T = 1 and others
are the same as those in Figs. 2 and 4.

describing three spins at the vertex of an equilateral triangle.
By imposing the three components of the magnetic field, Bx =
� cos ωt , By = � sin ωt , and Bz = At , we can use the similar
approach in [52,53], and eventually write down the effective
two-level Hamiltonian as follows:

H (t) = 1

2

(
�

√
3�√

3� −�

)
, (66)

with � = At + ω + J , in the basis of

|ψ3/2,3/2〉 = |↑↑↑〉, (67)

|ψ3/2,1/2〉 = 1√
3

(|↑↑↓〉 + |↑↓↑〉 + |↓↑↑〉). (68)

This allows us to construct the dynamical invariant as before,
and design inversely the components of the magnetic field to
achieve fast and robust generation of the W entangled state
|ψ3/2,1/2〉 from the initial state |ψ3/2,3/2〉. More interestingly,
the same approach can be further applied to manipulate the
larger number of coupled spins, when the Rabi frequency is
replaced by

√
n� (see also [43]).

Also, one can generalize the shortcut protocol to the Heisen-
berg interaction with many spins, of which the Hamiltonian is

H (t) = J
∑
(i,j )

�Si · �Sj + �B(t) ·
(

N∑
i=1

�Si

)
, (69)

where N is the total spin number and (i,j ) stands for the
summation process that we only take account of the nearest-
neighbor spins. The dynamical invariant in this situation is con-
structed in [63], and STA technique will be utilized as well. But
if the Heisenberg interaction is anisotropic [64], the dynamical
invariant does not exist. Therefore, the above semianalytical
analysis is not applicable, and more complicated numerical
analysis is required.

V. CONCLUSION

In summary, we have studied the fast and robust control
of spin states in two interacting spins with Heisenberg and
Ising interaction by using STA technique. We first apply
inverse engineering to design the time-dependent magnetic
fields for spin flip, and optimize the spin dynamics with
respect to control error and fluctuation. In particular, the
optimal shortcut protocol provides an efficient way to suppress
the unwanted transition or systematic error induced by DM,
due to anisotropic antisymmetric exchange. Furthermore, the
anisotropic Ising interaction enables us to generate the entan-
gled Bell state, and the fast and stable process is interesting for
quantum information processing.

We emphasize that the optimal shortcuts designed here are
different from counterdiabatic driving [51,52] and fast-forward
scaling [50], since the inverse engineering based on the LR
invariant provides the explicit dynamics of spins and the
flexibility for further optimization. A more robust protocol can
be further designed by minimizing or nullifying the high order
of the approximate fidelity, calculated from time-dependent
perturbation theory. In addition, the smooth single-shot pulses
are suitable for the applications, and could be connected to the
composite pulse-sequence technique with a time-dependent
phase [28]. Here we consider the special cases of the isotropic
Heisenberg XXX and simple transverse Ising models with
the semianalytical solutions, due to the symmetry. However,
a more general anisotropic Heisenberg XYZ model requires
numerical analysis and optimization [64], since the inverse
engineering based on the dynamical invariant does not work.
Therefore, open questions left for future work include compar-
ing the present protocol with other methods, such as universal
broadband composite pulse sequences [62], incorporating the
recipe of optimal control [57], or extending to the anisotropic
interacting many-spin systems for quantum annealing [47].
Last but not least, the results can be readily transposed to other
systems, i.e., NMR, quantum dots, superconducting circuits,
optomechanical systems, etc.
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APPENDIX

In this appendix, we would like to show how to derive
the effective four-level and reduced Hamiltonians for two
interacting spins. Generally speaking, the Hamiltonian of a two
coupled-spin system with anisotropic Heisenberg interaction
can be written as

H (t) =
∑

i

JiS
i
1S

i
2 + �B(t) · (�S1 + �S2), (A1)

in which Ji (i = x,y,z) are the coupling coefficients, and �B(t)
is the rotating magnetic field with three components, Bi . In the
basis of |↑↑〉, |↑↓〉, |↓↑〉, and |↓↓〉, the Hamiltonian can be
rewritten as

H =

⎛
⎜⎜⎜⎝

Jz/4 + Bz
Bx−iBy

2
Bx−iBy

2
Jx−Jy

4
Bx+iBy

2 −Jz/4 Jx+Jy

4
Bx−iBy

2
Bx+iBy

2
Jx+Jy

4 −Jz/4 Bx−iBy

2
Jx−Jy

4
Bx+iBy

2
Bx+iBy

2 Jz/4 − Bz

⎞
⎟⎟⎟⎠. (A2)

To obtain the Hamiltonian, which can be reduced to the
effective three-level system in Eq. (8), we represent the above
Hamiltonian in the basis of singlet and triplet states, described

by Eqs. (2)–(5). Therefore, we have the following expression:

H (t) =

⎛
⎜⎜⎜⎜⎝

Jz

4 + Bz
Bx−iBy√

2
0 0

Bx+iBy√
2

Jx+Jy−Jz

4 0 Bx−iBy√
2

0 0 − Jx+Jy+Jz

4 0
0 Bx+iBy√

2
0 Jz

4 − Bz

⎞
⎟⎟⎟⎟⎠.

(A3)
Since the state |ψ0,0〉 is decoupled to others, the population
does not change, up to the phase fact. Finally, we can write
down the three-level system with Hamiltonian

H (t) =

⎛
⎜⎝

Jz

4 + Bz
Bx−iBy√

2
0

Bx+iBy√
2

Jx+Jy−Jz

4
Bx−iBy√

2

0 Bx+iBy√
2

Jz

4 − Bz

⎞
⎟⎠. (A4)

Obviously, we eventually obtain the simple Hamiltonian in
Eq. (8), satisfying SU(2) Lie algebra, with the corresponding
dynamical invariant, just by shifting the energyJ/4, and setting
Jx = Jy = Jz. Of course, we can perform a similar calculation
for the Ising-interaction case, as well.
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