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The measurement process necessarily disturbs the state of a quantum system, unless the state is an eigenstate
of the observable being measured. Once we perform a complete measurement in a given basis, the system
undergoes decoherence and loses its coherence. If there is no disturbance, the state retains all of its coherence.
It is therefore natural to ask if there is a trade-off between disturbance caused to a state and its coherence.
We present coherence disturbance trade-off relations using the relative entropy of coherence for measurement
channel as well as for general channels (completely positive trace-preserving maps). For bipartite states we prove
a trade-off relation between the quantum coherence, entanglement, and disturbance. Similar relation also holds for
quantum coherence, quantum discord, and disturbance for any bipartite state. We illustrate the trade-off between
the coherence and the disturbance for single-qubit and -qutrit states subject to various quantum channels.
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I. INTRODUCTION

Measurement is an integral part of quantum theory. In
order to extract information about a physical system we
need to measure some observable. Unlike classical systems,
in quantum mechanics the measurement process necessarily
disturbs the state of the system unless the state is prepared
in one of the eigenstate of the observable being measured.
Intuitively, we know that if we want to extract information,
the state of the system is necessarily disturbed, however, for
most information processing tasks one would like to keep
the disturbance to be minimum. There are several papers
aimed at proving this statement quantitatively by deriving
information vs disturbance trade-off relations, using different
definitions of information and disturbance in varied scenarios
[1–13]. It is well known that a state of a single quantum
system cannot be determined if we demand no disturbance
and possess no prior information about the quantum state
[14,15]. However, the disturbance of the quantum system can
be made arbitrarily small by using weak measurements. The
weak measurement also has potential applications in quantum
information processing [16–20].

The measurement process not only disturbs the state, but
also leads to loss of coherence. Note that when we say the
loss of coherence, we mean that the coherence is defined in a
particular basis as it is intrinsically a basis-dependent quantity.
If we change the basis we may see a different amount of
coherence [21]. This results in the decoherence of a system
which is seen as diminishing of the off-diagonal elements of
the density matrix that indicates the loss of superposition. Both
direct and indirect (here one uses the ancilla) measurement
processes can cause decoherence of a system [22–24] and result
in transfer of information from the system to the apparatus and
environment.

Coherence is a property of the physical system in the
quantum world that can be used to drive various nonclassical
phenomena. Hence, coherence can be viewed as a resource,

which enables us to perform useful quantum information
processing tasks. Much before the resource theory of coherence
was developed [25–28], coherence was viewed as a resource
similar to entanglement. In fact, similar to entanglement
swapping, coherence swapping has been proposed that can
create coherent superposition from two incoherent states [29].
After the development of the resource theory of coherence, this
was shown to be complementary to the path distinguishability
in an interferometer [30]. Similarly, a complementarity relation
between quantum coherence and entanglement was proved in
Ref. [31]. Also, coherence in two incompatible bases were
shown to be complementary to each other by proving that they
indeed satisfy an uncertainty relation [32]. Complementarity
of coherence with mixedness and asymmetry was also inves-
tigated in Refs. [33–35].

This motivates us to explore the idea that the initial coher-
ence should respect a trade-off relation with the disturbance
caused to the system state, whenever some information is
extracted from the system or a measurement is performed
on a quantum system. In this work, we present a trade-off
relation between the initial coherence of the system state
and the disturbance caused by a completely positive trace-
preserving (CPTP) map. The trade-off relation is tight and the
equality is satisfied for amplitude damping and depolarizing
channels in the case of a single-qubit state, while the bound
is lowered as the measurement strength is reduced. To prove
the trade-off relation, we use a measure of disturbance given
in Ref. [36] and the relative entropy quantum coherence given
in Ref. [25]. Moving on to bipartite systems, we know that
these systems can contain other nonclassical features such as
the entanglement and quantum discord in addition to quantum
coherence. Therefore, it is natural to seek a generalization of
the trade-off relations between the coherence, entanglement,
quantum discord, and disturbance caused to the system under
CPTP maps. For a bipartite state we prove a trade-off relation
for quantum coherence, entanglement, and the disturbance
induced by quantum operation. In addition, we also prove a
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similar relation for quantum coherence, quantum discord, and
disturbance.

The rest of the paper is organized as follows. In Sec. II,
we briefly review the basics of quantum measurement and
quantification of coherence and disturbance. Next, in Sec. III,
we derive the trade-off relation between the coherence and
the disturbance, which is our main result. For a bipartite
state we prove a trade-off relation for the relative entropy
of coherence, the relative entropy of entanglement, and the
disturbance induced by quantum operation. We also prove
that a similar relation holds for quantum coherence, quantum
discord, and disturbance. In Sec. IV, we give a few examples
to illustrate the trade-off between quantum coherence and
disturbance for various quantum channels. In Sec. V, we
present the conclusions and physical meaning of our results.

II. BASIC DEFINITIONS AND PRELIMINARIES

A. Quantum measurement

Quantum measurement is a distinct type of evolution
compared to the Schrödinger evolution of a quantum sys-
tem. The measurement process is nonunitary in nature and
gives us classical information about the system. In quantum
mechanics one can measure the observables represented by
Hermitian operators. After the measurement process, the state
collapses to one of the eigenstates of the observable being
measured with probability given by the Born rule. This kind of
measurement is described using the projection operators �j

with
∑

j �j = 1. However, the most general measurement
can be described using a set of measurement operators Mj

such that
∑

j M
†
jMj = 1. For an initial state ρ, the probability

of obtaining an outcome j is pj = Tr(Ejρ), where Ej is the
apparatus positive-operator-valued measure. Whenever there
is loss of information in measurement outcome, the final state
of the system is given by a noisy map N (ρ) = �jMjρM

†
j . In

order that the final state is a proper density-matrix operator,
the map N (ρ) should be a CPTP map.

B. Quantifying coherence and disturbance

In this section we briefly review the definitions of coherence
of a quantum system and the disturbance caused to the quantum
system due to a quantum operation.

1. Quantum coherence

Quantum coherence arises from the superposition principle
and thus marks a departure from classical physics. It is a
basis-dependent quantity and hence it is necessary to fix the
reference basis in which we define a quantitative measure
of coherence. An axiomatic approach to quantify quantum
coherence was developed by Baumgratz et al. in Ref. [25] by
characterizing incoherent states I and incoherent operations
�. For a given reference basis |i〉 (i = 0,1, . . . ,d − 1), all
incoherent states are of the form ρ = ∑

i pi |i〉 〈i| such that∑
i pi = 1. All incoherent operators are defined as CPTP

maps, which map the set of incoherent states onto itself. A gen-
uine measure of quantum coherence should fulfill the following
requirements: (i) non-negativity, where C(ρ) � 0 in general
and the equality is satisfied if and only if ρ is an incoherent

state; (ii) monotonicity, where C(ρ) does not increase under the
action of incoherent operations, i.e., C(�(ρ)) � C(ρ), where
� is an incoherent operation; (iii) strong monotonicity, where
C(ρ) does not increase on average under selective incoherent
operations, i.e.,

∑
i qiC(σi) � C(ρ), where qi = Tr[KiρK†

i]
are the probabilities, σi = KiρK†

i/qi are postmeasurement
states, and Ki are the incoherent Kraus operators; and (iv)
convexity, where C(ρ) is a convex function of the state, i.e.,∑

i piC(ρi) � C(
∑

i piρi). It can be noted that conditions (iii)
and (iv) put together imply condition (ii).

The measures that fulfill the above requirements are the
l1-norm of coherence and the relative entropy of coherence. In
the present work we will use the relative entropy of coherence,
which is given by

Cr (ρ) = S(ρD) − S(ρ), (1)

where S(ρ) = −Tr[ρ log2(ρ)] is the von Neumann entropy of
the density matrix ρ and ρD denotes the state obtained by
deleting the off-diagonal elements of ρ in a given basis {|i〉}.
For a d-dimensional state, 0 � Cr (ρ) � log2(d). Hence, using
the above definition, we can define the maximally coherent
state with Cr (ρ) = log2(d), which is the case when |ψd〉 =

1√
d

∑d−1
i=0 |i〉. Another definition of coherence based on the

matrix norm is the l1-norm of coherence, which is given by
Cl1 (ρ) = ∑

i �=j |ρij |, where ρij = 〈i| ρ |j 〉. Also a geometric
measure of coherence was defined in Ref. [37], as Cg(ρ) =
1 − maxσεI F (ρ,σ ), where I is the set of all incoherent states
and the fidelity F (ρ,σ ) = ‖√ρ

√
σ‖2

1.

2. Disturbance

In quantum mechanics, disturbance caused by a measure-
ment process can be defined with respect to both the observable
and the state. The disturbance for an observable due to mea-
surement of another observable was defined in Refs. [38,39]
and for states in connection with the error-disturbance relations
[40–42]. However, here we consider the disturbance caused to
a state when the system is subjected to a measurement process
and CPTP maps and do not aim to formulate error-disturbance
relations. We say that a system is disturbed when the initial
and final states do not coincide. We define disturbance as
an irreversible change in the state of the system, caused by
CPTP evolution. It is thus required that the quantity D that
measures disturbance should satisfy the following conditions:
(i) D should be a function of the initial state ρ and the CPTP
map E only, i.e., D = D(ρ,E); (ii) D(ρ,E) should be null if
and only if the CPTP map is invertible on the initial state ρ,
because for invertible maps the change in state can be reversed
and hence the system is not disturbed by our definition;
(iii) D(ρ,E) should be monotonically nondecreasing under
successive application of CPTP maps, which ensures that the
disturbance cannot be reversed by subsequent measurements;
and (iv) D(ρ,E) should be continuous for maps and initial
states which do not differ too much.

Several definitions of disturbance have been proposed using
the fidelity and the Bures distance between the initial and
final states [1,3,43], but they fail to satisfy the irreversibility
condition. Moreover, the fidelity-based definition is nonzero
for unitary transformations and disturbs a system in a non-
classical way [44], as we know that change in the quantum

062308-2



TRADE-OFF RELATION FOR COHERENCE AND DISTURBANCE PHYSICAL REVIEW A 97, 062308 (2018)

state due to unitary operations is reversible and hence does
not cause any disturbance as per our definition. Also, these
definitions can be null for noninvertible maps and they are not
monotonically nondecreasing under successive application of
CPTP maps, therefore they fail to satisfy conditions (ii) and
(iii). These are the main reasons why we have adopted the
measure of disturbance given in Ref. [36]. For the sake of
completeness, in the Appendix we discuss the trade-off relation
for the geometric measure of coherence and the fidelity-
based measure of disturbance. With the physically motivated
conditions given in (i)–(iv), it was shown by Maccone that all
the above conditions are met by the definition of disturbance
[36]

D(ρ,E) ≡ S(ρ) − Ic(ρ,E)

= S(ρ) − S(E(ρ)) + S((E ⊗ I )(|	〉SR 〈	|)), (2)

where Ic = S(E(ρ)) − S((E ⊗ I )(|	〉SR 〈	|)) is the coherent
information [45,46] of the system passing through a noisy
channel and |	〉SR 〈	| is a purification ofρ such thatρ = ρS =
TrR(|	〉SR 〈	|). Since Ic(ρ,E) � S(ρ), we have D(ρ,E) � 0.
We know that a CPTP map is invertible if and only if the
coherent information is equal to the von Neumann entropyS(ρ)
of the state [45] and hence disturbance will always be null for
all the invertible maps. The map E ⊗ I acts on |	〉SR with E
acting on the system Hilbert space and I acting on the ancilla
Hilbert space. The quantity Ic is nonincreasing under succes-
sive application of CPTP maps, which makes the disturbance
measure monotonically nondecreasing under CPTP maps. It is
clear from the definition of D(ρ,E) that for a d-dimensional
density matrix ρ it satisfies, 0 � D � 2 log2(d). With these
basic definitions for the quantum coherence and disturbance,
now we present our main results.

III. TRADE-OFF RELATIONS: COHERENCE,
ENTANGLEMENT, QUANTUM CORRELATIONS,

AND DISTURBANCE

In quantum information processing the role of coherence,
entanglement, and quantum correlations cannot be overlooked.
However, when we send a quantum state through a noisy chan-
nel the system tends to lose these delicate quantum features. In
practical scenarios, the action of noise and measurement cannot
be evaded. In this section, we will investigate how the initial
coherence of the density matrix respects a trade-off relation
with the disturbance caused by a quantum operation. Similarly,
for a bipartite state we will explore how the quantum features
such as coherence, entanglement, and quantum discord respect
a trade-off relation with the disturbance caused by a CPTP map.

A. Coherence-disturbance trade-off relation

Here we prove that there exists a trade-off relation between
the amount of coherence contained in a quantum state and the
disturbance caused to a system by a CPTP map. Consider a
d-dimensional system with a density matrix ρ, where initially
the system and ancilla ρR share a pure bipartite state |	〉SR ,
with ρ = TrR(|	〉SR 〈	|). When the system undergoes a
quantum operation E the evolution is represented as ρ →
E(ρ) = ∑

i KiρKi
†, where Ki are the Kraus operator elements

with
∑

i Ki
†Ki = I . During the action of the CPTP map,

the system undergoes a disturbance as given in Eq. (2), i.e.,
D(ρ,E) = S(ρ) − Ic(ρ,E). For such a noisy evolution, we will
prove that the trade-off relation between the coherence and the
disturbance is given by

2Cr (ρ) + D(ρ,E) � 2 log2(d). (3)

The proof is

2Crel ent(ρ) + D(ρ,E)

= 2S(ρD) − S(ρ) − S(E(ρ)) + S(E ⊗ I (|	〉SR 〈	|))
� 2S(ρD) − S(ρ) − S(E(ρ)) + S(E(ρ)) + S(ρ ′

R)

= 2S(ρD) − S(ρ) + S(ρR)

= 2S(ρD) � 2 log2(d),

where ρ ′
R is the final state of ancilla. The first inequality is

obtained by using the subadditivity of quantum entropy. The
next inequality is obtained using the fact that there is no change
in entropy of the ancilla and the next equality follows using
the fact that initial bipartite state is a pure state and thus
S(ρ) = S(ρR). The final inequality comes from the maximum
value of entropy of a state. Thus, for a given value of nonzero
disturbance, the quantum coherence cannot reach its maximum
value. There is a trade-off between these two quantum features.
Also, note that nowhere in the proof do we use the coherence
measure in a particular basis. Therefore, the relation holds true
in any basis we want to define the coherence and for all CPTP
maps.

B. Coherence-disturbance trade-off
for the measurement channel

While the trade-off relation holds true for all quantum
channels, the bound is tighter in the case of measurement
channels. The quantum operation for the measurement channel
is given by

ρ → E(ρ) =
∑

k

�kρ�k = ρD =
∑

k

ρkk |k〉 〈k| ,

where �k are the projection operators. This is also known as a
dephasing channel. Now if we consider an environment state
|0〉E so that |	〉SR ⊗ |0〉E is also a pure state, then the evolution
(E ⊗ I )(|	〉SR 〈	|) is equivalent to unitary evolution of the
tripartite state (U acts on HS ⊗ HE)

U ⊗ I(|	〉SR ⊗ |0〉E) → |	 ′〉SRE .

Since |	 ′〉SRE is also a pure state, we have S(ρ ′
SR) = S(ρ ′

E),
where ρ ′

SR = (E ⊗ I )(|	〉SR 〈	|) = Tr[U (|	〉SR 〈	| ⊗
|0〉E 〈0|)U †]. Then, using subadditivity of entropy, one can
obtain the trade-off relation

C(ρ) + D(ρ,E) � log2 dE, (4)

where dE = dim(HE) is the dimension of the Hilbert space
of the environment. In Eq. (4) both the quantities C(ρ)
and D(ρ,E) are basis dependent. In the case of dim(HS) =
dim(HE) = d, the trade-off relation given in Eq. (4) is tighter
than the one given in Eq. (3).
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C. Trade-off between coherence, entanglement, and disturbance

In the preceding section, we proved the trade-off of coher-
ence and disturbance for a single system. However, when we
deal with a composite system it can have quantum coherence,
entanglement, and quantum correlation beyond entanglement
such as the discord. Then a natural question to ask here is
if there exists any trade-off relation between the coherence,
entanglement, and disturbance caused by CPTP maps. Already,
we know that for pure bipartite states there is a trade-off relation
between the relative entropy of coherence and the bipartite
entanglement, i.e., C(ρA) + E(|	〉AB) � log2 d, where d is
the dimension of the subsystem Hilbert space of A [31]. Even
for mixed bipartite states ρAB one can prove a trade-off relation
between coherence of one subsystem and entanglement of
formation Ef (ρAB) [47]. This is given by

Cr (ρA) + Ef (ρAB) � log2 d. (5)

The proof follows from the Carlen-Lieb inequality [48]. This
inequality says that Ef (ρAB) � min{S(ρA),S(ρB)}. Assuming
that S(ρA) is the minimum one, we have Ef (ρAB) � S(ρA),
which is equivalent to Eq. (5). Below we prove that there is
indeed a trade-off relation for the coherence, relative entropy
of entanglement, and disturbance caused by measurement or
a CPTP map on the bipartite state. Suppose we have the
bipartite state ρAB with purification |	〉ABR such that ρAB =
TrR(|	〉ABR 〈	|). The relative entropy of entanglement was
defined in Refs. [49,50] as

ER(ρAB) = minσAB
S(ρAB ||σAB),

where σAB belongs to the set of all separable states. Note that
a mixed state is called separable if it can be written in the
form ρAB = ∑

k pkρ
k
A ⊗ ρk

B , where ρk
A and ρk

B are states of
the subsystems with probability pk . Now suppose that ρAB →
E(ρAB); then the disturbance for the bipartite state under a
quantum channel is defined as

D(ρAB,E) = S(ρAB) − Ic((ρAB))

= S(ρAB) − S(E(ρAB)) + S(E ⊗ I(|	〉ABR 〈	|)).
(6)

Here the relative entropy of quantum coherence for the bipartite
state can be defined as

C(ρAB) = S
(
ρD

AB

) − S(ρAB), (7)

where ρD
AB is the diagonal part of ρAB in the basis {|i〉 ⊗ |μ〉} ∈

HAB . Using the above definitions of coherence, entanglement,
and disturbance for the bipartite state ρAB , we can get a trade-
off relation of the form

C(ρAB) + ER(ρAB) + D(ρAB,E) � 2 log2(dAB). (8)

The proof of the relation is

C(ρAB) + ER(ρAB) + D(ρAB,E)

= S
(
ρD

AB

) + minσAB
S(ρAB ||σAB) − S(E(ρAB))

+ S(E ⊗ I(|	〉ABR 〈	|))
� S

(
ρD

AB

) + S(ρAB ||ρA ⊗ ρB) + S(ρAB)

= S
(
ρD

AB

) + S(ρA) + S(ρB) � 2 log2(dAB),

where dAB is the dimension of the state ρAB . The first inequality
is obtained using subadditivity of S(E ⊗ I(|	〉ABR 〈	|)) and
the fact that minσ S(ρAB ||σ ) � S(ρAB ||ρA ⊗ ρB). The final
inequality follows from the maximum value of the entropy
of the states, i.e., S(ρA) � log2(dA), S(ρB) � log2(dB), and
S(ρAB) � log2(dAB).

The trade-off relation (8) suggests that the sum of quan-
tumness such as the coherence and entanglement cannot
be large if the disturbance is also large. Also, for a fixed
coherence C(ρ), there is a trade-off between entanglement
and disturbance caused to the quantum system. For separable
states, ER(ρAB) = 0 and we have C(ρAB) + D(ρAB,E) �
2 log2(dAB).

D. Trade-off between coherence, quantum
discord, and disturbance

In the preceding section we proved a trade-off relation for
coherence, entanglement, and disturbance caused by a CPTP
map on a bipartite system. Similarly, one can ask if other
quantum correlations such as quantum discord satisfy a similar
trade-off relation. It was shown in Ref. [51] that for multi-
partite states, creation of quantum discord with multipartite
incoherent operations is bounded by the amount of quantum
coherence consumed in its subsystems during the process. This
interplay between coherence and quantum discord suggests
that coherence, quantum discord, and disturbance of a bipartite
system may satisfy a trade-off relation. We will now prove that
they also satisfy a trade-off relation. Quantum discord of a
bipartite state is defined in Ref. [52] as

QD(ρAB) = min�B
i
[I (ρAB) − J (ρAB)�B

i
],

where I (ρAB) = S(ρA) + S(ρB ) − S(ρAB) is the mutual in-
formation between subsystems A and B and J (ρAB)�B

i
=

S(ρA) − S(A|�B
i ) represents the amount of information

gained about subsystem A by measuring subsystem B. Here
�B

i are the measurement operators corresponding to the von
Neumann measurement on subsystem B and S(A|�B

i ) is the
conditional entropy after the measurement has been performed
on subsystem B. Using the definitions of disturbance and
coherence given in Eqs. (7) and (6), respectively, for a bipartite
state, we get a trade-off relation of the form

C(ρAB) + QD(ρAB) + D(ρAB,E) � 2 log2(dAB). (9)

The proof of the relation is

C(ρAB) + QD(ρAB) + D(ρAB,E)

= S
(
ρD

AB

) + min�B
i
[I (ρAB) − J (ρAB)�B

i
] − S(E(ρAB))

+ S(E ⊗ I(|	〉ABR 〈	|))
� S

(
ρD

AB

) + I (ρAB) + S(ρAB)

= S
(
ρD

AB

) + S(ρA) + S(ρB) � 2 log2(dAB),

where the proof is similar to the proof of the trade-off relation
of entanglement, coherence, and disturbance of bipartite state.
Thus, for separable states the coherence and discord cannot be
arbitrarily large for a given disturbance D(ρAB,E) caused to the
quantum system. For classical-classical states such as ρAB =∑

pk |k〉 〈k| ⊗ |k〉 〈k|, one has QD(ρAB) = 0 and in that case
one has C(ρAB) + D(ρAB,E) � 2 log2(dAB).
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IV. EXAMPLES

To gain some physical insight, in this section, we analyze the
coherence disturbance trade-off relation for different quantum
channels for a single qubit and later for the single-qutrit density
matrix. The trade-off relations can be neatly presented for a few
channels. Let us consider a two-qubit pure composite state of
the system and ancilla in a {|+〉 , |−〉} basis

|	〉SR =
√

λ0 |+〉S |+〉R +
√

λ1 |−〉S |−〉R .

For this composite state, the density matrix of the system in a
computational basis is given by

ρ = 1

2

[
1 λ0 − λ1

λ0 − λ1 1

]
.

In this basis, it has nonzero coherence, which is given by

Cr (ρ) = −Tr[ρD log2 ρD] + Tr[ρ log2 ρ]

= 1 + λ0 log2 λ0 + λ1 log2 λ1. (10)

The disturbance of a state depends on both the state density
matrix and the quantum channel. We give Kraus operators and
the corresponding expressions of the disturbance and present
the trade-off relations for a few channels as examples.

A. Weak measurement channel

The theory of weak measurement channels using the mea-
surement operator formalism can be found in Refs. [53,54].
This approach provides a tool to handle strong as well weak
measurements. The Kraus operators for the weak measure-

ment channel are given by K(x) =
√

1−x
2 �0 +

√
1+x

2 �1 and

K(−x) =
√

1+x
2 �0 +

√
1−x

2 �1, where �0 and �1 are the
two projection operators in the computational basis. The
weak measurement Kraus operators satisfy K(x)†K(x) +
K(−x)†K(−x) = I. The parameter x ∈ [0,1] denotes the
measurement strength, where the measurement strength in-
creases as x goes from 0 to 1. The operators satisfy the
following properties: (i) For x = 0, we have no measurement,
i.e., K(x) = K(−x) = I√

2
, resulting in no state change; (ii) for

x = 1, in the strong measurement limit we have the projective
measurements, i.e., K(x) = �1 and K(−x) = �0; and (iii)
[K(x),K(−x)] = 0. Under the weak measurement channel the
state changes as

ρ → E(ρ) = 1

2

[
1

√
(1 − x2)(λ0 − λ1)√

(1 − x2)(λ0 − λ1) 1

]
.

The disturbance for the weak measurement channel is given
by

D(ρ,E) = − Tr[ρ log2 ρ] + Tr[E(ρ) log2 E(ρ)]

− Tr[E ⊗ I (|	〉 〈	|) log2 E ⊗ I (|	〉 〈	|]

= − λ0 log2 λ0 − λ1 log2 λ1 − 1 −
√

1 − 4λ0λ1x2

2

× log2
1 −

√
1 − 4λ0λ1x2

2
− 1 +

√
1 − 4λ0λ1x2

2
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FIG. 1. Trade-off between coherence C(ρ) and disturbance
D(ρ,E) for the weak measurement channel. The figure shows coher-
ence along the X axis and disturbance along the Y axis. Random states
were generated and coherence and entropy were calculated using the
MATLAB package [55].

× log2
1 +

√
1 − 4λ0λ1x2

2

+
(

1

2
− λ0 − λ1

2

√
1 − x2

)

× log2

(
1

2
− λ0 − λ1

2

√
1 − x2

)

+
(

1

2
+ λ0 − λ1

2

√
1 − x2

)

× log2

(
1

2
+ λ0 − λ1

2

√
1 − x2

)
. (11)

It can be checked that D(ρ,E) increases monotonically as x is
increased from 0 to 1. By using Eqs. (10) and (11) we indeed see
that the relation C(ρ) + D(ρ,E) � 1 holds. This is depicted in
Fig. 1. This relation is tighter than our original relation (3). The
same trade-off relation is also obtained for the bit-flip, phase-
flip, and bit-phase flip channels for a single-qubit system.

B. Depolarizing channel

The Kraus operators for the depolarizing channel are given

by K1 =
√

1 − 3p

4 I2, K2 =
√

p

4 σx , K3 =
√

p

4 σy , and K4 =√
p

4 σz, where σx , σy , and σz are the Pauli matrices. Under the

depolarizing channel the state changes as

ρ → E(ρ) = 1

2

[
1 (1 − p)(λ0 − λ1)

(1 − p)(λ0 − λ1) 1

]
.

The disturbance for the depolarizing channel is given by
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D(ρ,E) = −λ0 log2 λ0 − λ1 log2 λ1 +
(

1

2
− λ0 − λ1

2
(1 − p)

)
log2

(
1

2
− λ0 − λ1

2
(1 − p)

)

+
(

1

2
+ λ0 − λ1

2
(1 − p)

)
log2

(
1

2
+ λ0 − λ1

2
(1 − p)

)
− pλ0

2
log2

pλ0

2
− pλ1

2
log2

pλ1

2

−
⎛
⎝

(
1 − p

2

) +
√(

1 − p

2

)2 − 4λ0λ1
(
p − 3p2

4

)
2

⎞
⎠ log2

⎛
⎝

(
1 − p

2

) +
√(

1 − p

2

)2 − 4λ0λ1
(
p − 3p2

4

)
2

⎞
⎠

−
⎛
⎝

(
1 − p

2

) −
√(

1 − p

2

)2 − 4λ0λ1
(
p − 3p2

4

)
2

⎞
⎠ log2

⎛
⎝

(
1 − p

2

) −
√(

1 − p

2

)2 − 4λ0λ1
(
p − 3p2

4

)
2

⎞
⎠. (12)

Again it is easy to check that D(ρ,E) increases monotonically
with p. Moreover, using Eqs. (10) and (12), we get 2C(ρ) +
D(ρ,E) � 2, which is the same as Eq. (3) for a qubit and is
depicted in Fig. 2.

C. Amplitude damping channel

The Kraus operators for the amplitude damping channel are
given by K1 = √

q |0〉 〈1| and K2 = |0〉 〈0| + √
1 − q |1〉 〈1|.

Under the amplitude channel the state transforms as

ρ → E(ρ)

= 1

2

[
1 + q

√
(1 − q)(λ0 − λ1)

(
√

(1 − q) + q)(λ0 − λ1) 1 − q

]
.

The disturbance of the amplitude damping channel is given by

D(ρ,E) = − 1
2 (1 + λ0 − λ1) log2

1
2 (1 + λ0 − λ1)

− 1
2 (1 − λ0 + λ1) log2

1
2 (1 − λ0 + λ1)

−(1 − qλ1) log2(1 − qλ1) − qλ1 log2 qλ1
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FIG. 2. Trade-off between coherence C(ρ) and disturbance
D(ρ,E) for the depolarizing channel. The figure shows coherence
along the X axis and disturbance along the Y axis. Random states
were generated and coherence and entropy were calculated using the
MATLAB package [55].

+ 1
2 [1 −

√
q2 + (λ0 − λ1)2(1 − q)]

× log2
1
2 [1 −

√
q2 + (λ0 − λ1)2(1 − q)]

+ 1
2 [1 +

√
q2 + (λ0 − λ1)2(1 − q)]

× log2[1 +
√

q2 + (λ0 − λ1)2(1 − q)]. (13)

For the amplitude damping channel also D(ρ,E) and C(ρ)
follow the original relation (3). The trade-off relations derived
above can be seen as given in Fig. 3.

Numerical data show that the trade-off relation for the
coherence and disturbance given in Eq. (3) is satisfied for all the
above channels for single-qubit systems. The amount of dis-
turbance decreases as the measurement strength is decreased,
which is expected in the case of all the channels. It can be also
seen that the trade-off between coherence and disturbance is
channel dependent. The trade-off relation obeyed for a single-
qubit state in the case of a weak measurement channel is tighter
than Eq. (3), while the amplitude damping and depolarizing
channels follow the original relation for a single-qubit state.
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FIG. 3. Trade-off between coherence C(ρ) and disturbance
D(ρ,E) for the amplitude damping channel. The figure shows coher-
ence along the X axis and disturbance along the Y axis. Random states
were generated and coherence and entropy were calculated using the
MATLAB package [55].
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FIG. 4. Trade-off between coherence C(ρ) and disturbance
D(ρ,E) for the depolarizing channel applied on a qutrit state. The
figure shows coherence along the X axis and disturbance along the Y

axis. The straight line corresponds to 2Cr (ρ) + D(ρ,E) = 2 log2 3.
Random states were generated and coherence and entropy were
calculated using the MATLAB package [55].

D. Examples from the qutrit system

Consider a two-qutrit pure composite state of system and
ancilla in the {|α〉, |β〉, |γ 〉} basis

|	〉SR =
√

λ0 |α〉S |α〉R +
√

λ1 |β〉S |β〉R +
√

λ2 |γ 〉S |γ 〉R ,

where |α〉 = |0〉−|1〉+|2〉√
3

, |β〉 = |0〉+|1〉−|2〉√
3

, and |γ 〉 =
−|0〉+|1〉+|2〉√

3
. For this composite state, the density matrix

of the system in the computational basis is given by

ρ = 1

3

⎡
⎢⎣

1 2λ0 − 1 2λ1 − 1

2λ0 − 1 1 2λ2 − 1

2λ1 − 1 2λ2 − 1 1

⎤
⎥⎦.

In this basis it has nonzero coherence, which is given by

Cr (ρ) = log2 3 + λ0 log2 λ0 + λ1 log2 λ1 + λ2 log2 λ2. (14)

E. Depolarizing channel

The Kraus operators for the single-qutrit depolarizing chan-
nel [56] are given by

K1 =
√

1 − 8p

9
I3, K2 =

√
p

9
Y, K3 =

√
p

9
Z,

K4 =
√

p

9
YZ, K5 =

√
p

9
Y 2Z, K6 =

√
p

9
YZ2,

K7 =
√

p

9
Y 2Z2, K8 =

√
p

9
Y 2, K9 =

√
p

9
Z2,

where

Y =

⎡
⎢⎣

0 1 0

0 0 1

1 0 0

⎤
⎥⎦, Z =

⎡
⎢⎣

1 0 0

0 ω 0

0 0 ω2

⎤
⎥⎦,

and ω = exp2πi/3. Under the depolarizing channel the qutrit
state changes as

ρ → E(ρ) =

⎡
⎢⎣

1 − 2p

3
2λ0−1

3 p 2λ1−1
3 p

2λ0−1
3 p 1 − 2p

3
2λ2−1

3 p

2λ1−1
3 p 2λ2−1

3 p 1 − 2p

3

⎤
⎥⎦.

The disturbance for the depolarizing channel is given by

D(ρ,E) = −λ0 log2 λ0 − λ1 log2 λ1 − λ2 log2 λ2

+
(p

3
+ (1 − p)λ0

)
log2

(p

3
+ (1 − p)λ0

)
+

(p

3
+ (1 − p)λ1

)
log2

(p

3
+ (1 − p)λ1

)
+

(p

3
+ (1 − p)λ2

)
log2

(p

3
+ (1 − p)λ2

)

− 2
pλ0

3
log2

pλ0

3
−

(
λ0 − 8pλ0

9

)

× log2

(
λ0 − 8pλ0

9

)
− 2

pλ1

3
log2

pλ1

3

−
(

λ1 − 8pλ1

9

)
log2

(
λ1 − 8pλ1

9

)

− 2
pλ2

3
log2

pλ2

3
−

(
λ2 − 8pλ2

9

)

× log2

(
λ2 − 8pλ2

9

)
. (15)

From Eqs. (14) and (15) we plot coherence and disturbance in
Fig. 4. We find that in this case the trade-off relation is stronger
than our original relation (3).

F. Amplitude damping channel

The Kraus operators for the amplitude damping channel are
given by

K1 = √
q0 |0〉 〈1| +

√
2q(1 − q) |1〉 〈2| ,

K2 = √
q |0〉 〈2| ,

K3 = |0〉 〈0| +
√

1 − q |1〉 〈1| +
√

1 − q |2〉 〈2| .

Under the amplitude channel the state transforms as

ρ → E(ρ) = 1

2

⎡
⎢⎢⎣

1+q

3

√
1−q

3 (2λ0 + 2q − 1)
√

1−q

3 (2λ1 − 1)
√

1−q

3 (2λ0 + 2q − 1) 1
3 [1 + 2q(1 − q)] 1−q

3 (2λ1 − 1)
√

1−q

3 (2λ1 − 1) 1−q

3 (2λ1 − 1) 1−q

3

⎤
⎥⎥⎦.
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The disturbance for the amplitude damping channel is given by

D(ρ,E) = −2λ0 log2 λ0 − λ1 log2 λ1 − λ2 log2 λ2 + (λ0 + qλ1) log2(λ0 + qλ1)

+ [(1 − q)λ1 + (3 − 2q)qλ2] log2[(1 − q)λ1 + (3 − 2q)qλ2]

− qλ1 log2 qλ1 − [(1 − q)λ1] log2[(1 − q)λ1] − (3 − 2q)qλ2 log2(3 − 2q)qλ2. (16)

For the amplitude damping channel D(ρ,E) and C(ρ) follow
the original relation (3). The trade-off relations derived above
can be verified with that given in Fig. 5.

V. CONCLUSION

To summarize, we have shown that there exists a trade-off
relation between the coherence of a state and disturbance
caused by a CPTP map or a measurement channel on a quantum
system. For the measurement channel we found a tighter
trade-off relation. Moreover, we obtained a trade-off relation
for the quantum coherence, relative entropy of entanglement,
and disturbance for a bipartite system. A similar relation was
also obtained for the quantum coherence, quantum discord,
and disturbance for a bipartite state. The trade-off relation for
the coherence and disturbance has been illustrated for a weak
measurement channel and other quantum channels. Our results
capture the intuition that coherence, entanglement, and quan-
tum discord for a quantum system should respect a trade-off
relation with disturbance. Our results provide a deep physical
meaning about the relation between quantum coherence and
disturbance which can be widely applied in various contexts.
We hope that these results will find interesting applications in
sending single or composite systems under noisy channels that
tend to lose quantum coherence and entanglement. If we wish
to maintain coherence or entanglement or both, then we need to
send the quantum states through a channel that does not disturb
the system to a greater extent. In the future it will be interesting
to see if other measures of coherence and entanglement respect
the trade-off relation with disturbance.
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FIG. 5. Trade-off between coherence C(ρ) and disturbance
D(ρ,E) for the amplitude damping channel applied on a qutrit state.
The figure shows coherence along the X axis and disturbance along
the Y axis. Random states were generated and coherence and entropy
were calculated using the MATLAB package [55].
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APPENDIX

The choice of disturbance measure as given in Eq. (2) was
motivated through a set of axioms and also was justified as
that helps us to study how the quantum coherence may be
degraded by a noisy quantum channel. However, one may ask
if there exists a trade-off between other definitions of coherence
and disturbance. Indeed, we find that the geometric measure
of coherence defined in Ref. [37] obeys a trade-off with the
fidelity-based disturbance measure given in Refs. [1,3,43]. For
a state evolving under measurement as ρ → E(ρ), disturbance
can be defined using fidelity between initial and final states as

D(ρ,E) = 1 − F (ρ,E(ρ)), (A1)

where F (ρ,E(ρ)) = Tr
√

ρ1/2E(ρ)ρ1/2. It should be noted the
disturbance in Eq. (A1) is reversible and is nonzero even
for unitary evolution of a state. The geometric measure of
coherence is given by

Cg(ρ) = 1 − max
δεI

F (ρ,δ), (A2)

where I is the set of all incoherent states. If the measurement
process always leads to an incoherent state, i.e., E(ρ)εI , then
using Eqs. (A1) and (A2), we get the relation

Cg(ρ) � D(ρ,E). (A3)

This relation tells us that if the final state is an incoherent state,
then the disturbance caused to the state will be at least equal
to the amount of coherence in the system. If the system is in
the eigenstate or the dephased state, then the coherence will
be zero and the disturbance will also be zero as the state will
no longer be disturbed. We present the relation (A3) using an
example of the measurement channel acting on a single-qubit
state. The Kraus operators for the measurement channel are
projection operators �0 and �1 in the computational basis.
Under the measurement channel, the system evolves as ρ →
E(ρ) = �0ρ�0 + �1ρ�1.

By using Bloch vector representation the states ρ and E(ρ)
can be represented as

ρ = I + �r · �σ
2

, E(ρ) = I + �s · �σ
2

.

Then the fidelity between ρ and E(ρ) has the form

F (ρ,E(ρ)) = 1
2 [1 + �r · �s +

√
(1 − |�r |2)(1 − |�s |2)].
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Random states were generated using the MATLAB package [55].

Therefore, we can write the disturbance using the Bloch vectors
as

D(ρ,E) = 1
2 [1 − �r · �s −

√
(1 − |�r |2)(1 − |�s |2)]. (A4)

The maximum value of fidelity of a qubit with an incoherent
state is given by [57]

max
δεI

F (ρ,δ) = 1
2

[
1 +

√
1 − r2

x − r2
y

]
.

Now we can also express the geometric coherence using the
Bloch vectors of the state ρ as

Cg(ρ) = 1
2

[
1 −

√
1 − r2

x − r2
y

]
. (A5)

In Fig. 6 we see that the trade-off relation is respected.
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