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In the literature on the continuous-variable bosonic teleportation protocol due to Braunstein and Kimble [Phys.
Rev. Lett. 80, 869 (1998)], it is often loosely stated that this protocol converges to a perfect teleportation of an
input state in the limit of ideal squeezing and ideal detection, but the exact form of this convergence is typically not
clarified. In this paper, I explicitly clarify that the convergence is in the strong sense, and not the uniform sense,
and furthermore that the convergence occurs for any input state to the protocol, including the infinite-energy Basel
states defined and discussed here. I also prove, in contrast to the above result, that the teleportation simulations of
pure-loss, thermal, pure-amplifier, amplifier, and additive-noise channels converge both strongly and uniformly
to the original channels, in the limit of ideal squeezing and detection for the simulations. For these channels,
I give explicit uniform bounds on the accuracy of their teleportation simulations. I then extend these uniform
convergence results to particular multimode bosonic Gaussian channels. These convergence statements have
important implications for mathematical proofs that make use of the teleportation simulation of bosonic Gaussian
channels, some of which have to do with bounding their nonasymptotic secret-key-agreement capacities. As a
by-product of the discussion given here, I confirm the correctness of the proof of such bounds from my joint work
with Berta and Tomamichel from [Wilde, Tomamichel, and Berta, IEEE Trans. Inf. Theory 63, 1792 (2017)].
Furthermore, I show that it is not necessary to invoke the energy-constrained diamond distance in order to confirm
the correctness of this proof.
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I. INTRODUCTION

The quantum teleportation protocol is one of the most pow-
erful primitives in quantum information theory [1]. By sharing
entanglement and making use of a classical communication
link, a sender can transmit an arbitrary quantum state to a
receiver. In resource-theoretic language, the resources of a
maximally entangled state of two qubits

|�+〉AB = (|00〉AB + |11〉AB)/
√

2 (1)

and two classical bit channels can be used to simulate an
ideal qubit channel from the sender to the receiver [2,3].
Generalizing this, a maximally entangled state of two qudits

|�d〉AB = d−1/2
d−1∑
i=0

|i〉A|i〉B (2)

and two classical channels, each of dimension d, can be
used to simulate an ideal d-dimensional quantum channel
[1]. The teleportation primitive has been extended in multiple
nontrivial ways, including a method to simulate an unideal
channel using a noisy, mixed resource state [4, Sec. V] (see
also [5–8]) and as a way to implement nonlocal quantum
gates [9,10]. The former extension has been used to bound
the rates at which quantum information can be conveyed over
a quantum channel assisted by local operations and classical
communication (LOCC) [4,8], and more generally, as a way to
reduce a general LOCC-assisted protocol to one that consists
of preparing a resource state followed by a single round of
LOCC [4,8].

Due in part to the large experimental interest in bosonic
continuous-variable quantum systems, given their practical
applications [12,13], the teleportation protocol was extended
to this paradigm [11] (see Fig. 1). The standard protocol
begins with a sender and receiver sharing a two-mode squeezed
vacuum state of the following form:

|�(NS)〉AB ≡ 1√
NS + 1

∞∑
n=0

(√
NS

NS + 1

)n

|n〉A|n〉B, (3)

where NS ∈ [0,∞) represents the squeezing strength and
{|n〉}n denotes the photon-number basis. Suppose that the
goal is to teleport a mode A′. The sender mixes, on a 50-50
beam splitter, the mode A′ with the mode A of the state in
(3). Afterward, the sender performs homodyne detection on
the modes emerging from the beam splitter and forwards the
measurement results over classical channels to the receiver,
who possesses mode B of the above state. Finally, the receiver
performs a unitary displacement operation on mode B. In the
limit as NS → ∞ and in the limit of ideal homodyne detection,
this continuous-variable teleportation protocol is often loosely
stated in the literature to simulate an ideal channel on any
state of the mode A′, such that this state is prepared in mode
B after the protocol is finished. Due to the lack of a precise
notion of convergence being given, there is the potential for
confusion regarding mathematical proofs that make use of the
continuous-variable teleportation protocol.

With this in mind, one purpose of this paper is to clarify the
precise kind of convergence that occurs in continuous-variable
quantum teleportation, which is typically not discussed in
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FIG. 1. Depiction of the bosonic continuous-variable telepor-
tation protocol from [11], described in the main text. “AM” and
“PM” denote amplitude and phase modulators, which implement the
displacement operator needed in the teleportation protocol.

the literature on this topic. In particular, I prove that the
convergence is in the strong topology sense, and not in the
uniform topology sense (see, e.g., [14, Sec. 3] for discussions
of these notions of convergence). I then show how to extend
this strong convergence result to the teleportation simulation
of n parallel ideal channels, and I also show how this strong
convergence extends to the teleportation simulation of n ideal
channels that could be used in any context.

Strong convergence and uniform convergence are then
discussed for the teleportation simulation of bosonic Gaussian
channels. For this latter case, and in contrast to the result
discussed above for the continuous-variable teleportation pro-
tocol, I prove that the teleportation simulations of the pure-loss,
thermal, pure-amplifier, amplifier, and additive-noise channels
converge both strongly and uniformly to the original channels,
in the limit of ideal squeezing and detection for the simulations.
Here, I give explicit uniform bounds on the accuracy of the
teleportation simulations of these channels, and I suspect that
these bounds will be useful in future applications. After this
development, I then extend these uniform convergence results
to particular multimode bosonic Gaussian channels.

These convergence results are important, even if they might
be implicit in prior works, as they provide meaningful clarifi-
cation of mathematical proofs that make use of teleportation
simulation, such as those given in recent work on bounding
nonasymptotic secret-key-agreement capacities. In particular,
one can employ these convergence statements to confirm the
correctness of the proof of such bounds given in my joint work
with Berta and Tomamichel from [15]. Furthermore, these
strong convergence statements can be used to conclude that
the energy-constrained diamond distance is not necessary to
arrive at a proof of the bounds from [15]. Another by-product
of the discussion given in this paper is that it is clarified
that the methods of [15] allow for bounding secret-key rates
of rather general protocols that make use of infinite-energy
states, such as the Basel states in (20) and (124). Although
there should be great skepticism concerning whether these
infinite-energy Basel states could be generated in practice, this
latter by-product is nevertheless of theoretical interest.

The rest of the paper proceeds as follows. In the next
section, I discuss the precise form of convergence that occurs
in continuous-variable quantum teleportation and then develop
various extensions of this notion of convergence. I then prove
that teleportation simulations of the pure-loss, thermal, pure-
amplifier, amplifier, and additive-noise channels converge both
strongly and uniformly to the original channels in the limit

of ideal squeezing and detection for the simulations. The
uniform convergence results are then extended to the telepor-
tation simulations of particular multimode bosonic Gaussian
channels. Section III gives a physical interpretation of the
aforementioned convergence results, by means of the CV
teleportation game. After that, Sec. IV briefly reviews what is
meant by a secret-key-agreement protocol and nonasymptotic
secret-key-agreement capacity. Finally, in Sec. V, I review the
proof of [15, Theorem 24] and carefully go through some of its
steps therein, confirming its correctness, while showing how
the strong convergence of teleportation simulation applies. In
Sec. VI, I conclude with a brief summary and a discussion.

II. NOTIONS OF QUANTUM CHANNEL CONVERGENCE,
WITH APPLICATIONS TO TELEPORTATION

SIMULATION

One main technical issue discussed in this paper is how
the continuous-variable bosonic teleportation protocol from
[11] converges to an identity channel in the limit of infinite
squeezing and ideal detection. This issue is often not explicitly
clarified in the literature on the topic, even though it has been
implicit for some time in various works that the convergence
is to be understood in the strong sense (topology of strong
convergence), and not necessarily the uniform sense (topology
of uniform convergence) (see, e.g., [14, Sec. 3]). For example,
in the original paper [11], the following statement is given
regarding this issue:

“Clearly, for r → ∞ the teleported state of Eq. (4) reproduces
the original unknown state.”

Although it is clear that this statement implies convergence
in the strong sense, it could be helpful to clarify this point, and
the purpose of this section is to do so.

In what follows, I first recall the definitions of strong and
uniform convergence from [14, Sec. 3]. I then discuss the
precise form of convergence that occurs in continuous-variable
bosonic teleportation and show how strong convergence and
uniform convergence are extremely different in the setting
of continuous-variable teleportation. After that, I prove that
strong convergence of a channel sequence implies strong con-
vergence of n-fold tensor powers of these channels and follow
this with a proof that strong convergence of a channel sequence
implies strong convergence of n uses of these channels in any
context in which they could be invoked. I also prove that the
teleportation simulations of pure-loss, thermal, pure-amplifier,
amplifier, and additive-noise channels converge both strongly
and uniformly to the original channels, in the limit of ideal
squeezing and detection for the simulations. The uniform
convergence results are then extended to the teleportation sim-
ulations of particular multimode bosonic Gaussian channels.

A. Definitions of strong and uniform convergence

Before discussing the precise statement of convergence in
the continuous-variable bosonic teleportation protocol, let us
begin by recalling general definitions of strong and uniform
convergence from [14, Sec. 3]. I adopt slightly different defi-
nitions from those given in [14, Sec. 3], in order to suit the needs
of this paper, but note that they are equivalent to the original
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definitions as shown in [14] and [16, Lemma 2]. In this context,
see also [17]. Let {N k

A→B}k denote a sequence of quantum
channels (completely positive, trace-preserving maps), which
each accept as input a trace-class operator acting on a separable
Hilbert space HA and output a trace-class operator acting on a
separable Hilbert space HB . This sequence converges strongly
to a channel NA→B if for all density operators ρRA acting
on HR ⊗ HA, where HR is an arbitrary, auxiliary separable
Hilbert space, the following limit holds:

lim
k→∞

ε(k,ρRA) = 0, (4)

where the infidelity is defined as

ε(k,ρRA) ≡ 1 − F
((

idR ⊗N k
A→B

)
(ρRA),(idR ⊗NA→B)(ρRA)

)
,

(5)

idR denotes the identity map on the auxiliary space, and
F (τ,ω) ≡ ‖√τ

√
ω‖2

1 is the quantum fidelity [18], defined for
density operators τ and ω. The quantum fidelity obeys a data
processing inequality, which is the statement that

F (M(τ ),M(ω)) � F (τ,ω), (6)

for states τ and ω and a quantum channel M. We can sum-
marize strong convergence more compactly as the following
mathematical statement:

sup
ρRA

lim
k→∞

ε(k,ρRA) = 0. (7)

Due to purification, the Schmidt decomposition theorem, and
the data-processing inequality for fidelity, we find that for every
mixed stateρRA, there exists a pure stateψR′A with the auxiliary
Hilbert space HR′ taken to be isomorphic to HA, such that

ε(k,ρRA) � ε(k,ψR′A). (8)

Thus, when considering strong convergence, it suffices to
consider only pure states ψR′A, so that

sup
ρRA

lim
k→∞

ε(k,ρRA) = sup
ψR′A

lim
k→∞

ε(k,ψR′A). (9)

Strong convergence is strictly different from uniform con-
vergence [14, Sec. 3], which amounts to a swap of the
supremum and the limit in (7). That is, the channel sequence
{N k

A→B}k converges uniformly to the channel NA→B if the
following holds:

lim
k→∞

sup
ρRA

ε(k,ρRA) = 0. (10)

Even though this swap might seem harmless and is of no conse-
quence in finite dimensions, the issue is important to consider in
infinite-dimensional contexts, especially for bosonic channels.
That is, a sequence of channels could converge in the strong
sense, but be as far as possible from converging in the uniform
sense, and an example of this behavior is given in the next
subsection.

It was also stressed in [14] that the topology of uniform
convergence is too strong for physical applications and should
typically not be considered.

B. Strong and uniform convergence considerations for
continuous-variable teleportation

We now turn our attention to convergence in the continuous-
variable bosonic teleportation protocol and focus on [11, Eq.
(9)], which states that an unideal continuous-variable bosonic
teleportation protocol with input mode A realizes the following
additive-noise quantum Gaussian channel T σ̄

A on an input
density operator ρA:

ρA → T σ̄
A (ρA) ≡

∫
d2α Gσ̄ (α) D(α)ρAD(−α), (11)

where D(α) is a displacement operator [13] and

Gσ̄ (α) ≡ 1

πσ̄
exp

(
−|α|2

σ̄

)
(12)

is a zero-mean, circularly symmetric complex Gaussian prob-
ability density function with variance σ̄ > 0. To be clear, the
integral in (11) is over the whole complex plane α ∈ C. For
an explicit proof of (11), one can also consult [19,20]. The
variance parameter σ̄ quantifies unideal squeezing and unideal
detection. Thus, for any σ̄ > 0, the teleportation channel T σ̄

A

is unideal and intuitively becomes ideal in the limit σ̄ → 0.
However, it is this convergence that needs to be made precise.
To examine this, we need a measure of the channel input-output
dissimilarity, and the entanglement infidelity is a good choice,
which is essentially the choice made in [11] for quantifying the
performance of unideal bosonic teleportation. For a fixed pure
state ψRA ≡ |ψ〉〈ψ |RA of modes R and A, the entanglement
infidelity of the channel T σ̄

A with respect to ψRA is defined as

ε(σ̄ ,ψRA) ≡ 1 − 〈ψ |RA

(
idR ⊗T σ̄

A

)
(|ψ〉〈ψ |RA)|ψ〉RA. (13)

Examining [11, Eq. (11)], we see that the entanglement
infidelity can alternatively be written as

ε(σ̄ ,ψRA) = 1 −
∫

d2α Gσ̄ (α)|χψA
(α)|2, (14)

where χψA
(α) = Tr{D(α)ψA} is the Wigner characteristic

function of the reduced density operator ψA. By applying the
Hölder inequality, we conclude that χψA

(α) is bounded for all
α ∈ C because

|Tr{D(α)ψA}| � ‖D(α)‖∞‖ψA‖1 = 1. (15)

Exploiting the continuity of χψA
(α) at α = 0 and the fact

that χψA
(0) = 1 [21, Theorem 5.4.1], as well as invoking the

boundedness of χψA
(α) and [22, Theorem 9.8] regarding the

convergence of nascent delta functions, we then conclude that
for a given state ψRA, the following strong convergence holds:

lim
σ̄→0

ε(σ̄ ,ψRA) = 0, (16)

which can be written, as before, more compactly as

sup
ψRA

lim
σ̄→0

ε(σ̄ ,ψRA) = 0. (17)

Note that, as before and due to (9), Eq. (17) implies that

sup
ρRA

lim
σ̄→0

ε(σ̄ ,ρRA) = 0 (18)

for any mixed state ρRA where

ε(σ̄ ,ρRA) ≡ 1 − F
(
ρRA,

(
idR ⊗T σ̄

A

)
(ρRA)

)
(19)
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and HR is an arbitrary auxiliary separable Hilbert space.
One should note here that the convergence in (17) already

calls into question any claim regarding the necessity of an
energy constraint for the states that are to be teleported using
the continuous-variable teleportation protocol. Clearly, the
state ψRA to be teleported could be chosen as the following
Basel state:

|β〉RA =
√

6

π2

∞∑
n=1

√
1

n2
|n〉R|n〉A, (20)

which has mean photon number equal to ∞, but it also
satisfies (16). Such a state is called a “Basel state,” due to
its normalization factor being connected with the well-known
Basel problem, which establishes that

∑∞
n=1 1/n2 = π2/6. For

n̂ = ∑∞
n=0 n|n〉〈n| the photon-number operator, one can easily

check that the mean photon number Tr{(n̂R + n̂A)βRA} = ∞,
due to the presence of the divergent harmonic series after n̂A

multiplies the reduced density operator βA. Thus, the only
constraint needed for the convergence in (17) is that the state
to be teleported be a state (i.e., normalizable). Reference [23]
claims that it is necessary for there to be an energy constraint
for strong convergence in teleportation; however, the example
of the Basel states given above proves that such an energy
constraint is not necessary.

It is also important to note that an exchange of the limit
and the supremum in (17) leads to a drastically different
conclusion:

lim
σ̄→0

sup
ψRA

ε(σ̄ ,ψRA) = 1. (21)

The drastic difference is due to the fact that for all fixed
σ̄ > 0, one can find a sequence of states {ψk

RA}k such that
supk ε(σ̄ ,ψk

RA) = 1, establishing (21). For example, one could
pick each ψk

RA to be a two-mode squeezed vacuum state
with squeezing parameter increasing with increasing k. In the
limit of large squeezing, the ideal channel and the additive-
noise channel for any σ̄ > 0 become perfectly distinguishable,
having infidelity approaching one, implying (21). One can
directly verify this calculation by employing the covariance
matrix representation of the two-mode squeezed vacuum and
the additive-noise channel, as well as the overlap formula in
[13, Eq. (4.51)] to calculate entanglement fidelity.

I now give details of the aforementioned calculation, regard-
ing how the continuous-variable bosonic teleportation protocol
from [11] does not converge uniformly to an ideal channel.
Consider a two-mode squeezed vacuum state �(NS ) with mean
photon number NS for one of its reduced modes, as defined in
(3). Such a state has a Wigner-function covariance matrix [13]
as follows:[

2NS + 1 2
√

NS(NS + 1)

2
√

NS(NS + 1) 2NS + 1

]

⊕
[

2NS + 1 −2
√

NS(NS + 1)

−2
√

NS(NS + 1) 2NS + 1

]
. (22)

After sending one mode of this state through an additive-
noise channel with variance σ̄ (corresponding to an unideal
continuous-variable bosonic teleportation), the covariance

matrix becomes as follows, corresponding to a state τ (NS,σ̄ ):[
2NS + 1 2

√
NS(NS + 1)

2
√

NS(NS + 1) 2NS + 1 + 2σ̄

]

⊕
[

2NS + 1 −2
√

NS(NS + 1)

−2
√

NS(NS + 1) 2NS + 1 + 2σ̄

]
. (23)

The overlap Tr{ωσ } of two zero-mean, two-mode Gaussian
states ω and σ is given by [13, Eq. (4.51)]

Tr{ωσ } = 4/
√

det(Vω + Vσ ), (24)

where Vω and Vσ are the Wigner-function covariance matrices
of ω and σ , respectively. We can then employ this formula to
calculate the overlap

〈�(NS)|τ (NS,σ̄ )|�(NS)〉 = Tr{�(NS)τ (NS,σ̄ )} (25)

as

〈�(NS)|τ (NS,σ̄ )|�(NS)〉 = 1

σ̄ + 2σ̄NS + 1
. (26)

Thus, for a fixed σ̄ > 0 and in the limit as NS → ∞,
we find that 1 − 〈�(NS)|τ (NS,σ̄ )|�(NS)〉 → 1, so that the
continuous-variable bosonic teleportation protocol from [11]
does not converge uniformly to an ideal channel.

To summarize, the kind of convergence considered in (17)
is the strong sense (topology of strong convergence), whereas
the kind of convergence considered in (21) is the uniform sense
(topology of uniform convergence) (see, e.g., [14, Sec. 3]). That
is, (17) demonstrates that unideal continuous-variable bosonic
teleportation converges strongly to an ideal quantum channel
in the limit of ideal squeezing and detection, whereas (21)
demonstrates that it does not converge uniformly.

C. Strong and uniform convergence for tensor-power channels

A natural consideration to make in the context of quantum
Shannon theory is the convergence of n uses of a channel on
a general state of n systems, where n is a positive integer.
To this end, suppose that the strong convergence in (7) holds
for the sequence {N k

A→B}k of channels. Then, it immediately
follows that the sequence {(N k

A→B)⊗n}k converges strongly to
N⊗n

A→B . Indeed, for an arbitrary density operator ρRAn acting on
HR ⊗ H⊗n

A , we are now interested in bounding the infidelity
for the tensor-power channels (N k

A→B)⊗n and N⊗n
A→B :

ε(n)(k,ρRAn ) ≡ 1 − F
((

idR ⊗(
N k

A→B

)⊗n)
(ρRAn),(

idR ⊗N⊗n
A→B

)
(ρRAn )

)
, (27)

in the limit as k → ∞. By employing the fact that

P (τ,ω) ≡
√

1 − F (τ,ω) (28)

obeys the triangle inequality [24–27], we conclude that, for an
arbitrary density operator ρRAn , the following inequality holds:

P
((

idR ⊗(
N k

A→B

)⊗n)
(ρRAn),

(
idR ⊗N⊗n

A→B

)
(ρRAn)

)
�

n∑
i=1

P
((

idR ⊗(
N k

A→B

)⊗i ⊗ N⊗n−i
A→B

)
(ρRAn ),

(
idR ⊗(

N k
A→B

)⊗i−1 ⊗ N⊗n−i+1
A→B

)
(ρRAn)

)
(29)
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�
n∑

i=1

P
((

idR ⊗ id⊗i−1
A ⊗N k

A→B ⊗ N⊗n−i
A→B

)
(ρRAn),

(
idR ⊗ id⊗i−1

A ⊗NA→B ⊗ N⊗n−i
A→B

)
(ρRAn)

)
. (30)

The first inequality follows from the triangle inequality for
P (τ,ω), and the second follows from data processing for the
fidelity under the channel

idR ⊗(
N k

A→B

)⊗i−1 ⊗ id⊗n−i+1
A (31)

acting on the states

(
idR ⊗ id⊗i−1

A ⊗N k
A→B ⊗ N⊗n−i

A→B

)
(ρRAn), (32)(

idR ⊗ id⊗i−1
A ⊗NA→B ⊗ N⊗n−i

A→B

)
(ρRAn). (33)

The method used in (29) and (30) is related to the telescoping
approach of [28], employed in the context of continuity of
quantum channel capacities (see the proof of [28, Theorem
11] in particular). Now employing strong convergence of the
channel sequence {N k

A→B}k and the fact that N⊗n−i
A→B (ρRAn)

is a fixed state independent of k for each i ∈ {1, . . . ,n}, we
conclude that for all density operators ρRAn

lim
k→∞

ε(n)(k,ρRAn) = 0. (34)

This result can be summarized more compactly as

sup
ρRA

lim
k→∞

ε(k,ρRA) = 0

=⇒ sup
ρRAn

lim
k→∞

ε(n)(k,ρRAn ) = 0. (35)

That is, the strong convergence of the channel sequence
{N k

A→B}k implies the strong convergence of the tensor-power
channel sequence {(N k

A→B)⊗n}k for any finite n. For the case of
continuous-variable teleportation, we have that n unideal
teleportations with the same performance correspond to the
tensor-power channel (T σ̄

A )⊗n. By appealing to (17) and (35),
or alternatively employing Wigner characteristic functions
[21, Theorem 5.4.1] and [22, Theorem 9.8], the following
convergence holds: for a pure state ψRAn , we have that

lim
σ̄→0

ε(n)(σ̄ ,ψRAn ) = 0, (36)

where

ε(n)(σ̄ ,ψRAn )≡1−〈ψ |RAn

(
idR⊗(

T σ̄
A

)⊗n)
(|ψ〉〈ψ |RAn)|ψ〉RAn.

(37)

Again, more compactly, this is the same as

sup
ψRAn

lim
σ̄→0

ε(n)(σ̄ ,ψRAn ) = 0 (38)

and drastically different from

lim
σ̄→0

sup
ψRAn

ε(n)(σ̄ ,ψRAn) = 1. (39)

I end this subsection by noting the following proposition,
having to do with the strong convergence of parallel compo-
sitions of strongly converging channel sequences. In fact, the
parallel composition result in (35) could be proven by using
only the following proposition and iterating.

Proposition 1. Let {N k
A1→B1

}k be a channel sequence that
converges strongly to a channel NA1→B1 , and let {Mk

A2→B2
}k

be a channel sequence that converges strongly to a channel
MA2→B2 . Then, the channel sequence {N k

A1→B1
⊗ Mk

A2→B2
}k

converges strongly to NA1→B1 ⊗ MA2→B2 .
Proof. A proof is similar to what is given above, and I give

it for completeness. Let ρRA1A2 be an arbitrary state. Consider
that

P
((

idR ⊗N k
A1→B1

⊗ Mk
A2→B2

)
(ρRA1A2 ),(idR ⊗NA1→B1 ⊗ MA2→B2 )(ρRA1A2 )

)
� P

((
idR ⊗N k

A1→B1
⊗ Mk

A2→B2

)
(ρRA1A2 ),

(
idR ⊗N k

A1→B1
⊗ MA2→B2

)
(ρRA1A2 )

)
+ P

((
idR ⊗N k

A1→B1
⊗ MA2→B2

)
(ρRA1A2 ),(idR ⊗NA1→B1 ⊗ MA2→B2 )(ρRA1A2 )

)
� P

((
idRA1 ⊗Mk

A2→B2

)
(ρRA1A2 ),MA2→B2 (ρRA1A2 )

)+P
((

idR ⊗N k
A1→B1

⊗ idA2

)
(ρRA1A2 ),(idR ⊗NA1→B1 ⊗ idA2 )(ρRA1A2 )

)
.

(40)

The first inequality follows from the triangle inequality and the
second from data processing. Using the strong convergence of
{N k

A1→B1
}k and {Mk

A2→B2
}k , applying the inequality in (40),

and taking the limit k → ∞, we find that

lim
k→∞

P
((
N k

A1→B1
⊗ Mk

A2→B2

)
(ρRA1A2 ),

(NA1→B1 ⊗ MA2→B2 )(ρRA1A2 )
) = 0. (41)

Since the state ρRA1A2 was arbitrary, the proof is complete. �

D. Strong and uniform convergence in arbitrary contexts

The most general way to distinguish n uses of two differ-
ent quantum channels is by means of an adaptive protocol.
Such adaptive channel discrimination protocols have been
considered extensively in the literature in the context of
finite-dimensional quantum channel discrimination (see, e.g.,
[29–34]). However, to the best of my knowledge, the issues of
strong and uniform convergence have not yet been considered
explicitly in the literature in the context of infinite-dimensional
channel discrimination using adaptive strategies. The purpose
of this section is to clarify these issues by defining strong
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FIG. 2. Adaptive protocol for distinguishing three uses of the
channel N k

A→B from three uses of NA→B . The protocol is denoted by
P (3) and consists of state preparation ρR1A1 , as well as the channels
A(1)

R1B1→R2A2
and A(2)

R2B2→R3A3
. (a) The protocol P (3) is used with three

uses of the channelN k
A→B , and the final state is ωk

R3B3
. (b) The protocol

P (3) is used with three uses of the channel NA→B , and the final state
is ωR3B3 . Strong convergence of the channel sequence {N k

A→B}k to
NA→B implies that, given a fixed protocol P (3), the infidelity of the
states ωk

R3B3
and ωR3B3 converges to zero in the limit as k → ∞.

and uniform convergence in this general context and then to
prove explicitly that strong convergence of a channel sequence
{N k

A→B}k to NA→B implies strong convergence of n uses of
each channel in {N k

A→B}k to n uses of NA→B in the rather
general sense described below.

To clarify what is meant by an adaptive protocol for channel
discrimination, suppose that the task is to distinguish n uses
of the channel N k

A→B from n uses of the channel NA→B . The
most general protocol for doing so begins with the preparation
of a state ρR1A1 , where system A1 is isomorphic to the channel
input system A and R1 corresponds to an arbitrary auxiliary
separable Hilbert space. The system A1 is then fed in to the
first channel use of N k

A→B or NA→B , depending on which of
these channels is chosen from the start. The resulting state is
then either

N k
A→B(ρR1A1 ) or NA→B(ρR1A1 ), (42)

depending on which channel is selected, and where I have
omitted the identity map on R1 for simplicity. After this, the
discriminator applies a quantum channel A(1)

R1B1→R2A2
, where

R2 corresponds to another arbitrary separable Hilbert space,
which need not be isomorphic to R1, and A2 corresponds to
a separable Hilbert space isomorphic to the channel input A.
The discriminator then calls the second use ofN k

A→B orNA→B ,
such that the state is now either

(
N k

A2→B2
◦ A(1)

R1B1→R2A2
◦ N k

A1→B1

)
(ρR1A1 ) (43)

or (
NA2→B2 ◦ A(1)

R1B1→R2A2
◦ NA1→B1

)
(ρR1A1 ). (44)

This process continues for n channel uses, and then the final
state is either

ωk
RnBn

≡
(
N k

An→Bn
◦

[
©n−1

j=1 A
(j )
Rj Bj →Rj+1Aj+1

◦ N k
Aj →Bj

])
(ρR1A1 )

(45)

or

ωRnBn

≡
(
NAn→Bn

◦
[

©n−1
j=1 A

(j )
Rj Bj →Rj+1Aj+1

◦ NAj →Bj

])
(ρR1A1 ).

(46)

Let P (n) denote the full protocol, which consists of the state
preparation ρR1A1 and the n − 1 channels {A(j )

Rj Bj →Rj+1Aj+1
}n−1
j=1.

The infidelity in this case, for the fixed protocol P (n), is then
equal to

ε
(n)
ad (k,P (n)) ≡ 1 − F

(
ωk

RnBn
,ωRnBn

)
. (47)

Figure 2 depicts these channels and states, which are used in a
general adaptive strategy to discriminate three uses of N k

A→B

from three uses of NA→B .
In this general context, strong convergence corresponds to

the following statement: for a given protocolP (n), the following
limit holds:

lim
k→∞

ε
(n)
ad (k,P (n)) = 0 (48)

or, more compactly,

sup
P (n)

lim
k→∞

ε
(n)
ad (k,P (n)) = 0. (49)

Uniform convergence again corresponds to a swap of the
supremum and limit

lim
k→∞

sup
P (n)

ε
(n)
ad (k,P (n)) = 0, (50)

and again, it should typically be avoided in physical appli-
cations as it is too strong and not needed for most purposes,
following the suggestions of [14, Sec. 3].

I now explicitly show that strong convergence of the
sequence {N k

A→B}k implies strong convergence of n uses of
each channel in this sequence in this general sense. The proof
is elementary and similar to that in (29) and (30), making use
of the triangle inequality and data processing of fidelity. It
bears similarities to numerous prior results in the literature
[33,35–41], in which adaptive protocols were analyzed. For
simplicity, we can focus on the case of n = 3 and then the
proof is easily extended. Begin by considering a fixed protocol
P (3). Then, consider that

√
ε

(3)
ad (k,P (3)) = P

[
ωk

R3B3
,ωR3B3

]
= P [(N k ◦ A(2) ◦ N k ◦ A(1) ◦ N k)(ρR1A1 ),(N ◦ A(2) ◦ N ◦ A(1) ◦ N )(ρR1A1 )]

� P [(N k ◦ A(2) ◦ N k ◦ A(1) ◦ N k)(ρR1A1 ),(N k ◦ A(2) ◦ N k ◦ A(1) ◦ N )(ρR1A1 )]
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+ P [(N k ◦ A(2) ◦ N k ◦ A(1) ◦ N )(ρR1A1 ),(N k ◦ A(2) ◦ N ◦ A(1) ◦ N )(ρR1A1 )]

+ P [(N k ◦ A(2) ◦ N ◦ A(1) ◦ N )(ρR1A1 ),(N ◦ A(2) ◦ N ◦ A(1) ◦ N )(ρR1A1 )]

� P [N k(ρR1A1 ),N (ρR1A1 )] + P [N k[(A(1) ◦ N )(ρR1A1 )],N [(A(1) ◦ N )(ρR1A1 )]]

+ P [N k[(A(2) ◦ N ◦ A(1) ◦ N )(ρR1A1 )],N [(A(2) ◦ N ◦ A(1) ◦ N )(ρR1A1 )]], (51)

where I have omitted some system labels for simplicity. The
first inequality follows from the triangle inequality and the
second from data processing of the fidelity under the channels

N k ◦ A(2) ◦ N k ◦ A(1), (52)

N k ◦ A(2). (53)

The inequality in (51) can be understood as saying that the
overall distinguishability of the n uses of N k and N , as
captured by P [ωk

R3B3
,ωR3B3 ], is limited by the sum of the

distinguishabilities at every step in the discrimination protocol
(this is similar to the observations made in [33,35–41]). Now,
employing the inequality in (51), the facts that

ρR1A1 , (54)

(A(1) ◦ N )(ρR1A1 ), (55)

(A(2) ◦ N ◦ A(1) ◦ N )(ρR1A1 ) (56)

are fixed states independent of k, the strong convergence of
{N k

A→B}k , and taking the limit k → ∞ on both sides of the
inequality in (51), we conclude that for any fixed protocolP (3),
the following limit holds:

lim
k→∞

ε
(3)
ad (k,P (3)) = 0. (57)

By the same reasoning with the triangle inequality and data
processing, the argument extends to any finite positive integer
n, so that for any fixed protocol P (n), the following limit holds:

lim
k→∞

ε
(n)
ad (k,P (n)) = 0. (58)

We can summarize the above development more compactly as

sup
ρRA

lim
k→∞

ε(k,ρRA) = 0

=⇒ sup
P (n)

lim
k→∞

ε
(n)
ad (k,P (n)) = 0. (59)

That is, strong convergence of the channel sequence {N k
A→B}k

implies strong convergence of n uses of each channel N k
A→B

in this sequence in any context in which the n uses of N k
A→B

could be invoked.
I end this subsection by noting the following proposition,

having to do with the strong convergence of serial compositions
of channel sequences. In fact, the serial composition result in
(59) for adaptive protocols could be proven by employing only
the following proposition and iterating.

Proposition 2. Let {N k
A→B}k be a channel sequence that

converges strongly to a channel NA→B , and let {Mk
B→C}k be a

channel sequence that converges strongly to a channelMB→C .
Then, the channel sequence {Mk

B→C ◦ N k
A→B}k converges

strongly to MB→C ◦ NA→B .

Proof. A proof is similar to what is given above, and I give it
for completeness. Let ρRA be an arbitrary state. Consider that

P
((
Mk

B→C ◦ N k
A→B

)
(ρRA),(MB→C ◦ NA→B)(ρRA)

)
� P

((
Mk

B→C ◦ N k
A→B

)
(ρRA),

(
Mk

B→C ◦ NA→B

)
(ρRA)

)
+ P

((
Mk

B→C ◦ NA→B

)
(ρRA),(MB→C ◦ NA→B)(ρRA)

)
� P

(
N k

A→B(ρRA),NA→B(ρRA)
)

+ P
((
Mk

B→C ◦ NA→B

)
(ρRA),(MB→C ◦ NA→B)(ρRA)

)
.

(60)

The first inequality follows from the triangle inequality and the
second from data processing. Using the strong convergence of
{N k

A→B}k and {Mk
B→C}k , the fact that NA→B(ρRA) is a fixed

state independent of k, applying the inequality in (60), and
taking the limit k → ∞, we find that

lim
k→∞

P
((
Mk

B→C ◦ N k
A→B

)
(ρRA),

(MB→C ◦ NA→B)(ρRA)
) = 0. (61)

Since the state ρRA was arbitrary, the proof is complete. �

E. Strong convergence in the teleportation simulation of bosonic
Gaussian channels

The teleportation simulation of a bosonic Gaussian channel
is another important notion to discuss. As found in [7], single-
mode, phase-covariant bosonic channels, such as the thermal,
amplifier, or additive-noise channels, can be simulated by
employing the bosonic teleportation protocol from [11]. More
general classes of bosonic Gaussian channels can be simulated
as well [6]. In this subsection, I exclusively discuss single-
mode bosonic Gaussian channels and extend the results later
to particular multimode bosonic Gaussian channels. Denoting
the original channel by G, an unideal teleportation simulation
of it realizes the bosonic Gaussian channel G σ̄ ≡ G ◦ T σ̄ ,
where T σ̄ is the additive-noise channel from (11). This unideal
teleportation simulation is possible due to the displacement
covariance of bosonic Gaussian channels. Again, it is needed to
clarify the meaning of the convergence G = limσ̄→0 G σ̄ . Based
on the previous discussions in this paper, it is clear that the
convergence should be considered in the strong sense in most
applications: for a state ρRA, we have that

lim
σ̄→0

[
1 − F

(
(idR ⊗GA)(ρRA),

(
idR ⊗G σ̄

A

)
(ρRA)

)] = 0, (62)

where F denotes the quantum fidelity. This equality follows as
a consequence of (16) and the data-processing inequality for
fidelity.

As a consequence of (36) and data processing, we also have
the following convergence for a teleportation simulation of the
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tensor-power channel G⊗n: for a state ρRAn , we have that

lim
σ̄→0

[
1 − F (G⊗n

A (ρRAn),
(
G σ̄

A

)⊗n
(ρRAn))

]
= 0, (63)

where the identity map idR is omitted for simplicity.
Finally, the argument from Sec. II D applies to the teleporta-

tion simulation of bosonic Gaussian channels as well. In more
detail, the strong convergence of G σ̄ to G in the limit σ̄ → 0
implies strong convergence of n uses of G σ̄ to n uses of G in the
general sense discussed in Sec. II D. That is, as a consequence
of (17) and (59), we have that

sup
P (n)

lim
σ̄→0

ε
(n)
ad (σ̄ ,P (n)) = 0, (64)

where ε
(n)
ad (σ̄ ,P (n)) is defined by replacing N k

A→B with G σ̄ and
NA→B with G in (45), (46), and (47).

F. Uniform convergence in the teleportation simulations of
pure-loss, thermal, pure-amplifier, amplifier, and

additive-noise channels

I now prove that the teleportation simulations of pure-loss,
thermal, pure-amplifier, amplifier, and additive-noise channels
converge uniformly to the original channels, in the limit of ideal
squeezing and detection for the simulations. The argument
for uniform convergence is elementary, using the structure
of these channels and their teleportation simulations, as well
as a data-processing argument that is the same as that which
was employed in [34,42]. Note that these uniform convergence
results are in contrast to the teleportation simulation of the ideal
channel, where the convergence occurs in the strong sense but
not in the uniform sense.

To prove the uniform convergence of the teleportation
simulations of the aforementioned channels, let us start with
the thermal channel. Consider that the thermal channelLη,NB

of
transmissivity η ∈ (0,1) and thermal photon number NB � 0
is completely specified by its action on the 2 × 1 mean vector
s and 2 × 2 covariance matrix V of a single-mode input [13]:

s → Xs, (65)

V → XV XT + Y, (66)

where

X = √
ηI2, (67)

Y = (1 − η)(2NB + 1)I2, (68)

and I2 denotes the 2 × 2 identity matrix. An unideal teleporta-
tion simulation of a thermal channel is equivalent to the serial
concatenation of the additive-noise channel T σ̄ with variance
σ̄ > 0, followed by the thermal channel Lη,NB

, as discussed in
Sec. II E. Since the additive-noise channel has the same action
as in (65) and (66), but with

X = I2, (69)

Y = 2σ̄ I2, (70)

we find, after composing and simplifying, that the simulating
channel Lη,NB

◦ T σ̄ has the same action as in (65) and (66),
but with

X = √
ηI2, (71)

Y = [η2σ̄ + (1 − η)(2NB + 1)]I2 (72)

= (1 − η){2[NB + ησ̄ /(1 − η)] + 1}I2. (73)

This latter finding means that the simulating channel Lη,NB
◦

T σ̄ is equivalent to the thermal channel Lη,NB+ησ̄ /(1−η), i.e.,

Lη,NB
◦ T σ̄ = Lη,NB+ησ̄ /(1−η). (74)

Let us set

N ′
B ≡ NB + ησ̄ /(1 − η). (75)

Note that any thermal channelLη,NB
can be realized in three

steps:
(1) prepare an environment mode in a thermal state θ (NB)

of mean photon number NB � 0, where

θ (NB) = 1

NB + 1

∞∑
n=0

(
NB

NB + 1

)n

|n〉〈n|; (76)

(2) interact the channel input mode with the environment
mode at a unitary beam splitter Bη of transmissivity η;

(3) discard the environment mode.
This observation and that in (74) are what led to uniform
convergence of the simulating channel Lη,N ′

B
to the original

channel Lη,NB
in the limit as σ̄ → 0. Indeed, let ρRA be an

arbitrary input state, with R a reference system corresponding
to an arbitrary separable Hilbert space and system A the
channel input. Then, we find that

P ((idR ⊗Lη,NB
)(ρRA),(idR ⊗Lη,N ′

B
)(ρRA))

� P ((idR ⊗Bη)[ρRA ⊗ θ (NB)],(idR ⊗Bη)[ρRA ⊗ θ (N ′
B)])

= P (ρRA ⊗ θ (NB),ρRA ⊗ θ (N ′
B))

= P (θ (NB),θ (N ′
B)) ≡ e(NB,η,σ̄ ), (77)

where e(NB,η,σ̄ ) explicitly evaluates to

e(NB,η,σ̄ ) = [1 − [
√

(NB + 1)[NB + ησ̄ /(1 − η) + 1]

−
√

NB[NB + ησ̄ /(1 − η)]]−2]1/2. (78)

The explicit evaluation in (78) is a direct consequence of [34,
Eqs. (34) and (35)], found by evaluating the fidelity between
two thermal states of respective mean photon numbers NB

and NB + ησ̄ /(1 − η). See also [43,44] for formulas for the
fidelity of single-mode Gaussian states. The first inequality in
(77) follows from data processing. The first equality follows
from unitary invariance of the metric P and the second from its
invariance under tensoring in the same stateρRA. To summarize
the inequality in (77), it is stating that the distinguishability of
the channels Lη,NB

and Lη,N ′
B
, when allowing for any input

probe state ρRA, is limited by the distinguishability of the
environment states θ (NB) and θ (N ′

B), and this is similar to
the observations made in [34,42]. Thus, the bound in (77) is
a uniform bound, holding for all input states ρRA, and so we
conclude that

sup
ρRA

P ((idR ⊗Lη,NB
)(ρRA),(idR ⊗Lη,N ′

B
)(ρRA)) � e(NB,η,σ̄ ).

(79)
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Now, taking the limit σ̄ → 0 and using the fact that
limσ̄→0 e(NB,η,σ̄ ) = 0 for η ∈ (0,1) and NB � 0, we find that

lim
σ̄→0

sup
ρRA

P ((idR ⊗Lη,NB
)(ρRA),(idR ⊗Lη,N ′

B
)(ρRA)) = 0.

(80)

Thus, the teleportation simulation Lη,NB
◦ T σ̄ of the thermal

channel Lη,NB
of transmissivity η ∈ (0,1) and thermal photon

number NB � 0 converges uniformly to the thermal channel.
The above uniform convergence result holds in particular

for a pure-loss channel of transmissivity η ∈ (0,1) because
this channel is a thermal channel with NB = 0. That is, the
environment state for the pure-loss channel is a vacuum state,
and its teleportation simulation is a thermal channel with the
same transmissivity and environment state given by a thermal
state of mean photon number ησ̄ /(1 − η). In this case, the
uniform upper bound e(NB = 0,η,σ̄ ) simplifies to

e(NB = 0,η,σ̄ ) =
√

1 − 1

ησ̄ /(1 − η) + 1
, (81)

for which we clearly have that limσ̄→0 e(NB = 0,η,σ̄ ) = 0.
Thus, the teleportation simulation of a pure-loss channel
Lη,NB=0 converges uniformly to Lη,NB=0.

Similar results hold for the pure-amplifier and amplifier
channels. Indeed, to see this, let us begin by considering a
general amplifier channel AG,NB

of gain G > 1 and thermal
photon number NB � 0. Such a channel has the action as in
(65) and (66), but with

X =
√

GI2, (82)

Y = (G − 1)(2NB + 1)I2. (83)

By similar reasoning as before, the teleportation simulation
AG,NB

◦ T σ̄ of the amplifier channel has the action as in (65)
and (66), but with

X =
√

GI2, (84)

Y = [G2σ̄ + (G − 1)(2NB + 1)]I2 (85)

= (G − 1){2[NB + Gσ̄/(G − 1)] + 1}I2. (86)

Thus, the teleportation simulation AG,NB
◦ T σ̄ is equivalent to

an amplifier channel AG,NB+Gσ̄/(G−1):

AG,NB
◦ T σ̄ = AG,NB+Gσ̄/(G−1). (87)

An amplifier channel AG,NB
can be realized by the following

three steps:
(1) prepare an environment mode in a thermal state θ (NB)

of mean photon number NB � 0;
(2) interact the channel input mode with the environment

mode using a unitary two-mode squeezer SG of gain G;
(3) discard the environment mode.

For an arbitrary state ρRA, we find the following upper bound
by the same reasoning as in (77), but replacing the beam splitter
Bη therein by the two-mode squeezer SG,

P ((idR ⊗AG,NB
)(ρRA),(idR ⊗AG,N ′′

B
)(ρRA))

� P (θ (NB),θ (N ′′
B)) ≡ e(NB,G,σ̄ ), (88)

where

N ′′
B ≡ NB + Gσ̄/(G − 1) (89)

and

e(NB,G,σ̄ ) = [1 − [
√

(NB + 1)[NB + Gσ̄/(G − 1) + 1]

−
√

NB[NB + Gσ̄/(G − 1)]]−2]1/2. (90)

Again, the inequality in (88) is the statement that the distin-
guishability of the channels AG,NB

and AG,N ′′
B
, when allowing

for any input probe state ρRA, is limited by the distinguishabil-
ity of the channel environment states θ (NB) and θ (N ′′

B). Given
that the bound in (88) is a uniform bound holding for all input
states ρRA, this implies that

sup
ρRA

P ((idR ⊗AG,NB
)(ρRA),(idR ⊗AG,N ′′

B
)(ρRA))

� e(NB,G,σ̄ ). (91)

We can then take the limit σ̄ → 0 and use the fact that
limσ̄→0 e(NB,G,σ̄ ) = 0 for all G > 1 and NB � 0 to find that

lim
σ̄→0

sup
ρRA

P ((idR ⊗AG,NB
)(ρRA),(idR ⊗AG,N ′′

B
)(ρRA)) = 0.

(92)

Thus, the teleportation simulation AG,NB
◦ T σ̄ of the amplifier

channel AG,NB
converges uniformly to it, for all G > 1 and

thermal photon number NB � 0.
The pure-amplifier channel is a special case of the amplifier

channel AG,NB
with NB = 0, so that the above analysis applies

and the teleportation simulation of the pure-amplifier channel
AG,NB=0 converges uniformly to it. Indeed, the uniform upper
bound e(NB = 0,G,σ̄ ) simplifies as

P ((idR ⊗AG,NB=0)(ρRA),(idR ⊗AG,Gσ̄/(G−1))(ρRA))

� e(NB = 0,G,σ̄ ) =
√

1 − 1

Gσ̄/(G − 1) + 1
, (93)

and so it is clear that

lim
σ̄→0

sup
ρRA

P (AG,0(ρRA),AG,Gσ̄/(G−1)(ρRA)) = 0, (94)

where I have omitted the identity maps idR acting on system
R for simplicity.

A similar argument establishes that the teleportation sim-
ulation of the additive-noise channel T ξ with variance ξ > 0
converges uniformly to it. To see this, let us begin by noting that
any additive-noise channel T ξ can be realized by the following
three steps:

(1) Prepare a continuous classical environment register
according to the complex Gaussian distribution Gξ (α), as
defined in (12).

(2) Based on the classical value α in the environment
register, apply a unitary displacement operation D(α) to the
channel input. This step can be described as an interaction
channel C between the channel input and the environment
register.

(3) Finally, discard the environment register.
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Also, note that the fidelity between two complex Gaussian
distributions of variances ξ1,ξ2 > 0 is given by

F (Gξ1 ,Gξ2 ) = 4ξ1ξ2

(ξ1 + ξ2)2 , (95)

which one may verify directly or consult [45]. Then, proceed-
ing as in the previous proofs, we have for an arbitrary input
state ρRA that

P ((idR ⊗T ξ )(ρRA),(idR ⊗T ξ+σ̄ )(ρRA))

� P ((idR ⊗C)(ρRA ⊗ Gξ ),(idR ⊗C)(ρRA ⊗ Gξ+σ̄ ))

� P (ρRA ⊗ Gξ,ρRA ⊗ Gξ+σ̄ )

= P (Gξ,Gξ+σ̄ )

=
√

1 − 4ξ (ξ + σ̄ )

(2ξ + σ̄ )2
. (96)

The first and second inequalities follow from data processing.
The first equality follows because the metric P is invariant
under tensoring in the same state ρRA. The final equality
follows from the definition of the metric P and the formula in
(95). As in the other proofs, the inequality in (96) is intuitive,
indicating that the distinguishability of the channels T ξ and
T ξ+σ̄ is limited by the distinguishability of the underlying
classical distributions Gξ and Gξ+σ̄ . The bound in (96) is a
uniform bound, holding for all input states ρRA, and so we
conclude that

sup
ρRA

P ((idR ⊗T ξ )(ρRA),(idR ⊗T ξ+σ̄ )(ρRA))

�
√

1 − 4ξ (ξ + σ̄ )

(2ξ + σ̄ )2
. (97)

Finally, we take the limit as σ̄ → 0 to establish the uniform
convergence of the teleportation simulation of the additive-
noise channel of variance ξ > 0 to itself:

lim
σ̄→0

sup
ρRA

P ((idR ⊗T ξ )(ρRA),(idR ⊗T ξ+σ̄ )(ρRA)) = 0. (98)

Remark 1. By the results of [34], the uniform upper bounds
in (79), (91), and (97) are all achievable and are thus equalities.
The achievable strategy consists of taking the input states ρRA

to be a sequence of two-mode squeezed vacuum states with
photon number NS tending to infinity.

Remark 2. On the one hand, the thermal, amplifier, and
additive-noise channels are the single-mode bosonic Gaussian
channels that are of major interest in applications, as stressed
in [46, Sec. 3.5] and [47, Sec. 12.6.3]. On the other hand,
one could consider generalizing the results of this section to
arbitrary single-mode bosonic Gaussian channels. In doing so,
one should consider the Holevo classification of single-mode
bosonic Gaussian channels [48]. However, there is little reason
to generalize the contents of this section to other channels in the
Holevo classification. The thermal and amplifier channels form
the class C discussed in [48], and the additive-noise channels
form the class B2 from [48], which I have already considered in
this section. The classes that remain are labeled A, B1, and D.
The channels in classes A and D are entanglement breaking,
as proved in [49]. Thus, the channels in classes A and D can
be directly realized by the action of an LOCC on the input

state (without any need for an entangled resource state), and
thus we would never have any reason to be interested in the
teleportation simulation of these channels. The final remaining
class is B1, but channels in the class B1 do not seem to be
interesting in physical applications.

Remark 3. The class B1 has been considered in [50], where it
was shown that the teleportation simulation of a channel in this
class does not converge uniformly, similar to what occurs for
the identity channel. Based on the above, and the fact that the
ideal channel and channels in the class B1 have unconstrained
quantum capacity equal to infinity [48], as well as the fact
that channels in the classes C and B2 have finite unconstrained
quantum capacity [42], we can conclude that, among the single-
mode bosonic Gaussian channels that are not entanglement
breaking, their teleportation simulations converge uniformly if
and only if their unconstrained quantum capacity is finite. This
establishes a nontrivial link between teleportation simulation
and unconstrained quantum capacity.

G. Generalization of uniform convergence results to multimode
bosonic Gaussian channels

In this section, I discuss a generalization of the results
of the previous section to the case of multimode bosonic
Gaussian channels [51]. Before doing so, I give a brief review
of bosonic Gaussian states and channels (see [52] for a more
comprehensive review). Let

R̂ ≡ [q̂1, . . . ,q̂m,p̂1, . . . ,p̂m] ≡ [x̂1, . . . ,x̂2m] (99)

denote a row vector of position- and momentum-quadrature
operators, satisfying the canonical commutation relations

[R̂j ,R̂k] = i�j,k, where � ≡
[

0 1

−1 0

]
⊗ Im, (100)

and Im denotes the m × m identity matrix. We take the annihi-
lation operator for the j th mode as âj = (q̂j + ip̂j )/

√
2. For z

a column vector inR2m, we define the unitary displacement op-
erator D(z) = D†(−z) ≡ exp(iR̂z). Displacement operators
satisfy the following relation:

D(z)D(z′) = D(z + z′) exp

(
− i

2
zT �z′

)
. (101)

Every state ρ ∈ D(H) has a corresponding Wigner character-
istic function, defined as

χρ(z) ≡ Tr{D(z)ρ}, (102)

and from which we can obtain the state ρ as

ρ =
∫

d2mz

(2π )m
χρ(z) D†(z). (103)

A quantum state ρ is Gaussian if its Wigner characteristic
function has a Gaussian form as

χρ(ξ ) = exp
(− 1

4zT V ρz + i[μρ]T z
)
, (104)

where μρ is the 2m × 1 mean vector of ρ, whose entries are
defined by μ

ρ

j ≡ 〈R̂j 〉ρ and V ρ is the 2m × 2m covariance
matrix of ρ, whose entries are defined as

V
ρ

j,k ≡ 〈{
R̂j − μ

ρ

j ,R̂k − μ
ρ

k

}〉
ρ
. (105)
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The following condition holds for a valid covariance matrix:
V � i�, which is a manifestation of the uncertainty principle.

A 2m × 2m matrix S is symplectic if it preserves the sym-
plectic form S�ST = �. According to Williamson’s theorem
[53], there is a diagonalization of the covariance matrix V ρ of
the form

V ρ = Sρ(Dρ ⊕ Dρ)(Sρ)T , (106)

where Sρ is a symplectic matrix and Dρ ≡ diag(ν1, . . . ,νm) is a
diagonal matrix of symplectic eigenvalues such that νi � 1 for
all i ∈ {1, . . . ,m}. Computing this decomposition is equivalent
to diagonalizing the matrix iV ρ� [54, Appendix A].

The Hilbert-Schmidt adjoint of a Gaussian quantum channel
NX,Y from m modes to m modes has the following effect on a
displacement operator D(z) [52]:

D(z) �−→ D(Xz) exp
(− 1

4zT Y z + izT d
)
, (107)

where X is a real 2m × 2m matrix, Y is a real 2m × 2m

positive-semidefinite matrix, and d ∈ R2m, such that they
satisfy

Y � i[� − XT �X]. (108)

The effect of the channel on the mean vector μρ and the
covariance matrix V ρ is thus as follows:

μρ �−→ XT μρ + d, (109)

V ρ �−→ XT V ρX + Y. (110)

All Gaussian channels are covariant with respect to displace-
ment operators, and this is the main reason why they are
teleportation simulable, as noted in [6,7]. That is, the following
relation holds:

NX,Y (D(z)ρD†(z)) = D(XT z)NX,Y (ρ)D†(XT z). (111)

Just as every quantum channel can be implemented as a
unitary transformation on a larger space followed by a partial
trace [55], so can Gaussian channels be implemented as a
Gaussian unitary on a larger space with some extra modes
prepared in the vacuum state, followed by a partial trace [52].
Given a Gaussian channel NX,Y with Z such that Y = ZZT

we can find two other matrices XE and ZE such that there is a
symplectic matrix

S =
[
XT Z

XT
E ZE

]
, (112)

which corresponds to the Gaussian unitary transformation on
a larger space.

Alternatively, for certain Gaussian channels, there is a
realization that is analogous to those discussed in the previous
section for the thermal, amplifier, and additive-noise channels.
In particular, consider a Gaussian channel with X and Y matri-
ces as discussed above, and suppose that the mean vector d = 0
(note that the condition d = 0 is not particularly restrictive be-
cause it just corresponds to a unitary displacement at the input
or output of the channel, and capacities or distinguishability
measures do not change under such unitary actions). Whenever
the matrix � − XT �X is full rank, implying then by (108) that
Y is full rank, the Gaussian channel can be realized as follows
[52, Theorem 1]:

ρA → NX,Y (ρA) = TrE{UAE(ρA ⊗ γE(Y ))U †
AE}, (113)

where ρA is the m-mode input, γE(Y ) is a zero-mean, m-mode
Gaussian state with covariance matrix given by KYKT , where
K is the invertible matrix discussed around [52, Eqs. (27) and
(28)], and UAE is a Gaussian unitary acting on 2m modes.

Given the above result, we can then generalize the argument
from the previous section to argue that the teleportation
simulations of these channels converge uniformly. Indeed, as
discussed in [6] and as a generalization of the single-mode case
discussed previously, the teleportation simulation of a Gaus-
sian channel NX,Y realizes the Gaussian channel NX,Y+σ̄ I ,
where σ̄ > 0 is a parameter characterizing the squeezing
strength and the unideal detections involved in the teleportation
simulation. Thus, as before, the teleportation simulation of
a Gaussian channel simply acts as an additive-noise channel
concatenated with the original channel, and the effect is that
the noise matrix for the channel realized from the teleportation
simulation is Y + σ̄ I , while the X matrix is unaffected.
Thus, invoking [52, Theorem 1], the teleportation simulation
NX,Y+σ̄ I can be realized as the following transformation:

ρA → NX,Y (ρA) = TrE{UAE(ρA ⊗ γE(Y + σ̄ I ))U †
AE}.

(114)

Then, we are led to the following theorem.
Theorem 1. Let NX,Y be a multimode quantum Gaussian

channel of the form in (107)–(110), such that � − XT �X

is full rank. Then, its teleportation simulation converges uni-
formly, in the sense that

sup
ρRA

P ((idR ⊗NX,Y )(ρRA),(idR ⊗NX,Y+σ̄ I )(ρRA))

� P (γE(Y ),γE(Y + σ̄ I )), (115)

where γE(Y ) is defined in (113),

lim
σ̄→0

P (γE(Y ),γE(Y + σ̄ I )) = 0, (116)

and one can use the explicit formula [56, Sec. IV] for the fidelity
of multimode, zero-mean Gaussian states to find an analytical
expression for

P (γE(Y ),γE(Y + σ̄ I )) =
√

1 − F (γE(Y ),γE(Y + σ̄ I )),

(117)

for σ̄ > 0.
Proof. The proof of this theorem follows the same strategy

given in the previous section, which in turn was used in [34,42].
In detail, letting ρRA be an arbitrary state, we have that

P ((idR ⊗NX,Y )(ρRA),(idR ⊗NX,Y+σ̄ I )(ρRA))

� P (UAE(ρRA ⊗ γE(Y ))U †
AE,UAE(ρRA ⊗ γE(Y σ̄ ))U †

AE)

= P (ρRA ⊗ γE(Y ),ρRA ⊗ γE(Y + σ̄ I ))

= P (γE(Y ),γE(Y + σ̄ I )), (118)

where Y σ̄ ≡ Y + σ̄ I . The justification of these steps is the
same as before, namely, data processing and unitary invariance.
The above bound is clearly a uniform bound, holding for all
states ρRA, and so we conclude (115). �
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III. PHYSICAL INTERPRETATION WITH THE CV
TELEPORTATION GAME

We can interpret the results in the previous sections of this
paper in a game-theoretic way, in order to further elucidate the
physical meaning of the two kinds of convergence that we have
considered in this paper. Let us consider a competitive game
(call it the CV teleportation game) between a distinguisher and
a teleporter, while an independent referee determines who wins
the game. At the outset, the referee flips an unbiased coin and
tells the outcome to the teleporter. If the coin outcome is heads,
then the teleporter will apply the ideal channel. If it is tails, then
he will apply the CV teleportation protocol. The game is such
that either the distinguisher reveals his strategy to the teleporter
beforehand, or vice versa. Furthermore, the referee always
learns the strategies of both the distinguisher and the teleporter.
Everyone involved plays honestly. A particular instance of the
game is depicted in Fig. 3.

I now outline the full game in the case that the distin-
guisher reveals his strategy to the teleporter. In this case, the
distinguisher picks a pure state ψRA and sends mode A to
the teleporter and mode R to the referee. The distinguisher
also reveals a classical description of the state ψRA to the
referee, and also to the teleporter in this case. Based on this, the
teleporter can compute the entanglement infidelity ε(σ̄ ,ψRA)
from (13) and can adjust the teleportation imperfection σ̄ >

0 of his setup accordingly such that ε(σ̄ ,ψRA) ≈ 0. The
referee then reports the coin flip outcome to the teleporter.
If heads, then the teleporter does nothing to mode A (ideal
channel); if tails, the teleporter applies the continuous-variable
bosonic teleportation protocol to mode A. The teleporter sends
the output mode to the referee. The referee then performs
the optimal binary measurement [57–59] to distinguish the
two possible resulting states. If the measurement outcome is
“heads,” then the channel applied by the teleporter is decided
to be the ideal channel. If the measurement outcome is “tails,”
then the channel applied by the teleporter is decided to be the
teleportation channel. This procedure is then repeated a large
number of times. If the fraction of rounds in which the coin
flips match exceeds 3

4 , then the distinguisher wins. Otherwise,
the teleporter wins.

To analyze the above physical setup, consider that the
probability of distinguishing the channels in any single round

FIG. 3. Depiction of the CV teleportation game, in the case
that the coin outcome is tails, so that the teleporter applies the
continuous-variable bosonic teleportation protocol to the mode A that
the distinguisher sends.

is given by [57–59]

Pr{X = Y } = 1
2

(
1 + 1

2

∥∥ψRA − T σ̄
A (ψRA)

∥∥
1

)
, (119)

where X is a Bernoulli random variable modeling the coin
flip and Y is a Bernoulli random variable modeling the mea-
surement outcome. In the above-described case in which the
distinguisher reveals his strategy, this means that the teleporter
can follow and choose σ̄ as small as needed to guarantee that
Pr{X = Y } < 3

4 . Thus, with this structure to the game, the
teleporter wins with high probability after a large number of
repetitions. In fact, based on well-known relations between
trace distance and fidelity [60,61], and the result given in (17),
we have that

sup
ψRA

inf
σ̄>0

∥∥ψRA − T σ̄
A (ψRA)

∥∥
1 = 0. (120)

Now, suppose that the opposite scenario occurs in which
the teleporter reveals his strategy (and commits to it). This
means that the teleportation imperfection σ̄ > 0 is fixed at the
outset. Then, the distinguisher can choose his input state to
be the two-mode squeezed vacuum state �(NS)RA such that
ε(σ̄ ,�(NS)RA) ≈ 1, as considered in (21). This in turn means
that the distinguisher can guarantee that Pr{X = Y } > 3

4 . Thus,
in this case, the distinguisher wins with high probability after
a large number of repetitions. In fact, in this latter case, as a
consequence of (21), we have that

inf
σ̄>0

sup
ψRA

∥∥ψRA − T σ̄
A (ψRA)

∥∥
1 = 2. (121)

One may criticize whether the above game is truly physical.
Indeed, it is never possible in practice to apply the ideal chan-
nel. Depending on the physical situation, the actual channel
might be a pure-loss, thermal, pure-amplifier, amplifier, or
additive-noise channel, for example (one could further criticize
“pure-loss” or “pure-amplifier,” but let us leave that). Let GA

denote one of these single-mode, phase-insensitive bosonic
Gaussian channels. Suppose instead that the game changes
in the following way: If the coin outcome is heads, then the
teleporter will apply the channel G. If it is tails, then he will
apply the teleportation simulation GA◦T σ̄

A of GA.
There is a striking, physically observable difference in this

case. No matter whether the distinguisher reveals his strategy
to the teleporter, or the other way around, the teleporter always
wins with high probability! This is a direct consequence of the
inequalities in (79), (91), and (97). Indeed, independent of the
revealing, the teleporter can simply compute the teleportation
imperfection σ̄ > 0, while incorporating his knowledge of the
channel parameters, in order to always guarantee that Pr{X =
Y } < 3

4 . Thus, as a consequence of the mathematical fact
that the teleportation simulations of these Gaussian channels
converge both uniformly and strongly, so that

inf
σ̄>0

sup
ψRA

∥∥GA(ψRA) − GA◦T σ̄
A(ψRA)

∥∥
1

= sup
ψRA

inf
σ̄>0

∥∥GA(ψRA) − GA◦T σ̄
A(ψRA)

∥∥
1 = 0, (122)

the physically observable consequence is that the teleporter
always has the advantage in this modified (and physically more
realistic) version of the CV teleportation game.

Note that other variations of the CV teleportation game
are possible. One could allow for the distinguisher to employ
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entangled strategies among the different rounds, or even
adaptive channels in-between rounds. The results given in
Propositions 1 and 2 can be used to analyze these other, richer
variations of the CV teleportation game, but here I will not go
into the details.

IV. NONASYMPTOTIC SECRET-KEY-AGREEMENT
CAPACITIES

I now briefly review secret-key-agreement capacities of
a quantum channel and some results from [15]. The secret-
key-agreement capacity of a quantum channel is equal to the
optimal rate at which a sender and receiver can use a quantum
channel many times, as well as a free assisting classical
channel, in order to establish a reliable and secure secret key. It
is relevant in the context of quantum key distribution [62,63].
More generally, since capacity is a limiting notion that can
never be reached in practice, one can consider a fixed (n,P ↔,ε)
secret-key-agreement protocol that uses a channel n times and
has ε error, while generating a secret key at the rate P ↔ [15].
Such protocols were explicitly discussed in [15,39,40], as well
as the related developments in [41,64–70]. For a fixed integer
n and a fixed error ε ∈ (0,1), the nonasymptotic secret-key-
agreement capacity of a quantum channel N is written as
P ↔
N (n,ε) and is equal to the optimal secret-key rate P subject

to these constraints [15]. That is,

P ↔
N (n,ε) ≡ sup{P ↔ | (n,P ↔,ε) is achievable using ↔},

(123)

where ↔ indicates the free use of LOCC between every use
of the quantum channel.

If an (n,P ↔,ε) protocol takes place over a bosonic channel,
the stated definition of a secret-key-agreement protocol makes
no restriction on the photon number of the channel input
states and, as such, it is called an unconstrained protocol. The
corresponding capacity is called the unconstrained secret-key-
agreement capacity. For example, in such a scenario, a sender
and receiver could freely make use of the following classically
correlated Basel state with mean photon number equal to ∞:

βAB ≡ 6

π2

∞∑
n=1

1

n2
|n〉〈n|A ⊗ |n〉〈n|B, (124)

which represents a dephased version of the state in (20). Even
though it is questionable whether such states are physically
realizable in practice, they are certainly normalizable, and thus
allowed to be used in principle in an unconstrained secret-key-
agreement protocol.

One of the main results of [15] is the following bound on
P ↔
Lη

(n,ε) when the channel is taken to be a pure-loss channel
Lη of transmissivity η ∈ (0,1):

P ↔
Lη

(n,ε) � − log2(1 − η) + C(ε)/n, (125)

where

C(ε) ≡ log2 6 + 2 log2([1 + ε]/[1 − ε]). (126)

This bound was established by proving that P ↔ � − log2(1 −
η) + C(ε)/n for any fixed (n,P ↔,ε) unconstrained protocol.
As a consequence of this uniform bound, one can then take
a supremum over all P ↔ such that there exists an (n,P ↔,ε)

protocol and conclude (125), as was done in the proof of [15,
Theorem 24]. Similar reasoning was employed in [15] in order
to arrive at bounds on the unconstrained capacities of other
bosonic Gaussian channels.

A critical tool used to establish (125) is the simulation of
a quantum channel via teleportation [4, Sec. V] (see also [8,
Theorem 14 and Remark 11]), which, as discussed previously,
has been extended to bosonic states and channels [6,7], by
making use of the well-known bosonic teleportation protocol
from [11]. More generally, one can allow for general local oper-
ations and classical communication (LOCC) when simulating
a quantum channel from a resource state [5, Eq. (11)], known
as LOCC channel simulation. This tool is used to reduce any ar-
bitrary LOCC-assisted protocol over a teleportation-simulable
channel to one in which the LOCC assistance occurs after the
final channel use. Another critical idea is the reinterpretation
of a three-party secret-key-agreement protocol as a two-party
private-state generation protocol and employing entanglement
measures such as the relative entropy of entanglement as a
bound for the secret-key rate [71,72]. Finally, one can employ
the Chen formula for the relative entropy of Gaussian states
[73], as well as a formula from [54] for the relative entropy
variance of Gaussian states. These tools were foundational for
the results of [15, Theorem 24] in order to argue for bounds on
secret-key-agreement capacities of bosonic Gaussian channels.

A key point mentioned above, which is critical to and clearly
stated in the proof of [15, Theorem 24], is as follows: the
proof begins by considering a fixed (n,P ↔,ε) protocol and then
establishes a uniform bound on P ↔, independent of the details
of the particular protocol. The discussion given in this paper
clarifies that strong convergence in teleportation simulation
suffices for the proof of [15, Theorem 24]. Furthermore, there
is no need to invoke the energy-constrained diamond distance
[16,74] in order to establish the correctness of the proof.

V. DETAILED REVIEW OF THE PROOF
OF THEOREM 24 IN [15]

We can now step through the relevant parts of the proof of
[15, Theorem 24] carefully, in order to clarify its correctness.
I highlight, in italics, quotations from the proof of [15,
Theorem 24] for clarity and follow each quotation with a brief
discussion. The proof begins by stating the following:

“First, consider an arbitrary (n,P ↔,ε) protocol for the
thermalizing channel Lη,NB

. It consists of using the channel n

times and interleaving rounds of LOCC between every channel
use. Let ζ n

ÂB̂
denote the final state of Alice and Bob at the end

of this protocol.”
It is crucial to note here that this is saying, as it is written,

that we should really start with a particular, fixed (n,P ↔,ε)
protocol. This does not mean that we should be considering a
sequence of such protocols or protocols involving unnormaliz-
able states. Thus, proceeding by fixing an (n,P ↔,ε) protocol,
the proof continues with the following:

“By the teleportation reduction procedure [...], such a
protocol can be simulated by preparing n two-mode squeezed
vacuum (TMSV) states each having energy μ − 1

2 (where we
think of μ � 1

2 as a very large positive real), sending one mode
of each TMSV through each channel use, and then performing
continuous-variable quantum teleportation [11] to delay all of
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the LOCC operations until the end of the protocol. Let ρ
μ

η,NB

denote the state resulting from sending one share of the TMSV
through the thermalizing channel, and let ζ ′

ÂB̂
(n,μ) denote the

state at the end of the simulation.”
This means, as it states, that the fixed protocol can be

simulated with some error by replacing each channel use
of Lη,NB

with the simulating channel Lμ

η,NB
, for μ ∈ [0,∞).

Here, the original channel Lη,NB
is in correspondence with GA

from Sec. II E, Lμ

η,NB
with G σ̄

A, and μ with σ̄ , in the sense
that the limit μ → ∞ is in correspondence with the limit
σ̄ → 0. Furthermore, since this is an LOCC simulation and the
original protocol consists of channel uses of Lη,NB

interleaved
by LOCC, it is possible to write the simulating protocol as one
that consists of a single round of LOCC on the state [ρμ

η,NB
]⊗n,

as observed in [4,7,8]. Continuing,
“Let εTP(n,μ) denote the “infidelity” of the simulation:

εTP(n,μ) ≡ 1 − F
(
ζ n

ÂB̂
,ζ ′

ÂB̂
(n,μ)

)
." (127)

In the context of the proof, this infidelity clearly corresponds
to the infidelity of the simulation of the fixed protocol. One
might argue that the notation εTP(n,μ) somehow hides this
dependence on a fixed protocol, but the dependence of εTP(n,μ)
on a fixed protocol is clear from the context and the fact that
the quantity 1 − F (ζ n

ÂB̂
,ζ ′

ÂB̂
(n,μ)) itself clearly depends on

a fixed protocol as stated. This infidelity is similar to that in
(47), except the initial state of the protocol is constrained to be
a separable, unentangled state shared between the sender and
receiver, and each channel A(j ) in the protocol is constrained
to be an LOCC channel between the sender and receiver.
Continuing,

“Due to the fact that continuous-variable teleportation
induces a perfect quantum channel when infinite energy is
available [11], the following limit holds for every n”:

lim sup
μ→∞

εTP(n,μ) = 0. (128)

This is indeed a key step for the proof. In the context of
the proof given, the convergence is as it is written and is to
be understood in the strong sense of (64): for a fixed protocol
used in conjunction with the n teleportation simulations, the
infidelity converges to zero in the limit of ideal squeezing and
ideal detection (as μ → ∞ or, equivalently, as σ̄ → 0). Note
that here we are employing the notion of strong convergence
in (64), given that the original protocol has LOCC channels
interleaved between every use of Lη,NB

.
Continuing the proof, “By using that

√
1 − F (ρ,σ ) is a

distance measure for states ρ and σ (and thus obeys a triangle
inequality) [...], the simulation leads to an (n,P ↔,ε(n,μ))
protocol for the thermalizing channel, where

ε(n,μ) ≡ min{1,[
√

ε +
√

εTP(n,μ)]2}. (129)

Observe that lim supμ→∞ ε(n,μ) = ε, so that the simulated
protocol has equivalent performance to the original protocol
in the infinite-energy limit.”

This last part that I have recalled is saying how the error of
the simulating protocol is essentially equal to the sum of the
error of the original protocol and the error from substituting
the original n channels with n unideal teleportations. It is a
straightforward consequence of the triangle inequality for the

metric
√

1 − F , as recalled there, and thus captures a correct
propagation of errors.

From this point on in the proof, using other techniques,
the following bound is concluded on the rate P ↔ of the
fixed (n,P ↔,ε) protocol by invoking the metaconverse in [15,
Theorem 11]:

P ↔ � D
(
ρ

μ

η,NB
‖σμ

η,NB

)+
√

2V
(
ρ

μ

η,NB
‖σμ

η,NB

)
n(1 − ε(n,μ))

+ C(ε(n,μ))/n.

(130)

This bound holds for all μ sufficiently large, ε ∈ (0,1), and
positive integers n, and as such, it is a uniform bound. Given
the uniform bound, the limit μ → ∞ is then taken to arrive at

P ↔ � − log[(1 − η)ηNB ] − g(NB) +
√

2VLη,NB

n(1 − ε)
+ C(ε)

n
.

(131)

Since this latter bound is itself a uniform bound, holding for
all (n,P ↔,ε) protocols, it is then concluded that

P ↔
Lη,NB

(n,ε) � − log[(1 − η)ηNB ] − g(NB)

+
√

2VLη,NB

n(1 − ε)
+ C(ε)

n
. (132)

Further arguments are given in the proof of [15, Theorem 24]
to establish the bound in (125) for the pure-loss channel.

To summarize, the original proof of [15, Theorem 24]
as given there is correct as it is written. The proof of [15,
Theorem 24] as written there establishes that for a fixed
(n,P ↔,ε) protocol, the bound in (131) holds. Furthermore,
one might think that a proof may only be given by employing
the energy-constrained diamond distance, but this is clearly not
the case either, as demonstrated above.

VI. CONCLUSION

The continuous-variable, bosonic quantum teleportation
protocol from [11] is often loosely stated to simulate an
ideal quantum channel in the limit of infinite squeezing and
ideal homodyne detection. The precise form of convergence is
typically not clarified in the literature and, as a consequence,
this has the potential to lead to confusion in mathematical
proofs that employ this protocol.

This paper has clarified various notions of channel conver-
gence, with applications to the continuous-variable bosonic
teleportation protocol from [11], and extended these notions
to various contexts. This paper provided an explicit proof that
the continuous-variable bosonic teleportation protocol from
[11] converges strongly to an ideal quantum channel in the
limit of ideal squeezing and detection. At the same time, this
paper proved that this protocol does not converge uniformly to
an ideal quantum channel, and this highlights the role of this
paper in providing a precise clarification of the convergence
that occurs in the continuous-variable bosonic teleportation
protocol from [11]. I also proved that the teleportation simu-
lations of the pure-loss, thermal, pure-amplifier, amplifier, and
additive-noise channels converge both strongly and uniformly
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to the original channels, which is in contrast to what occurs
in the teleportation simulation of the ideal channel. I suspect
that the explicit uniform bounds in (79), (91), and (97), on the
accuracy of the teleportation simulations of these channels,
will be useful in future applications. The uniform convergence
results were then generalized to the teleportation simulations
of particular multimode bosonic Gaussian channels. Finally,
I gave a physical interpretation of the convergence results
discussed in this paper, by means of the CV teleportation game
of Sec. III.

I also reviewed the proof of [15, Theorem 24] and confirmed
its correctness as it is written there. One might think that it is
necessary to use the energy-constrained diamond distance to
arrive at a proof of (125), but this is clearly not the case.

It would be interesting in future work to explore physical
scenarios of interest in which different topologies of conver-
gence lead to physically distinct outcomes, as was the case in
the CV teleportation game. Recent work in this direction is
available in [17,74].
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