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Universal quantum computation using photonic systems requires gates the Hamiltonians of which are of
order greater than quadratic in the quadrature operators. We first review previous proposals to implement such
gates, where specific non-Gaussian states are used as resources in conjunction with entangling gates such as the
continuous-variable versions of controlled-PHASE and controlled-NOT gates. We then propose ON states which
are superpositions of the vacuum and the N th Fock state, for use as non-Gaussian resource states. We show
that ON states can be used to implement the cubic and higher-order quadrature phase gates to first order in gate
strength. There are several advantages to this method such as reduced number of superpositions in the resource
state preparation and greater control over the final gate. We also introduce useful figures of merit to characterize
gate performance. Utilizing a supply of on-demand resource states one can potentially scale up implementation
to greater accuracy, by repeated application of the basic circuit.
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I. INTRODUCTION

The physical medium of photonics is considered a promis-
ing candidate for scalable and robust implementation of quan-
tum information processing [1–3]. There have been various ex-
perimental advances and proposals to this end [4,5], especially
in the field of integrated photonic circuits [6–9]. Substantial
research continues to focus on the role of photonics in universal
quantum computation [10–14] and in demonstrable quantum
computational advantage [15–17]. Further, photonic systems
are also a suitable physical medium for fault-tolerant quantum
computation [18,19].

It is well known that a basic requisite set of gates for
universal continuous-variable quantum computation consists
of gates with Hamiltonians given by x̂,x̂2, and x̂3, along
with a two-mode Gaussian gate and a Fourier gate [20].
So the cubic phase gate plays a pivotal role since it is the
lowest-order non-Gaussian gate in this elemental tool kit that
provides an entry into universal quantum computation. One
concrete application using the cubic and quartic gates is the
simulation of the Bose-Hubbard model [12]. Non-Gaussianity
in general has been an active area of recent interest since
it not only plays a role here in quantum computation but
has also proven advantageous in other quantum information
processing tasks such as parameter estimation [21], generation
of entangled states [22–24], quantum communication [25], and
teleportation [26–28].

There are already several proposals for implementation
of the cubic phase gate each with its advantages and dis-
advantages. We have identified four broad approaches that
provide approximate schemes to implement the cubic phase
gate [18,29–31]. It is important to note that the methods
focused primarily on the implementation of the cubic phase
gate to first order in its Taylor expansion (or equivalently a
weak cubic gate).

*krishna@xanadu.ai

Any general quadrature phase gate is of the form �̂(γ ) =
exp [iγ xN ], where |γ | is the gate strength and N is the order
of the gate. Since we are interested in implementing these
gates approximately, we consider its Taylor expansion �̂(γ ) =∑

m=0(iγ x̂N )m/m!. By accuracy, we denote the power of the
gate strength in the expansion up to which the gate is being
approximated. For example, first order in accuracy of �̂(γ ) is
the expansion 1 + iγ xN , and so on. It is thus the triad of gate
strength |γ |, order of the Hamiltonian N , and accuracy of the
Taylor expansion that plays an important role in the description
and implementation of these quadrature phase gates. Note that
for very small gate strengths low accuracy would approximate
the gate well.

For Gaussian elements (N = 1,2) one can implement the
gates to very high accuracy for all gate strengths. However,
for the cubic gate, implementation to even the first order
in accuracy has been a challenge. To generate quartic (and
higher-order) phase gates, one needs to use various gate
approximations and concatenation methods [20,32–34], and
this is where the accuracy plays an important role.

Keeping the order-strength-accuracy triad in mind we
emphasize that the cubic phase gate is sufficient for uni-
versal quantum computation along with a (nonunique) min-
imal set of Gaussian elements only when the cubic gate
is implementable to sufficiently high accuracy for all gate
strengths, assuming repeated applicability. In this paper we
explore the optical implementation of the cubic phase gate to
higher accuracies and also the quartic gate to first order in
accuracy.

The outline of the paper is as follows. In Sec. II we provide
a brief overview of the cubic phase gate and its closely related
companion, the cubic phase state. In Sec. III we review four
broad schemes that we have identified under which previous
implementations can be classified. In Sec. IV we introduce
our implementation of the cubic and quartic gates using
ON states, along with its basic properties. We conclude in
Sec. V.
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FIG. 1. Real (left) and imaginary (right) parts of the wave function
(thick red line) of a squeezed displaced vacuum state |ψ〉 and its
modulation (dashed line) by the action of the cubic phase gate.

II. CUBIC PHASE STATE AND CUBIC PHASE GATE

The cubic phase gate plays a crucial role for universal quan-
tum computation since it has the lowest-order Hamiltonian
among non-Gaussian quadrature phase gates. Hence the cubic
phase gate V (γ ) and the related cubic phase state |γ 〉 have
received substantial attention. These are defined as

V (γ ) = eiγ x̂3
, (1)

|γ 〉 = V (γ )|0〉p = δ

∫
dx eiγ x3 |x〉, (2)

where the subscript p denotes a momentum eigenket and γ ∈
R. Note further that the scalar δ is only ornamental since the
state is not normalizable. We also wish to point out that we only
deal with a single mode of an electromagnetic field in the entire
paper, and we work in natural units where x is dimensionless
and we further set h̄ = 1.

We briefly recall a few basic properties that we use later.
The action of the cubic gate at the level of the position wave
function is

V (γ )|ψ〉 =
∫

dx ψ(x)eiγ x3 |x〉

⇒ ψ(x) → ψ(x)eiγ x3
. (3)

So we see that the wave function is modulated by a position
dependent phase, so the oscillations become very rapid for
large x as shown in Fig. 1. However, the probability amplitudes
|ψ(x)|2 remain unchanged under the action of the cubic gate.
In some realistic settings where resource states are used in a
basic gate-teleportation type of circuit the ket |0〉p is replaced
by a suitable squeezed state. The Wigner function of the ideal
cubic state is given by [35]

W (x,p) = N0 Ai
(
b0[3γ x2 − p]

)
, (4)

with parabolas 3γ x2 − p = const being contours in phase
space. Here, N0 = 2πδ|b0|, b0 = (4/3γ )1/3, and Ai stands for
the Airy function. The cubic phase gate in the Heisenberg
picture induces the following transformation on the quadrature
operators:

V (γ )† x̂ V (γ ) = x̂,

V (γ )† p̂ V (γ ) = p̂ + 3γ x̂2. (5)

Since we are interested in approximations to the cubic phase
gate and state, it is useful to express them as Taylor expansions

in the parameter γ given by

V (γ ) = 11 + iγ x̂3 − γ 2x̂6/2 + O(γ 3),

|γ 〉 =
∫

dx [1 + iγ x3 + O(γ 2)]|x〉

= |0〉p + iγN
′
∫

dx x3|x〉 + O(γ 2), (6)

for some normalization N
′
. Note that the approximate phase

state has a cubic imaginary component superposed with an
infinitely squeezed vacuum state when expanded to first order
in γ .

III. REVIEW OF PREVIOUS TECHNIQUES

Previous routes to nonlinear gates can be classified into four
broad approaches which we recapitulate now in no particular
order. The first is the original approach by Gottesman-Kitaev-
Preskill (GKP) [18], who reduced the problem of generating
a cubic phase gate to that of a cubic phase state. GKP then
provided an approximate scheme to generate this resource
state using two-mode squeezed states, displacements, a pho-
ton number resolving detector, and squeezing. It is useful
to introduce notation for two-mode entangling gates where
CX = e−ix̂1p̂2 (controlled-X), CZ = eix̂1x̂2 (controlled-Z), Cα =
eix̂1(αâ

†
2−α∗â2) (controlled-α), and single-mode displacements

X(a) = e−iap̂ and Z(a) = eiax̂ . The Cα gate is also sometimes
referred to as the quantum nondemolition (QND) gate, but
we choose the former for clarity. We spend more time in the
description of the GKP circuit as this was the first method in
this topic and it will also be useful for us.

A. GKP circuit with a resource state [18,35–37]

Take an input state |ψ〉 in a tensor product with a resource
state |φr〉. Let |φr〉 = ∫

dx φr (x)|x〉 with position wave func-

tion φr (x). Now apply the gate C
†
X = eix̂1p̂2 . Finally, perform

a position homodyne measurement 	x of quadrature x̂ on the
resource mode to obtain

C†
X

|ψ • T1(q)|ψ

|φr Πx q,

(7)

where a conditional operator T̂1(q) resulting from a measure-
ment outcome q gives an output state

T̂1(q)|ψ〉 = 〈q|C†
X|ψ〉|φr〉

= 〈q|
∫

dxdy ψ(x)φr (y)eix̂1p̂2 |x〉|y〉

= 〈q|
∫

dxdy ψ(x)φr (y)|x〉|y − x〉

=
∫

dx ψ(x)φr (x + q)|x〉
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=
∫

dx ψ(x)φr (x̂ + q)|x〉

= φr (x̂ + q)|ψ〉. (8)

In effect the circuit in Eq. (7) implements the operator T̂1(q)
with probability

p(q) = 〈ψ |φr (x̂ + q)†φr (x̂ + q)|ψ〉

=
∫

dxdy〈x|ψ(x)∗φr (x + q)∗φr (y + q)ψ(y)|y〉

=
∫

dx|ψ(x)|2|φr (x + q)|2. (9)

The operation T̂1(q) is a filter, i.e., nonunitary. If the resource
state is non-Gaussian, then so is T̂1(q). The key idea is to
interpret this filter operation as an approximate nonlinear gate.

1. GKP circuit with an ideal cubic state

Let us now use as a resource an ideal cubic state of Eq. (2)
into the GKP circuit in Eq. (7). Then we have that

T̂1(q)|ψ〉 = eiγ (x̂+q)3 |ψ〉. (10)

One needs to correct for the shift in the cubic factor in the
applied operator that resulted from the measurement. This
can be achieved by a Gaussian feed-forward operator F̂q =
exp [−iγ (3x̂2q + 3x̂q2 + q3)], so that

T̂q = F̂q T̂1(q)|ψ〉 = V (γ )|ψ〉, (11)

which was the required aim. Here F̂q = P (−3γ q)Z(−3γ q2),
with P (t) = eitx̂2

, Z(t) = eitx̂ , and the overall phase is imma-
terial. Therefore, these corrections take the form of the optical
elements of squeezing and rotations along with displacements,
respectively.

2. Kraus operators

In the language of quantum channels, what the GKP circuit
implements is one Kraus operator of a channel where the
system-ancilla unitary is the C

†
x gate, the ancilla state is the

resource state |φr〉, and the homodyne measurement is the basis
in which the ancilla is measured. Conditioned on a particular
measurement outcome, the corresponding Kraus operator is
applied to our input state. The output state is then sent through
a correction optical setup that depends on the outcome of the
homodyne measurement to obtain the action of the cubic phase
gate.

3. GKP circuit with a realistic resource state

GKP provided a realistic procedure for the resource state
using the following optical circuit:

|0 S

B(π/4)

Z(w) Πn

m

|0 S−1 S(m) |φr .

S

B(π/4)

Z(w) Πn

m

S−1 S(m)

(12)

The state just after the beam splitter action is the two-mode
squeezed state, Z(w) is a displacement, 	n is the photon
number detection, and S(m) is a measurement dependent
squeezing that has to be applied. In the limit of large squeezing,
displacement, and photon number detection z,w, and m, one
recovers the approximate cubic phase state. However, an
analysis in [35] places these large limit requirements to be
experimentally challenging.

Apart from the GKP prescription for their realistic resource
states, there are other resource states that have been considered
for use in the GKP circuit in literature. One such example
[which we denote Marek-Filip-Furusawa (MFF)] used a 0-
1-3 Fock superposition state as in Refs. [38,39]. Another
approach which considered a variation of the original GKP
circuit [which we denote Arzani-Treps-Ferrini1 (ATF1) [29]]
considered a single photon-subtracted squeezed displaced state
âS(r)D(α)|0〉, that is also related to a weak cat state [40,41]. In
this method a measurement dependent monomial of the form
(x̂ − λ) is implemented along with an extra Gaussian damping
factor.

B. Arzani-Treps-Ferrini2 method

The second approach in Ref. [29] which we denote Arzani-
Treps-Ferrini2 (ATF2) involves a photon counter used in place
of the homodyne measurement in a GKP-type circuit along
with a squeezed displaced state as a resource, as shown in the
circuit

CZ

|ψ • Ij(x̂)|ψ

|φr • Πn j . (13)

The effective filter operator implemented by the circuit can be
obtained from

Ij (x) = Fy→x[φr (y)nj (y)], (14)

where F is the Fourier transform and nj (y) is the position rep-
resentation of the j photon excited vacuum state. Then using a
single-photon detection, and applying a suitable displacement
to the outcome, the circuit implements an exact monomial
operator of the form (x̂ − λ). This is along with a Gaussian
damping operator which is a byproduct of finite squeezing that
one cannot avoid. To implement the cubic phase gate to first
order, the circuit needs to be implemented three times with
suitably chosen resource state parameters for each repetition.

C. Marshall-Pooser-Siopsis-Weedbrook method

The Marshall-Pooser-Siopsis-Weedbrook (MPSW) method
is also known as the “repeat-until-success” method [30]). This
method also implements a monomial operator U� = 1 + λ�x̂,
which is of a different form compared to previous methods,
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using an intricate measurement in the circuit given by

Cβ

|ψ • U |ψ
⊗

|α D(β) QND |1 ,
(15)

where Cβ = eix̂1(βâ†−β∗â). Then to realize the first-order cubic
gate, the circuit is implemented three times with suitably
chosen parameters λ� of the unitary. This method has some
advantages such as a simple resource state and no dynamic
feed-forward elements. The QND denotes a conditional mea-
surement outcome corresponding to the projection operator
P0̄ = 11 − |0〉〈0|.

D. Adaptive non-Gaussian measurement method

The final method called adapative non-Gaussian mea-
surement (AnGM) [31] utilizes a non-Gaussian ancilla state
embedded in an adaptive heterodyne measurement (dashed
box) in the circuit given by

|ψ

BS

X T |ψ ,

|0 x

BS

Πx

|φr Πp(θ) •

(16)

where |0〉x denotes a position ket and |φr〉 is a resource state.
The result of the first homodyne measurement on x̂ is fed into
the rotation value θ of the second quadrature p̂θ . Choosing a
suitable resource state that is a superposition of the first four
Fock basis states implements the cubic gate to first order. This
method is attuned to one-way quantum computation based on
cluster architectures as already proposed in Ref. [42]. �

Each of the above-mentioned methods has different ad-
vantages and disadvantages both from a theoretical and an
experimental point of view. But all the methods roughly fall
under some form of ancilla-driven quantum computation. We
present a comparison of the different methods in Table II and
present our own method in the next section.

IV. GKP CIRCUIT WITH ON STATES AS RESOURCES

In this section we study the use of ON resource states for
implementing higher-order quadrature phase gates. We define
ON states as superpositions of vacuum and the N th Fock state,
i.e.,

|ON〉 = 1√
1 + |a|2

(|0〉 + a|N〉). (17)

Our approach using ON states falls in the first method of using
a resource state in a GKP circuit. In the case of the 03 state (i.e.,
an ON state with N = 3) we implement directly the first order
of the cubic operator with a Gaussian damping as opposed to

the monomial of the methods of ATF1, ATF2, and MPSW.
Also the 03 state has already been experimentally generated
[43]. We only require a superposition of two Fock states as
opposed to three or four Fock states as required by the other
methods. We also present a clear demonstration of the quartic
gate to first order as proof of principle since the required 04
state is experimentally challenging but potentially possible by
extending the existing methods. Focusing on the cubic phase
gate, we discuss the effective operator being implemented and
the experimental preparation of the resource state, and we
provide clear gate performance figures of merit.

A. Cubic gate

1. GKP circuit with the 03 state

We define the 03 state as

|φr〉 ≡ |ψa〉 = ca(|0〉 + a|3〉), ca = (1 + |a|2)−1/2. (18)

The position wave function of this state is given by

ψa(x) = caπ
−1/4e−x2/2

[
H0(x) + a√

3!23
H3(x)

]
= caπ

−1/4e−x2/2

[
1 + 2a√

3
(x3 − 3x/2)

]
. (19)

We set a = i
√

3a0/2 where a0 ∈ R, then the above equation
reduces to

ψa(x) = caπ
−1/4e−x2/2[1 + ia0(x3 − 3x/2)]. (20)

Then the resulting operator from using the 03 state as a resource
state in the GKP circuit conditioned on the homodyne outcome
q is given by Eq. (8) (we drop the constants since the effective
operator is only a filter operation) to be

T̂1(q) = e−(x̂+q)2/2{1 + ia0[(x̂ + q)3 − 3(x̂ + q)/2]}. (21)

Let us now assume that a0 << 1, then we can approximate the
terms in the square bracket in Eq. (21) as a unitary operator to
obtain

T̂1(q) = e−i3a0q/2Âq Z(−3a0/2) eia0H ,where

Âq = e−(x̂+q)2/2, H = (x̂ + q)3, Z(s) = eisx̂ . (22)

Note that Âq is not a unitary but a damping non-trace-
preserving Gaussian noise operator that must be accounted
for. The action of Âq on any state |χ〉 is given by

Âq |χ〉 = Âq

∫
dx|x〉〈x|χ〉 =

∫
dxe−(x+q)2/2χ (x)|x〉.

(23)

Further, the output of the circuit needs to be normalized to
obtain the corresponding state. We can correct the Hamiltonian
H by using a feed-forward setup which consists only of Gaus-
sian elements as already mentioned in Eq. (11). Conditioned
on the homodyne measurement q we perform the following
correction given by

F̂G = ei3a0q/2e−ia0(3x̂2q+3x̂q2+q3) Z(3a0/2), (24)

which consists of displacement along the x axis and a dy-
namic squeezing element that has been experimentally realized

062315-4



ON STATES AS RESOURCE UNITS FOR UNIVERSAL … PHYSICAL REVIEW A 97, 062315 (2018)

n 0

n 1

n 2

n 3

n 4

n 5

4 2 0 2 4
0.0

0.1

0.2

0.3

0.4

Measurement outcome q

P
q

FIG. 2. Probability of the homodyne detection P (q) for input
Fock states and target cubic gate strength set to γ = 0.1, where the
plots from the top to the bottom correspond to Fock states in increasing
order from n = 0 to 5. We observe that as the Fock number increases
the probability distribution gets flatter.

[44,45]. Then we have the corrected circuit to be

T̂q = F̂GT̂1(q) = Âqe
ia0 x̂

3
, (25)

which is our required cubic gate along with a damping factor
which is measurement dependent. This damping factor is very
reminiscent of finite squeezing effects that appear in Gaussian
continuous-variable cluster state quantum computation [see,
for example, Eq. (177) of [1]]. Note that we have directly
obtained the cubic gate with one instance of the GKP circuit
and a suitable resource state.

2. Role of feed-forward corrections

The effective operator T̂1(q) is probabilistically imple-
mented and the probability depends on our fixed 03 resource
state and the input test states as seen from Eq. (9). We plot this
probability distribution for three classes of test states, namely,
Fock states, squeezed vacuum states, and coherent states,
respectively, in Figs. 2, 3, and 4. We find that for coherent
states the probability distribution is shifted by an amount equal
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FIG. 3. Probability of the homodyne detection P (q) for input
squeezed states and target cubic gate strength set to γ = 0.1, where
the plots from the top to the bottom correspond to squeezing value
in increasing order from 0 to 9.5 dB. We observe that higher input
squeezing leads to a damping of the probability distribution.
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FIG. 4. Probability of the homodyne detection P (q) for input x-
displaced vacuum states and target cubic gate strength set to γ =
0.1, where the plots from right to left correspond to x displacements
ranging from −1 to 1.5. We find that input displacements lead to
proportional shifts for the probability distribution.

to the x displacement of the test state. For squeezed states
the probability gets flattened with larger squeezing. A similar
damping effect is observed for input test Fock states with regard
to larger Fock numbers.

These plots serve to better understand the role of feed-
forward corrections and the probabilistic nature of the circuit.
Let us briefly assume that we completely avoid the Gaussian
feed-forward corrections, and just restrict the homodyne to
a value q0 ± ε, where ε accounts for some error we tolerate
for the homodyne measurement. This would render the circuit
nondeterministic as opposed to deterministic where all homo-
dyne values are used with the need for suitable feed-forward
corrections. In other words, we only look for events when
the homodyne detection falls in our chosen range. For all
homodyne detections within this value, we simply apply a
preprocessing for the circuit by a displacement X(q0), where
X(t) = e−itp̂. Note that X(t)x̂X(−t) = x̂ − t . So we have the
approximate effective circuit implementation to be

T̂1(q0)X(−q0)|ψ〉 = X(−q0)[X(q0)T̂1(q0)X(−q0)]|ψ〉
= X(−q0)T̂1(0)|ψ〉. (26)

If we postprocess the circuit by two displacements
Z(3a0/2)X(q0), we have the final effective operator to be given
by

T̂0 = Z(3a0/2)X(q0)X(−q0)T̂1(0) = Â0e
ia0 x̂

3
, (27)

which is our target gate apart from the overall Gaussian
“damping” factor. So at the cost of fixing the value of the
homodyne detection, and thereby reducing the probability of
success, we have gained that we do not need the feed-forward
corrections, but only fixed pre- and postcircuit displacements.

Supposing we fix the homodyne value to q0 = 0 and ε =
10−2, for the test states in Figs. 2–4 we roughly incur a drop
in probability of order 10−3. The conclusion is that, depending
on the test states and the quality of the optical elements in
the feed-forward, one could in principle have the option of
whether or not to fix the homodyne measurement. We, however,
assume the more general case of requiring feed-forward when
we present the optical circuit using 03 states.
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3. Preparation of the 03 state

For the preparation of the state we essentially follow the
method presented in Ref. [43]. The first step is the preparation
of a two-mode squeezed state (TMSS). This can be done with
two single-mode squeezers pre- and postprocessed by two
beam splitters. Consider the single-mode squeezing operation
that implements on the mode operators R = (x̂1,p̂1)T the
transformation

S = diag(e−r ,er ), (28)

and similarly a squeezing S−1 on a second mode [46]. Let
us sandwich this between two 50-50 beam splitters that are
inverses of each other where

BS(π/4) = 1√
2

(
112 112

−112 112

)
, (29)

where 112 is the 2 × 2 identity matrix. Then we have that

BS(π/4)−1(S ⊕ S−1)BS(π/4) =
(

cr112 −srσ3

−srσ3 cr112

)
≡ S2,

(30)

where cr = cosh r and sr = sinh r . This two-mode unitary
squeeze operator S2 acting on the vacuum state of two modes
gives rise to

|TMSS〉 = sechr
∞∑

n=0

(tanh r)n|n〉|n〉. (31)

But since the beam splitter leaves the vacuum state unchanged,
we only need one beam splitter operation in Eq. (30).

The next step is to perform a three-photon subtraction of
the form

Ŷ = (â + β1)(â + β2)(â + β3) (32)

and then a measurement 	0 = |0〉〈0| on one arm of the TMSS.
We drop the overall constant since Ŷ is a filter, label tanh r = y,
and we have

〈0|11 ⊗ Ŷ |TMSS〉
= β1β2β3|0〉 + y(β1β2 + β2β3 + β3β1)|1〉

+ y2
√

2(β1 + β2 + β3)|2〉 +
√

6y3|3〉. (33)

Setting β1 = ceiπ/6, β2 = cei5π/6, β3 = cei3π/2, we get the
vector

ic3|0〉 +
√

6y3|3〉 � |0〉 + i(y/c)3|3〉, (34)

where we have absorbed the negative sign and the factor
√

6
into c. We have tunable parameters c and y(r) to obtain the
desired 03 state. To implement the filter Ŷ we rewrite it as

Ŷ = D(β1)†âD(β1)D(β2)†âD(β2)D(β3)†âD(β3), (35)

where we have used the fact that D(β)†âD(β) = â + β.
We can simplify the expression using D(β)D(α) = D(α +
β)e(αβ∗−α∗β)/2 to obtain

Ŷ = δD(−β1)âD(β1 − β2)âD(β2 − β3)âD(β3), (36)

with all the scalars combined into δ, which can be accounted
for in the final normalization of the output state. We now con-
sider implementation of photon subtraction and displacements
needed for the operation in Eq. (36).

a. Photon subtraction element. Consider a beam splitter
BS(θ ) = eθ(â†b̂−âb̂†) with high transmissivity, i.e., θ << 1.
Then we can write BS(θ ) = 1 + θ (â†b̂ − âb̂†) + O(θ2) so
that

BS(θ )|ψ〉|0〉 = |ψ〉|0〉 − θâ|ψ〉|1〉 + O(θ2). (37)

If we measure a single-photon count in the ancilla mode
we obtain a photon subtraction on |ψ〉 as depicted in the
circuit

|ψ
BS

â|ψ

|0 Πn 1 .

BS

â|ψ

Πn (38)

b. Displacement element [47,48]. To implement a displace-
ment operator we need a beam splitter with high transmissivity
and a large coherent state |z〉 in the environment as given by
the optical circuit

|ψ
BS

D(α(z))|ψ ,

|z Tr
(39)

where Tr denotes the partial trace of the environment mode. We
use the identity that D(α)ρ̂D(α)† = lim|z|→∞ Tr2[BS(θ )ρ ⊗
|z〉〈z|BS(θ )†], with α = iz sin θ , θ << 1, such that z sin θ =
const.

c. Photon-addition element. We first note the identity

(11 ⊗ â)|TMSS〉 = (yâ† ⊗ 11)|TMSS〉. (40)

So instead of keeping the other arm of the TMSS on a long
delay loop while the photon-subtraction operator of Eq. (35) is
implemented, one could move some of the photon-subtraction
elements to this arm using the identity in Eq. (40). The standard
implementation of photon addition on an arbitrary state uses
a beam splitter with high transmissivity and a single-photon
resource state as depicted in the optical circuit

|ψ
BS

â†|ψ

|1 Πn 0, (41)

to obtain the state before measurement as

BS(θ )|ψ〉|1〉 = [11 + θ (â†b̂ − âb̂†) + O(θ2)]|ψ〉|1〉
= |ψ〉|1〉 + θâ†|ψ〉|0〉 − θâ|ψ〉|2〉 + O(θ2).

(42)

Then measuring the vacuum photon number on the ancilla
mode implements a photon addition on |ψ〉.

However, in lieu of the single-photon state one can instead
implement photon addition using a weak two-mode squeeze
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operator S2(r) = er(â†b̂†−âb̂), r << 1 [49]. We have

S2(r)|ψ〉|0〉 = [11 + r(â†b̂† − âb̂)]|ψ〉|0〉
= |ψ〉|0〉 + râ†|ψ〉|1〉 + O(r2). (43)

Detecting a single-photon count in the second mode imple-
ments a photon addition onto the first mode as given in the
circuit

|ψ
S2

â†|ψ

|0 Πn 1 ,
(44)

analogous to the photon subtraction element in Eq. (38).
Finally using the identity in Eq. (30) that relates a two-mode
squeeze operator with single-mode squeeze operators and
beam splitters, the optical circuit in Eq. (44) becomes

|ψ
BS

S

BS−1

â†|ψ

|0 S−1 Πn 1.

4. Gate and detector count

We finally put all the optical elements in place as depicted
in Fig. 5 so that we are able to make a detailed gate and
detector count. We note that the QND entangling operation in
the GKP circuit requires two single-mode squeezers and two
beam splitters [50,51] sandwiched between Fourier operators
which are specific phase shifters. The quadratic feed-forward
requires two phase shifters and a squeezing element [44,45],
along with a displacement element as shown in Eq. (24). The
state preparation requires eight beam splitters, two single-
mode squeezers, three single-photon resolving detectors, and
one vacuum projection. The homodyne detection of the GKP
circuit requires one beam splitter. To sum up, all the non-
Gaussianity from the resource state that is transferred into
the circuit comes about exactly through three single-photon
detectors.

5. Squeezed effective operator

If the input test states contain a squeezing operation, this
in turn can be interpreted as replacing the original effective
operation by a squeezed operation, i.e.,

T̂ [S(r)|ψ〉] = S(r)[S(r)†T̂ S(r)]|ψ〉 = S(r)T̂ (r)|ψ〉. (45)

In the case of the 03 resource state we have that

T̂q(r) = exp
[− 1

2 (x̂/r + q)2 + ia0(x̂/r)3
]
, (46)

where S(r)†x̂S(r) = x̂/r . Let us assume r > 1. The effects of
squeezing are opposing: on the one hand this may inhibit the
role of the Gaussian damping factor while at the same time it
also reduces the strength of the cubic phase gate. So having
a priori information about the test states one could tune the
effective operator that is to be implemented to improve the
output fidelities. Also, another way to use squeezing to mitigate
the effect of the damping operator would be to squeeze the

resource state while simultaneously tuning the coefficient a0

in the 03 state to produce the same gate action.

6. Cubic phase gate to higher order in accuracy

Let us consider a general unitary operator UH = eiHt =
cos[Ht] + i sin[Ht]. For small enough evolution times we
have the expansion to second order in time to be given by

U = 11 + iH t − H 2t2

2
+ O(t3). (47)

Due to the finite-order expansion we lose unitarity. Such
expansions would appear when we concatenate cubic gates to
generate higher-order gates. To achieve the required accuracy
using the resource state method we need to prepare a very
intricate state that has a superposition of the vacuum and up to
the six-photon excited state, that is at present experimentally
out of reach.

As an approximation to this second-order expansion we
consider the product expansion of the unitary operator. It is
well known that the exponent of a matrix X can be written as
a limit of products given by

eX = lim
n→∞

(
1 + X

n

)n

. (48)

If we consider this product for n = 2 and set X = iH t , we
obtain (

1 + iH t

2

)2

= 11 + iH t − H 2t2

4
. (49)

The difference between the Taylor expansion and the product
expansion to the second order is given by

�2 = H 2t2

4
. (50)

With regard to the cubic gate we have that H = x̂3 and so
�2 = x̂6t2/4.

Finally, to make use of the product form for approximating
the cubic gate to second order, we would need to implement
the GKP circuit with the 03 state twice. In this way one can
in principle go to higher-order accuracy of the cubic phase
gate using up more copies of the 03 state. This could possibly
be a better strategy to approximate higher-order cubic gates,
with due care given to the approximations, as compared to
creating very complex resource states that require creating and
maintaining superpositions with multiple Fock states.

B. Gate performance and the effect of the Gaussian noise
operator Âq

There are two commonly used notions of fidelity for a
quantum process of finite-dimensional systems, the worst case
and average case fidelity [52]. While the worst case fidelity can
be easily generalized and indeed such measures have been used
for benchmarking [53], the average case cannot be directly
generalized due to the nonexistence of a Haar measure for
continuous-variable systems [54]. We take motivation from
Ref. [55] to define suitable gate fidelities that are similar in
spirit to the average fidelities.

The fidelity between two states is defined as F (|ψ〉,|φ〉) =
|〈ψ |φ〉|. So we have that the gate fidelity of any operator T̂ that
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FIG. 5. GKP circuit with the 03 resource state given by ca(|0〉 + a|3〉). The circuit implements a weak cubic phase gate up to an overall
Gaussian noise factor T̂q = ÂqV (γ ). The feed-forward (dashed lines) Gaussian gates are the quadratic phase gate P and the displacement Z,
both of which are conditioned on the homodyne measurement outcome 	x = q and are therefore dynamic optical elements. The four coherent
states |z〉,|u〉,|v〉, and |w〉 are part of the displacement beams performed on one arm of the two-mode squeezed state as given in Eq. (36).
Detector 1 corresponds to the measurement {	1,11 − 	1} and detector 0 corresponds to the measurement {	0,11 − 	0}. Gate S stands for a
single-mode squeeze operator. The entangling gate in the primary circuit is the C

†
X gate.

approximates the cubic phase gate V (γ ) on a test state |ψ〉 is
given by

F

(
T̂ |ψ〉

||T̂ |ψ〉|| ,V (γ )|ψ〉
)

, (51)

where |||v〉|| = √〈v|v〉. The normalization is needed because
in general the approximate operator is a filter, i.e., not trace
preserving.

In our case of using the 03 resource state and in the weak
cubic regime, i.e., γ << 1, we have the effective operator post-
feed-forward correction to be the one given in Eq. (25). Here
the effective operator T̂q = ÂqV (γ ) differs from the cubic gate
only by an overall Gaussian noise factor which is dependent
on the outcome of the homodyne measurement. So we have
the fidelity on a given test state to be

Fq,ψ = F

(
T̂q |ψ〉

||T̂q |ψ〉|| ,V (γ )|ψ〉
)

= 〈ψ |Âq |ψ〉
〈ψ |Â2

q |ψ〉1/2
=

∫
dx|ψ(x)|2Aq(x)

[
∫

dx|ψ(x)|2Aq(x)2]1/2
, (52)

where we used the action of Âq from Eq. (23). Since the
homodyne outcome is probabilistic with weight given in Eq. (9)
we can average over these outcomes to obtain

Fψ,γ =
∫

dq p(q,γ )Fq,ψ , (53)

where γ is the parameter of the target cubic gate.
We can equivalently define the figures of merit in terms

of trace distance in lieu of fidelity and with suitable mod-
ifications. The relation connecting trace distance and fi-
delity between pure states is D(|ψ〉,|φ〉) =

√
1 − |〈φ|ψ〉|2 =√

1 − F (|ψ〉,|φ〉)2 [56]. We now consider the role of damping
on important test states such as coherent states, squeezed
vacuum states, and Fock states.

Examples

a. Coherent states. As our first example we consider
coherent states |α〉. A glance at Eq. (52) informs one that
displacements along the momentum axis do not enter the
expressions for fidelity. So we only consider coherent states
that are displaced along the x axis and we write its wave
function as

〈x|α(x0)〉 = 1

π1/4
e−(x−x0)2/2. (54)

In this case one finds that

Fq,x0 =
[

2
√

2

3

]1/2

e−(q+x0)2/12. (55)

One can then compute the average in Eq. (53) to obtain Fx0,γ . It
turns out that Fx0,γ is independent of x0, i.e., all coherent states
give the same fidelity, as can be verified from the integrals. So
we plot Fγ = F (x0,γ ) as a function of γ in the first plot of
Fig. 6. We find that the role of damping is only marginal and
that the fidelity is close to 0.9 for the entire range ofγ ∈ [0,0.1].
Note that there is a damping factor even for γ = 0 due to the
choice of the resource state.

b. Squeezed vacuum and Fock states. We repeat the calcu-
lation of fidelity for squeezed states and Fock states as test
states. We plot the effect of damping, respectively, in plots 2
and 3 of Fig. 6. We find that the fidelity decreases with increase
in either squeezing or the Fock state number. If we have an a
priori distribution for these test states, we can readily obtain
the corresponding average fidelity. �

C. Quartic gate

Even though the cubic gate is sufficient for universal
quantum computation, there are two primary reasons that one
needs to consider higher-order nonlinear gates. The first is
that it requires six cubic gates to implement an approximate
quartic gate and this number grows rapidly for higher-order
gates. The second reason is that one requires a cubic gate to
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FIG. 6. Gate fidelity Fγ ,Fsq, and Fn using, respectively, (a) coherent states, as a function of target cubic gate strength γ (since the fidelity
is displacement independent for a fixed γ ); (b) squeezed states, for γ = 0.1; and (c) Fock states, for γ = 0.1.

at least second order in accuracy to implement a quartic gate
to first order [38,57]. These two considerations give a possible
tradeoff between constructing higher accuracy cubic gates and
directly obtaining higher-order gates. We now briefly describe
a proof-of-principle construction of a quartic gate from our
general ON state method which we now take to be the 04 state.

GKP circuit with the 04 state

We now consider the 04 state as a resource state and define
it as |χa〉 = da(|0〉 + a|4〉), where da = (1 + |a|2)−1/2. To use
it as a resource state in the GKP circuit we write down the
position wave function, which is

χa(x) = daπ
−1/4e−x2/2

[
H0(x) + a√

244!
H4(x)

]
= daπ

−1/4e−x2/2

[
1 + 16a√

244!
(x4 − 3x2 + 3/4)

]
.

(56)

Let us set a = i
√

3/2a0 and we have

χa(x) = daπ
−1/4e−x2/2[1 + ia0(x4 − 3x2 + 3/4)]. (57)

Then if we input this state into the GKP circuit we have the
effective filter operator posthomodyne measurement outcome
q to be given by

T̂2(q) = e−(x̂+q)2/2{11 + ia0[(x̂ + q)4 − 3(x̂ + q)2 + 3/4]}.
(58)

The above operator can in turn be interpreted as a first-order
expansion for a unitary operator which would hold true if
a0 << 1. So we have that

T̂2(q) = e−(x̂+q)2/2eia0((x̂+q)4−3(x̂+q)2+3/4). (59)

We drop the overall phase factor and combine the Gaussian
terms to obtain

T̂2(q) = e−β(x̂+q)2/2eia0(x̂+q)4
, β = (1 + i6a0). (60)

It is now clear that if we want to apply the exact quartic
gate we would need corrections which are themselves cubic
in nature as can be seen by expanding the Hamiltonian of the
corresponding unitary. Again using the explicit form of the
probability distribution of the homodyne measurement one
may be able to simplify the effective circuit. We, however,
explore the quartic gate in more detail elsewhere.

V. DISCUSSION

In this paper we introduced a class of states named ON
states and outlined how they could be used as a unit resource
imperative in the GKP circuit to implement nonlinear gates
to first order. The first-order implementation approximates the
unitary phase gate when the gate strength is small. A road map
to future works includes increasing the accuracy of the cubic
gate and implementing higher-order gates. This paper therefore
gives a strong motivation for focusing on improved ON state
preparation.

We performed a complete analysis of the optical implemen-
tation starting from the resource state preparation, homodyne
measurement analysis, the role of feed-forward, and the final
gate fidelities that capture the role of the unavoidable Gaussian
noise in the circuit. We find that the homodyne measurement
probability distribution gets damped with higher number in the
Fock state or higher decibels of squeezing, and the distribution
gets translated with respect to input coherent states. The gate
fidelities also drop with respect to increased squeezing and
Fock number, but remain invariant under input displacements
of the coherent states.

Table I details the number of units required of each type of
optical element since this will provide insight into the circuit
depth and will also help to understand losses, which is very
crucial from an experimental point of view. We also list a
comparison of properties of various implementations of the
cubic phase gate in Table II. We hope that this investigation
will eventually lead to optimizing the total optical circuit by

TABLE I. Gate and detector count of the total optical circuit when
using the 03 state as a resource in the GKP circuit. APD stands for
avalanche photo diode and is also known as the on/off detector or the
single-photon counter and corresponds to the measurement {	0 =
|0〉〈0|,11 − 	0}. The single-photon resolving detectors correspond to
the measurement {	1 = |1〉〈1|,11 − 	1}. We refer to gates that are
conditioned on the homodyne measurement outcome in the circuit as
dynamic gates.

Optical element Count

Beam splitters 12
Squeezers 5
Single-photon resolving detectors 3
APD 1
Phase shifters 4
Dynamic gates 2
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TABLE II. Showing a comparison of the seven methods for implementing the cubic phase gate. S denotes a single-mode squeeze operator; S2

denotes the two-mode squeeze operator; and β,γ, and δ are fixed constants. G and nG stand for Gaussian(ity) and non-Gaussian(ity), respectively.
With regard to measurements 	x corresponds to a homodyne measurement of quadrature x̂, 	p corresponds to a homodyne measurement of p̂,
	n corresponds to a photon number resolving detection, and 	0/1 corresponds to the measurement {	0 = |0〉〈0|,	1 = |1〉〈1|,11 − 	0 − 	1}.
Gates P,X, and Z denote the quadratic phase gate, x displacement, and p displacement, respectively. The row “Source of nG” denotes whether
the non-Gaussianity in the circuit originated from the resource state (RS) or the measurement (M). Entangling gates CX, CZ, and Cα denote the
controlled-X, controlled-Z, and controlled-α gate. The row “Implementation” refers to the final form of the effective operation as to whether it
is an approximate cubic gate, is the cubic gate to first order in accuracy (or a weak cubic gate), or implements a monomial operator in x̂. The
row “Deterministic” denotes whether the computation uses all measurement results or only certain results through postselection, i.e., whether
the method is deterministic or not.

���������Property
Method

GKP MFF ON+GKP ATF1 ATF2 MPSW AnGM

Resource state 〈n|Z(w)S2|00〉 S(1 + iχx̂3)|0〉 |0〉 + ia|3〉 â|α,r〉 |α,r〉 |α〉 |0〉 + β|1〉 + γ |2〉 + δ|3〉
Fixed resource

√ √ √
✗ ✗

√ √
Type of resource nG nG nG nG G G nG
Entangling gate C

†
X C

†
X C

†
X CZ CZ Cβ Beam splitter

Measurement 	x 	x 	x 	p 	n 	0/1 Adaptive heterodyne
Source of nG RS RS RS RS M M RS
Implementation Approximate First order First order Monomial Monomial Monomial First order
Feed-forward P,X/Z P,X/Z P,X/Z P,X/Z X/Z None X/Z

Deterministic
√ √ √ √

✗ ✗
√

Circuit repetition 1 1 1 3 3 3 1

picking out the best features in the various methods to improve
gate fidelity and success probability, since there does not seem
to be a best candidate. For example, from Table II, we see
that the methods ATF2, MPSW, and AnGM do not require a
quadratic feed-forward.

The reason the cubic phase gate has attracted much attention
is due to the fact that it is the lowest-order nonlinear quadrature
phase gate. Its implementation is a major challenge one needs
to overcome in the physical medium of photonics to truly
exploit the full potential of universal quantum computation.
We believe that our present paper provides a fresh perspective

on this problem and places it in context with respect to previous
works. This allows us to increase the quality and the success
probability of higher-order nonlinear gates and understand the
scope of circuit flexibility. With a steady on-demand supply of
the unit resource states in conjunction with improved photon-
subtraction methods [58,59], the circuit can be scaled up with
repeated use to improve both accuracy and order.
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