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The faithful distribution of entanglement in continuous-variable systems is essential to many quantum
information protocols. As such, entanglement distillation and enhancement schemes are a cornerstone of many
applications. The photon subtraction scheme offers enhancement with a relatively simple setup and has been
studied in various scenarios. Motivated by recent advances in integrated optics, particularly the ability to build
stable multimode interferometers with squeezed input states, a multimodal extension to the enhancement via
photon subtraction protocol is studied. States generated with multiple squeezed input states, rather than a single
input source, are shown to be more sensitive to the enhancement protocol, leading to increased entanglement
at the output. Numerical results show the gain in entanglement is not monotonic with the number of modes or
the degree of squeezing in the additional modes. Consequently, the advantage due to having multiple squeezed
input states can be maximized when the number of modes is still relatively small (e.g., four). The requirement for
additional squeezing is within the current realm of implementation, making this scheme achievable with present
technologies.
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I. INTRODUCTION

Entanglement is one of the most distinct tenets of quantum
mechanics. A plethora of tasks in quantum information sci-
ence and technology, including teleportation [1], distributed
quantum computing [2,3], and dense coding [4], necessitate
the reliable generation and transmission of entangled states in
optical circuits and networks. The efficacy of such multiparty
protocols depends on the strength of the quantum correlations
in shared entangled states. Unfortunately, highly entangled
states of light are difficult to produce. Moreover, loss during
generation, transmission, and processing degrades the quality
of the entanglement, and thereby the protocol. Quantum error
correction and entanglement distillation schemes have been
developed and applied to increase a system’s resilience to
losses and other forms of noise. However, such schemes
are usually difficult to implement since they involve many
subsystems and can require nonlinear photon-photon inter-
actions, active components, and quantum memories [5]. A
subset of protocols like filter operations [6] can still enhance
entanglement without these requirements, at the cost of being
suboptimal. One example proposed by Opatrný et al. [7] is
entanglement enhancement via photon subtraction (EvPS),
which only requires a beam-splitter type coupling between
modes and high-efficiency single-photon detectors. Due to
the relative simplicity and the advantages photon subtraction
schemes offer in improving the quality of entangled states,
many studies have looked to optimize and further enhance
this process [7–12]. Furthermore, photon subtraction from
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Gaussian states has also been studied in the multipartite regime
[13–19].

Recent results have shown a significant boost in the ca-
pabilities of integrated quantum photonic devices, where a
self-pumped integrated source of entangled photons (e.g.,
two-mode squeezed states) have already been realized in
practical, scalable platforms, thereby rendering large-scale
quantum photonic circuits a reality [20]. Such monolithic
device capabilities enable more extensive networks of non-
classical light sources to be built in a stable, scalable, and
integrated setting. In integrated circuits, present technolo-
gies can readily support multimodal interferometer networks,
which cannot be stabilized and scaled up in free space using
tabletop approaches. Two critical capabilities that are enabled
in multimode devices are the possibility to share entanglement
between multiple parties and the ability to generate multimode
states that demonstrate higher entanglement than two-party
schemes, both of which will be examined here in the context
of EvPS.

The study of photon subtraction in multimode Gaussian
states has generated a wide range of works including that of
Averchenko et al. [14] and Ra et al. [18] which focuses on
how to subtract single photons from time-frequency multimode
states while maintaining the mode coherence, while Park et al.
[15] proposes operations, like photon subtraction, which are
conditional entanglers to enable non-Gaussian entanglement
between two modes of propagating light. Walschaers et al.
[19] presented an analytical expression for the Wigner function
of nondisplaced Gaussian state after a photon subtraction
operation. Also, the work by Das et al. [16] investigates
the effect photon subtraction and addition to the logarithmic
negativity of four-mode squeezed vacuum states. The work
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presented here outlines the regimes and trends to achieve opti-
mal entanglement enhancement with single photon subtraction
in a truly multipartite entangled state when multiple parties and
modes are involved.

After introducing the formalism in Sec. II, the EvPS scheme
is described in Sec. III where the two- and N -mode cases with
one single-mode squeezed vacuum (SMSV) input followed by
an interferometer generate the entanglement. The extension
to multiple squeezed vacuum input sources is given in Sec.
IV, with numerical results and a comparison of the schemes
given in Sec. V. The results are discussed and summarized
in Sec. VI. Throughout, the logarithmic negativity quantifies
the entanglement and the interferometer is set up so that the
initial state becomes symmetric for all parties. Since there are
no generic methods to quantify multipartite CV entanglement,
the approach from Vidal and Werner [21], which studies how
the entanglement behaves for all possible partitions (see Ap-
pendix C), is adopted. The results show a significant advantage
in using multiple sources of squeezed light. Moreover, in some
cases the greatest advantage appears when the initial squeezing
in the first mode is much higher than in the other modes,
suggesting a more experimentally feasible architecture.

II. FORMALISM

A. Continuous-variable systems

Like many other quantum protocols, entanglement distil-
lation was originally designed for discrete variable systems,
usually qubits [22]. This paradigm is not always applicable,
as many systems carry continuous degrees of freedom. It
is common to associate each mode with the corresponding
annihilation operator âi , i ∈ {1,2, . . . ,N}, and use the Fock
basis to denote the state of the system. CV states of light
offer efficient preparation, manipulation, and often near-unity
efficient detection of entangled states, making them solid
candidates for practical implementations using existing tech-
nologies [23]. In discrete variables, specific local operations,
called filter operations, acting on n-dimensional states that take
the form of ρ ′ = AρA†

Tr(AρA†) where AA† > In [6], have been used
to enhance entanglement [22]. These filter operations can be
extended to infinite-dimensional Hilbert spaces to include tasks
like photon subtraction [24].

One subset of operations that can be applied to CV states is
the set of Gaussian operations: squeezing, mode mixing (e.g.,
beam splitting), local phase operations, homodyne detection,
partial trace, the addition of a mode in a thermal state, and
classical communication. In this work, the phase free beam-
splitter (BS) operation for modes i and j is defined as

B̂ij (θ ) = exp
[(

θ − π

2

)
(−âi â

†
j + â

†
i âj )

]
, (1)

while the single-mode squeezing operator on mode k, Ŝk(ζ ),
and the two-mode squeezing operator for modes m and n,
Ŝmn(ζ ), are denoted

Ŝk(ζ ) = exp
(

1
2

[
ζ ∗â2

k − ζ (â†
k)2
])

, (2)

Ŝmn(ζ ) = exp(ζ ∗âmân − ζ â†
mâ†

n), (3)

where ζ = r eiθ is the squeezing parameter.

Gaussian states are the subset of CV states that have a
Gaussian Wigner function or equivalently the set of states that
can be generated from the vacuum using Gaussian operations.
They are completely characterized by their first and second
statistical moments of the quadrature field operators. However,
only the second moments, given in terms of a covariance
matrix, carry information about correlations and entanglement.
As such, the first moments can always be reduced to zero
through unitary operations on individual modes [25]. If two
Gaussian states have the same covariance matrix up to some
local transformations, they are equally entangled.

The archetypal entangled Gaussian state is the two-mode
squeezed vacuum (TMSV) which can be generated, for ex-
ample, by interfering two SMSV states with an appropriate
relative phase at a balanced BS. The TMSV state is a particular
case of a more general family of states sometimes referred to as
CV Greenberg-Horne-Zeilinger (GHZ) states, since the sum of
the momentum of all output modes and the difference between
the position of any two output modes is well characterized,
making an allusion to the properties of the discrete variable
GHZ state [26]. Moreover, CV GHZ states are also completely
symmetric across all modes, implying mode indistinguishably.
Furthermore, every mode and grouping of modes is entangled
with every other mode and grouping, making it ideal for many
CV quantum information protocols [23,27].

Entanglement distillation has been an important tool in
quantum information, but early distillation protocols relied on
states having non-Gaussian Wigner functions [28]. However, a
no-go theorem established that systems with Gaussian Wigner
functions could not be distilled using only Gaussian operations
[29–31]. Moreover, non-Gaussian states or operations are
required for efficient universal quantum computing using CVs
[32]. As such, a number of non-Gaussian transformations
have been proposed [5,7,33–37]. The proposal of Opatrný
et al., involved subtracting a single photon from each mode
of a two-mode squeezed vacuum (TMSV) with the use of
low reflectivity BSs [7]. However, it was later shown by
Ourjoumtsev et al. [10] that having a single photon detected
in one mode would also lead to enhancement, but would not
keep the Gaussian-like properties of the original state, which
are required for tasks like teleportation. In these protocols,
enhancement results from a conditional measurement of a
single photon in a weakly reflected beam, see Fig. 1, which
increases the mean photon number in the transmitted mode
(even though photons are subtracted).

B. Entanglement and gain

One computationally simple and relatively standard method
to quantify entanglement in bipartite systems is the logarithmic
negativity, EN (ρ); see Appendix B. As expected from such a
measure, the logarithmic negativity is invariant under local uni-
tary operations. This fact will be used to simplify calculations,
and Ûloc =∏k Ûk will indicate a unitary which can be de-
composed into a sequence of local unitary operations, Ûk , one
for each mode k. More generally, EN is nonincreasing under
(deterministic) local operations and classical communications
(LOCC). These features make the logarithmic negativity a
valid entanglement monotone, i.e., a reasonable metric for
quantifying entanglement.
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FIG. 1. Free-space implementation of the EvPS scheme. A SMSV
is incident on a 50:50 beam splitter (BS), generating a two-mode
entangled state. Photon subtraction is conditioned on the detection of
a photon at a detector, D1 or D2, after passing through low-reflectivity
(weak) BSs. The result is a state which is more entangled than the state
after the first BS.

Monotones for multipartite entanglement are not easy to de-
fine. However, by examining collections of different bipartite
splittings of the system, several inequivalent computational
measures of entanglement can be obtained [21]. Then the
multipartite entanglement is said to have increased (decreased)
if the logarithmic negativity increased (decreased) for all
bipartition [21,38].

To help contrast the entanglement of a state before and
after photon subtraction, ρ0 and ρ1, respectively, the gain in
entanglement, G(ρ1), as defined in [12] is used,

G(ρ1) ≡ EN (ρ1) − EN (ρ0)

EN (ρ0)
. (4)

III. MULTIMODE ENTANGLEMENT ENHANCEMENT
WITH A SINGLE SOURCE

A. Two modes

The EvPS scheme is based on the ability to implement an
approximate nondeterministic photon subtraction operation.
The detection of a photon, through a weak coupling into a new
mode, under the assumption that a detection event only happens
in a single mode, can be approximated by an annihilation
operator [17]. A successful photon subtraction event in one
of the modes is triggered by the corresponding detector firing.
For simplicity, the photon subtracted mode is labeled as A.
Note that the symmetric construction (having weak BSs and
detectors in all modes) is not an essential feature of the
protocol. For an incoming state |ψ0〉, a photon subtraction event
produces the outgoing state

|ψ1〉〈ψ1| ≈ b̂A|ψ0〉〈ψ0|b̂†A√
Tr(b̂†Ab̂A|ψ0〉〈ψ0|)

. (5)

As an example of the EvPS protocol, the state |ψ0〉 prepared by
interfering a SMSV state with squeezing parameter ζ in mode
1 and the vacuum in mode 2 (see Fig. 1) using a balanced BS
is considered. This state can be prepared relatively easily in
a tabletop experiment, and will serve as a benchmark for the
multiple input designs.

Using the result of Eq. (5), the entanglement enhancement
can intuitively be understood for a weak initial squeezing,
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FIG. 2. Photon subtraction scheme from an integrated four-
mode CV GHZ source. A single-mode squeezed vacuum (SMSV),
Ŝ1(−r1)|vac〉, is pumped into mode â1. Similarly, SMSVs,
Ŝ2(r2)|vac〉, are pumped coherently in modes â2, â3, and â4 through
self-pumped devices (SPD). These squeezed states are interfered
through directional couplers, B̂12, B̂23, and B̂34, to generate a CV GHZ
state. Photon subtraction is achieved through the detection of a photon
in one of the detectors, D1, D2, D3, or D4, after passing through weak
directional couplers, weak DC1−4. Note that the photon subtraction
operations do not need to be applied in all modes.

|ζ | 	 1, by noting that

|ψ1(2,ζ )〉 ≡ b̂AB̂
(π

4

)
Ŝ1(ζ )|0,0〉1,2

≈ b̂A

(
|0,0〉1,2 − ζ

2
√

2
(|2,0〉1,2

+
√

2|1,1〉1,2 + |0,2〉1,2) + O(ζ 2)

)

= 1√
2

(|1,0〉1,2 + |0,1〉1,2

)+ O(ζ ), (6)

where b̂A is the annihilation operator in either one of the output
modes (1 or 2). The state |ψ1(2,ζ )〉 is a maximally entangled
Bell state, up to a correction of O(ζ ), which is an improvement
on the degree of entanglement of the original state since it
was the vacuum state to zeroth order. It is possible to find an
analytical expression for the logarithmic negativity of the exact
state |ψ1(2,ζ )〉 in (6) as a function of ζ and show that the gain
in entanglement is always G(ρ1) > 1 [12].

B. Multimode

The scheme above can be generalized to a symmetric N

mode state prepared using a single source. In practice, it is
possible to prepare the initial state using an on-chip inter-
ferometer where directional couplers are used to implement
the BS operations [39]. For example, a single-mode squeezed
vacuum input in mode â1 can be symmetrically split across N

modes through a series of directional couplers as seen in Fig. 2,
generating the state

|ψ0(N,ζ )〉 = Û (N )Ŝ1(ζ )|vac〉

= exp

⎡
⎣ζ ∗

2

(
b̂1 + · · · + b̂N√

N

)2

− H.c.

⎤
⎦|vac〉1...N ,

(7)

where Û (N ) = B̂N−1 N (arcsin 1√
2
) . . . B̂12(arcsin 1√

N
) is the

N -mode phase-free symmetric splitter unitary which is fully
described in Appendix A.
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To compare entanglement measures before and after pho-
ton subtraction, the logarithmic negativity (and gain) for all
bipartite splittings μ and ν, with each grouping containing n

and m modes, respectively (where n + m = N ), is considered.
One can rewrite the initial state as

|ψ0(N,ζ )〉 = exp

⎡
⎣ζ ∗

2

(√
nb̂ν + √

mb̂μ√
N

)2

− H.c.

⎤
⎦|vac〉ν,μ,

(8)

where

b̂ν = b̂i1 + b̂i2 + · · · + b̂in√
n

, b̂μ = b̂j1 + b̂j2 + · · · + b̂jm√
m

.

(9)

Here i1, . . . ,in and j1, . . . ,jm denote any ordering of the total
N modes.

Intuitively, for a low squeezing parameter,

|ψ1(N,ζ )〉 ≡ b̂A|ψ0(N,ζ )〉

|ζ |	1≈ b̂A

⎡
⎣|vac〉1,...,N + ζ

2

(∑N
i=1 b̂

†
i√

N

)2

|vac〉1,...,N

⎤
⎦

=
∑N

i=1 b̂
†
i√

N
|vac〉1,...,N

=
√

nb̂†μ + √
mb†ν√

N
|vac〉μ,ν, (10)

where b̂A is the annihilation operator in any of the N output
modes. The logarithmic negativity calculated with respect to
this new subsystem is

EN (ρψ1 ) = log2

∥∥ρTA

ψ1

∥∥
1

|ζ |	1≈ log2(1 + 2
√

nm/N ), (11)

where the strength of the quantum correlations between the
subsystems μ and ν can be maximized by a partition, where
n = m for an even number of modes N ; alternatively, n =
m ± 1 for an odd number of modes.

This can be seen by looking at the output state of Eq. (10),
where, when n = m, perfect anticorrelations are observed in
the {|0〉i ,|1〉i} basis and perfect correlations are also seen in an
uncorrelated basis, |±〉, where |±〉i = |1〉i±|0〉i√

2
, with i = {μ,ν}.

Alternatively, this could be understood from the von Neu-
mann entropy of the subsystem μ or ν of the state (10), which
is maximal when n = m, but decays to zero when either n or
m tends to N .

Note that the logarithmic negativity of |ψ1(N,ζ )〉 for larger
ζ can be numerically obtained for any number of modes,
N , without increased computational power by exploiting the
superpositions of modes as shown in (9).

IV. MULTIMODE ENTANGLEMENT ENHANCEMENT
WITH MULTIPLE SOURCES

The ability to use natural nonlinearities in integrated waveg-
uides as squeezed vacuum sources opens new opportunities
for generating multimode states [20,40,41]. In particular, it

is possible to generate CV GHZ states that are much more
sensitive to EvPS than those discussed in Sec. III, the main
goal of this section is to show that this is true and to explore the
requirements on these sources. For that purpose, it is sufficient
to consider the three parameter subset of states

|φ0(N,r1,r2)〉 ≡ Û (N )Ŝ1(−r1)Ŝ2(r2) . . . ŜN (r2)|vac〉1...N ,

(12)

where Û (N ) is the unitary as in (7) and can be created using
the circuit in Fig. 2 (see Appendix A).

The parameters r1 (initial squeezing in mode â1) and r2

(initial squeezing in all other modes) are significant from a
practical perspective. Mode â1 could be squeezed off chip,
allowing a wider variety of techniques and larger pump powers
than self-pumped modes. Thus it is reasonable to expect
architectures where the range of r1 is much larger than r2.
As shown in the next two sections, there are cases where the
gain is largest when r2 is small compared to r1, optimizing the
enhancement of the circuit provided in Fig. 2.

A. Entanglement in the initial state

To allow the comparison of states with the same loga-
rithmic negativity before photon subtraction, the state can be
reparametrized using parameters r and k such that r1 = r

k+1

and r2 = kr
k+1 , which, as seen in Appendix A, can be explicitly

represented as∣∣∣∣φ0

(
N,

r

k + 1
,

kr

k + 1

)〉

= exp

[
r

2

((
kN
k+1 − 1

)∑N
i=1 b̂2

i

N
− 2

∑
i>j b̂i b̂j

N

)
− H.c.

]

× |vac〉1...N . (13)

In this notation, k = 0 corresponds to a CV GHZ state prepared
using a single source with squeezing r . The comparison is
simplified due to the equivalence of states with different k up
to local unitaries∣∣∣∣φ0

(
N,

r

k + 1
,

kr

k + 1

)〉
= Ûloc|ψ0(N,−r)〉, (14)

with Ûloc = [
∏N

l=1 Ŝl( kr
k+1 )] derived in Ap-

pendix A using the commutation relation
[x
∑

k(ak)2 − (a†
k)2,y

∑
m>n(aman) − (a†

ma
†
n)] = 0 for all

x,y ∈ R. Equation (14) can be mapped to an optical circuit
equation depicted in Fig. 3. This equality implies that the
entanglement of the state |φ0(N, r

k+1 , kr
k+1 )〉 is the same as the

entanglement of the state |ψ0(N,−r)〉.

B. Entanglement in the photon subtracted state

The EvPS protocol is successful if a single photon is
subtracted (i.e., a single detector in Fig. 2 fires). As before,
the photon subtracted mode is labeled b̂A and∣∣∣∣φ1

(
N,

r

k + 1
,

kr

k + 1

)〉
≡ b̂A

∣∣∣∣φ0

(
N,

r

k + 1
,

kr

k + 1

)〉
. (15)

The partitions need to be defined in order to calculate bipartite
entanglement in this multimode state. The four composite
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FIG. 3. Circuit representation of Eq. (14). The states |φ0(N, r

k+1 , kr

k+1 )〉 (left) and |ψ0(N, −r)〉 (right, before the local squeezers) are equivalent

up to the local transformation Ûloc represented by the local squeezers at the end of the circuit on the right.

modes (A,B,C,D) are defined such that mode A is the photon
subtracted mode, B are the modes coupled with A, while C and
D are the groupings of modes needed for a bipartite splitting.
Since the state |φ1(N, r

k+1 , kr
k+1 )〉 is symmetric in all modes,

all modes except A will be equivalent and entanglement will
depend only on the number of modes in each composite mode
B, C, and D. In this way, the three generalized splittings that
represent all possible splittings can be constructed as either
(AB)i − Cj , Tr(Dk)(AB)i − Cj , or Tr((AB)i)Cj − Dk , where
the subscripts represent the relative number of modes in each
composite mode. For example, in the splitting (AB)1/4 − C3/4

when N = 4, A is the single-photon subtracted mode, B does
not contain any modes, and C contains three modes, while if
N = 100 then B would contain 24 modes and C would contain
75 modes.

Since entanglement is invariant under local unitary trans-
formations, Eq. (14) can be used to see that entangle-
ment in |φ1(N, r

k+1 , kr
k+1 )〉 is equivalent to the entanglement

in Ŝ
†
A( kr

k+1 )b̂AŜA( kr
k+1 )|ψ0(N,−r)〉 (and similarly after par-

tial trace). Using the relation ŜA
†
(r)b̂AŜ(r) = b̂A cosh(r) −

b̂
†
Aeiθ sinh(r) [42] both simplifies the calculation of logarithmic

negativity in the photon subtracted and provides intuition
for the analysis of the performance of EvPS. The photon
subtraction operation on the locally squeezed state has a
different effect than the same operation on the state without
local squeezing.

For any bipartition, the logarithmic negativity of the state
can be calculated using

[
b̂A cosh

(
kr

k + 1

)
− b̂

†
A sinh

(
kr

k + 1

)]

× exp

⎡
⎣−r

2

(
b̂A + √

n − 1b̂B + √
mb̂C√

N

)2

− H.c.

⎤
⎦

×|vac〉A,B,C, (16)

where b̂B = b̂i1 +···+b̂in√
n

and b̂C = b̂j1 +···+b̂jm√
m

, where n + m +
1 = N and i1, . . . ,in and j1, . . . ,jm represent all the possible
orderings of the N − 1 modes left for a given mode A.

An extension to include the traced-out mode is included in
Appendix C.

V. PERFORMANCE OF THE SCHEME

Using the tools above, an exploration of the parameter space
and a locating of points and regions where the advantage is
optimal regarding both the input squeezing parameters and
the number of modes can be pursued. While the symmetric
nature of the states allows a significant simplification of the
analytical expressions, the comparisons were made numer-
ically in Python using QuTiP [43]. This numerical method
requires a cutoff at high photon numbers and consequently
introduces larger errors at higher squeezing parameters. Hence
the squeezing parameter, r , was chosen to have a negli-
gible numerical error while upholding a minimal detection
probability. However, the range of the squeezing parameter
ratio, k = r2/r1, and the number of modes, N , are chosen
to be exemplative of the full range of behaviors. The results
presented in the main text concern pure state splittings; results
for mixed state splitting (by tracing out some modes) are
presented in Appendix C.

A. Optimizing the parameters

To show how the additional sources influence the EvPS
procedure, the gain was studied as a function of k for various
values of N . Results for N = 2,4,8,16 at r = 0.2 are plotted
in Fig. 4 (Fig. 8 for the partial traced states). It is of note
that, for all values of N , four-party multipartite entanglement
enhancement is observed in at least part of the range for k. One
should recall this occurs when all eight bipartitions (see Fig. 8)
display gain measures larger than zero. As can be expected in
the limit of k = 0, the gain is independent of N . On the other
hand, when k � 1 an asymptotic behavior is expected to arise
as |φ1(4, r

k+1 , kr
k+1 )〉 → |φ1(4,0,r)〉.

Furthermore, in Fig. 4 a significant dip in the logarithmic
negativity occurs for N = 2 and N = 4 in the (AB)1/2 − C1/2

and (AB)1/4 − C3/4 splittings, respectively (i.e., when AB is a
single mode). These dips are due to the single-mode terms,
( kN
k+1 − 1)

∑N
i=1 b̂i , in Eq. (13) decaying to zero when k =

1
N−1 . These single-mode terms affect the subsequent photon
subtraction operation and can increase gain [9]. The dip is

062303-5



LÉGER, BRODUTCH, AND HELMY PHYSICAL REVIEW A 97, 062303 (2018)

FIG. 4. Gain in entanglement for an N -mode state with squeezing
parameter r = 0.2, |φ1(N, 0.2

k+1 , k(0.2)
k+1 )〉, is plotted against k, the ratio

between the input squeezing parameter in mode â1 and squeezing
parameter in the N − 1 other modes. These single-mode squeezed
states are passed through directional couplers to generate CV GHZ
states, |φ0(N, 0.2

k+1 , k(0.2)
k+1 )〉, which see an enhancement in the entan-

glement after photon subtraction. In this figure, only the splitting of
the form (AB)i − Cj are considered, where mode A is assumed to
be the photon subtracted mode, while B and C are the groupings of
modes such that i and j in (AB)i and Cj represent the ratio of modes
contained in the given splitting. Bipartite splitting containing traced
out modes can been seen in Fig. 8 in Appendix C.

counteracted when other modes are grouped with the photon
subtracted mode, hence the lack of a dip in the gain in the
(AB)3/4 − C1/4 splitting. An important consequence of this
result is that as the number of modes is increased, 1

N−1 gets
smaller; therefore, the dip moves to smaller k as the number
of modes increases, enabling higher level entanglement to be
reached for smaller values of k.

Surprisingly, in the two-mode case, the gain is optimal when
k = 0 (i.e., a single source). Moreover, for four parties, at any
k > 0 there is at least one bipartition such that the gain in

entanglement will be smaller than the k = 0 case. However,
this is not generic since, for 4n modes, {n > 1,n ∈ Z}, there
are values of k > 0 such that the gain in entanglement surpasses
the one of k = 0 for all bipartite splitting of a four-party
scheme, demonstrating a definite increase in the multipartite
entanglement.

Since the gain depends on the partition, the optimal value of
k depends on the particular figure of merit. One optimal value
is the maximal gain for any bipartition (in this case at r =
0.2) given at N = 4, k ≈ 0.82 for (AB)1/2 − C1/2. A second
is the optimal gain region corresponding to the parameter space
where the multipartite entanglement enhancement achieved is
greater than that of a single source. A specific example for the
four-party case, that is when all possible bipartitions involving
at least 1/4 of the mode are considered, an optimal region for
r = 0.2, N = 8, was found in the range 0.21 � k � 0.33; for
our purposes k = 0.24 was chosen as an explicit example in
further plots.

By varying the number of modes, it becomes apparent that
the optimal value does not have to be very large and that the
gain is not monotonic in the number of modes. The gain as a
function of the number of modes is plotted in Fig. 5 (Fig. 9
for the partially traced state) for r = 0.2 and three values of
k = 0,0.24,0.82 corresponding to the single source state and
the two optimal values above.

B. Losses

In Sec. V A, EvPS was studied under ideal conditions under
the assumption that the main experimental constraint would be
in generating higher levels of squeezing. Realistically, the loss
would be another major factor in limiting entanglement of the
outgoing state. The effect of loss is considered on the CV GHZ
state before the photon subtraction operation, as seen in Fig. 2,
under the assumption that loss is equivalent for all modes. The
loss in each mode was simulated using a BS transformation
and an ancillary mode so that the state after the loss could be
explicitly written as

ρout = Tr1′ 2′ 3′ 4′

[
B̂11′ (θ )B̂22′(θ )B̂33′(θ )B̂44′(θ )

×
∣∣∣∣φ0

(
4,

0.2

k + 1
,
(0.2)k

k + 1

)〉〈
φ0

(
4,

0.2

k + 1
,
(0.2)k

k + 1

)∣∣∣∣
× B̂

†
11′ (θ )B̂†

22′(θ )B̂†
33′(θ )B̂†

44′(θ )

]
, (17)

where k = 0 or k = 0.82 as seen in Fig. 6, modes 1′, 2′, 3′,
and 4′ are the modes in which the losses are coupled, and the
loss parameter is given by l = sin2(θ ),θ ∈ [0, π

2 ].

As before, the photon subtracted state is aAρouta
†
A and gain

was calculated with respect to ρout. The results show that, in
this regime, the multiple source (k > 0) states can outperform
the single source (k = 0) states at the same settings as in the
lossless case. The gain after loss for N = 4 with a squeezing
parameter of r = 0.2 and the optimal value k = 0.82 (see
Fig. 4) and k = 0 are plotted in Fig. 6 (Fig. 10 for the partial
traced state). The gain is positive in the (AB)1/2 − C1/2 (for
the above values) for a loss parameter of up to l = 0.81, but
a positive gain in all splittings requires a loss parameter of
l � 0.36. Above that threshold, photon subtraction has the
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FIG. 5. Gain in entanglement of the photon subtracted state,
|φ1(N, r

k+1 , kr

k+1 )〉, is plotted as a function of the number of modes N

for values of k = 0, 0.24, and 0.82 (squares, triangles, and diamonds,
respectively; solid lines are only a guide to the eye). In each plot, mode
A is the photon subtracted mode, while B and C are the groupings of
modes such that i and j in (AB)i − Cj represent the ratio of modes
contained in the given splitting. Note that in plots (AB)1/4 − C3/4

and (AB)3/4 − C1/4 the number of modes N = 4n, while for the plot
(AB)1/2 − C1/2, N = 2n, where n ∈ N. All results are evaluated at
a squeezing parameter value of r = 0.2. In this figure, only the pure
state splittings are reviewed; for the full set of splittings Fig. 9 in
Appendix C can be consulted.

opposite effect, i.e., reducing entanglement. These values can
be compared with the single source case where corresponding
thresholds are l = 0.73 and l � 0.46, respectively.

VI. DISCUSSION AND CONCLUSION

Motivated by recent developments in the generation of
multimode squeezed states on chip, the performance of the
EvPS protocol was studied and compared on states generated
by photonic circuits with single and multiple squeezed inputs.

FIG. 6. Effects of loss on the gain in entanglement of the four-
mode CV GHZ state with squeezing parameter r = 0.2 and ratios
between squeezing parameters, k = 0.0, 0.82, and |φ1(4, 0.2

k+1 , k(0.2)
k+1 )〉,

are studied in this figure. The loss is considered to have been applied
after the generation of the CV GHZ state, but before the photon
subtraction, as shown in Fig. 2. In this figure, the mode A is the photon
subtracted mode and B and C are the groupings of modes such that
i and j in (AB)i and Cj represent the ratio of modes contained in a
splitting. Note that, for the k = 0 curve (dotted), N is not specified
since the single source case is independent of N .

The objective was to give preliminary answers to questions
related to practical experimental challenges. In particular, it
was of interest to find whether there is an advantage in using
multiple sources and if this advantage could be significant
even in the case where there are a few modes and/or when the
additional squeezed states have a smaller squeezing parameter.
These results show that, at least for the subsets of states under
consideration, the answer is yes; that is, there is a significant
advantage even when there are a few additional modes with
less squeezing at the inputs. Moreover, more is usually not
better, i.e., there is a finite number of modes that is optimal,
and the optimal squeezing ratio, k, is usually smaller than 1.
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The analysis was restricted to a subset of CV GHZ states
which could be generated by the circuit in Fig. 2. While this
design was chosen for its experimental feasibility, it could be
modified to generate any Gaussian state [41]; however, the
number of free parameters and the computational difficulty
would make the analysis for all Gaussian states difficult.
The particular three-parameter family studied for the state,
|φ0(N, r

k+1 , kr
k+1 )〉, is relatively simple to analyze due to the

equivalence discussed in Sec. IV A (see also Fig. 3). Moreover,
the free parameters represent the three main experimental
challenges: extending the number of modes N , increasing
squeezing in the externally pumped mode r/(k + 1), and
increasing the (relative) squeezing, k, in the self-pumped
modes. The results are promising on all fronts.

Entanglement in the initial state is independent of k, so the
relation between the squeezing values in mode â1 and the other
modes implies a trade-off between squeezing in the externally
pumped source and the self-pumped sources. For example, for
a fixed value of entanglement, it is possible to increase one
and decrease the other. However, there is an optimal value of
the ratio k for EvPS. Somewhat surprisingly, this value is not
k = 1 (see, for example, Fig. 4) and depends on the particular
bipartition which will ultimately depend on how the modes are
distributed between parties. The fact that the optimal value for k
could be small (see, for example, N = 16 in Fig. 4) means that
an advantage can be observed when the self-pumped sources
are significantly less powerful than the external source.

The advantage of the multiple source setup can be examined
through the circuit equality in Fig. 3. The additional squeezed
vacuum sources can be mapped to squeezers at the end of
the circuit. Although these local squeezers do not increase
the entanglement, they do have an effect on the subsequent
subtraction by inducing the mapping b̂A → b̂A cosh( kr

k+1 ) −
b̂
†
A sinh( kr

k+1 ). However, this mapping should be applied in
the same way to all operations following preparation and in
particular to loss between the sender and the receiver. As shown
in Sec. V B (see Figs. 6 and 10) the loss does not have a
significantly worse effect on EvPS when the k > 0.

One somewhat unexpected result is that the performance
does not increase monotonically with the number of modes,
and in fact for larger values of k it peaks at relatively low
N (see Fig. 5). Hence, in practice, it would be possible to
experimentally observe the advantages of the multiple source
protocol using relatively small devices. The technology to
implement the building blocks for such a device has already
been demonstrated (see [41] for review of recent results)
and demonstrations of such integrated devices should appear
shortly. Such a demonstration would provide further moti-
vation to study the advantages of using multiple squeezing
sources, beyond the EvPS protocol.
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APPENDIX A: CV GHZ STATES

The N mode symmetric splitter consisting of N − 1 direc-
tional couplers, as depicted in Fig. 2, is simpler to analyze

using the Bogoliubov transformation

(b̂1 . . . b̂N )
T = Ũ (N )(â1 . . . âN )T , (A1)

where Ũ(N ) is the unitary transformation corresponding to the
series of beam-splitter operations

Ũ(N ) = B̃N−1 N

(
arcsin

1√
2

)
. . . B̃12

(
arcsin

1√
N

)
. (A2)

To relate the interferometer transformation (A2) to the inte-
grated setting the general description of a directional coupler
can be found in [44], and its dispersion properties allowing
for quantum state engineering applications unavailable in bulk
optics can be found in [45,46]. Here the phase-free directional
coupler operation on two modes with respective annihilation
operators âi and âj is considered which follows the notation
convention from [26](

b̂i

b̂j

)
=
(

sin θ cos θ

cos θ − sin θ

)(
âi

âj

)
. (A3)

The matrix B̃ij (θ ) representing the mode transformation given
by the directional coupler is given by the identity matrix with
the elements Iii , Iij , Iji , and Ijj are replaced by the correspond-
ing entries of Eq. (A3). Alternatively, this transformation may
be written in the Heisenberg picture formulation of the beam
splitter which gives the transformation(

b̂i

b̂j

)
= B̂(θ )†

(
âi

âj

)
B̂(θ ), (A4)

where B̂(θ ) is the unitary given by

B̂(θ ) = exp
[(

θ − π

2

)
(â0â

†
1 − â

†
0â1)

]
. (A5)

Writing the input modes in terms of the output modes gives

⎛
⎜⎜⎜⎜⎜⎝

â1

â2

â3

. . .

âN−1

âN

⎞
⎟⎟⎟⎟⎟⎠ = Ũ−1(N )

⎛
⎜⎜⎜⎜⎜⎜⎝

b̂1

b̂2

b̂3

. . .

b̂N−1

b̂N

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b̂1+···+b̂N√
N

(N−1)b̂1−b̂2−···−b̂N√
(N−1)2+(N−1)

(N−2)b̂2−b̂3−···−b̂N√
(N−2)2+(N−2)

. . .
2b̂N−2−b̂N−1−b̂N√

6
b̂N−1−b̂N√

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A6)

Note that the relation between the Heisenberg picture
operator Û (N ) and the Bogoliubov transformation Ũ (N ) can
be obtained through

(b̂1 . . . b̂N )
T = Û †(N )(â1 . . . âN )T Û (N ) (A7)

and one can replace the Ũ and B̃’s with Û and B̂’s in (A2) to
obtain the explicit formulation in this picture.

Unitary equivalence between |φ0〉 and |ψ0〉
To derive (14) in the main text, the final state can be written

in terms of the output b̂i and b̂
†
i operators and through the use

of the Baker-Hausdorf-Campbell theorem the local squeezing
terms can be isolated. This is possible through the commutation
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relation⎡
⎣( N∑

i=1

xb̂2
i

)
− H.c.,

⎛
⎝ N∑

i>j

yb̂i b̂j

⎞
⎠− H.c.

⎤
⎦

= 2
N∑

i=1

xb̂i

⎛
⎜⎝ N∑

j=1
j =i

yb̂
†
j

⎞
⎟⎠− 2

N∑
i=1

xb̂
†
i

⎛
⎜⎝ N∑

j=1
j =i

yb̂j

⎞
⎟⎠ = 0, (A8)

for x,y ∈ R.
Applying the result of Eq. (A6) to transform (12) and

inserting r1 = r
k+1 ,r2 = kr

k+1 gives∣∣∣∣φ0

(
N,

r

k + 1
,

kr

k + 1

)〉
= eV −V † |vac〉 (A9)

with

V = −r

2(k + 1)

(∑N
k=1 b̂k

)2
N

+ kr

2(k + 1)

N−1∑
l=1

[
(N − l)b̂l −∑N

j=l+1 b̂j

]2

(N − l)2 + N − l
, (A10)

which can be simplified using

N−1∑
l=1

[
(N − l)b̂l −∑N

j=l+1 b̂j

]2

(N − l)2 + N − l

=
(

1 − 1

N

) N∑
l=1

b̂2
l − 2

N

N∑
l=1

∑
j>l

b̂j b̂l . (A11)

Inserting the above back into (A10) isolates the terms that are
independent of k which commute with the rest of the k [see
Eq. (A8)] and the state can be brought into the final form,∣∣∣∣φ0

(
N,

r

k + 1
,

kr

k + 1

)〉

=
[

N∏
l=1

Ŝl

(
kr

k + 1

)]
Û(N )Ŝ1(−r)|vac〉

=
[

N∏
l=1

Ŝl

(
kr

k + 1

)]
|ψ0(N,−r)〉. (A12)

Allowing for the simplification of the photon subtracted state∣∣∣∣φ1

(
N,

r

k + 1
,

kr

k + 1

)〉

= b̂A

[
N∏

l=1

Ŝl

(
kr

k + 1

)]
|ψ0(N,−r)〉

=
N∏

l=1

Ŝl

(
kr

k + 1

)[
b̂A cosh

(
kr

k + 1

)

−b̂
†
A sinh

(
kr

k + 1

)]
|ψ0(N,−r)〉, (A13)

where A is the photon subtracted mode.

FIG. 7. Logarithmic negativity of the single photon subtracted CV
GHZ state, âA|φ0(N, r

k+1 , kr

k+1 )〉 ≡ |φ1(N, r

k+1 , kr

k+1 )〉, is contrasted to
that of the CV GHZ state before photon subtraction, |φ0(N, r

k+1 , kr

k+1 )〉,
when k takes on the optimums found in Fig. 4 for when N = 2, 4,

and 8, and is plotted against the squeezing parameter, r . In this figure,
the logarithmic negativity of all possible splittings are considered and
mode A is assumed to be the photon subtracted mode, while B and C

are the groupings of modes such that i and j in (AB)i and Cj represent
the ratio of modes contained in the given splitting. Note that, for the
k = 0 curve (dotted), N is not specified since the single source case
is independent of N .

The equivalence in logarithmic negativity can be seen in
Fig. 7 by noting that the curves plotting logarithmic negativity
before photon subtraction (solid lines) are all overlapping;
however, the photon subtraction operation exhibits different
behaviors depending on the value of k and N .

It is also worth noting that as r → 0 the logarithmic
negativity of the state before photon subtractions tends to zero,
while the state after photon subtraction tends to values larger
than zero. This is understood with our analysis in Eq. (6), while
noting that, although the gain would be large, the probability
of a successful detection would be too low to be practical.
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APPENDIX B: LOGARITHMIC NEGATIVITY

The logarithmic negativity is defined as the base two
logarithm of the sum of the absolute value of the eigenvalues
of ρTA , where ρTA is the partial transpose with respect to a
subsystem A of the density matrix, ρ. Using the trace norm of
a Hermitian operator, defined as ||A||1 ≡ Tr

√
A†A [21], gives

EN (ρ) ≡ log2 ||ρTA ||1. (B1)

Since ρTA = (ρTB )T and the eigenvalues of matrices A and
AT are the same, ||ρTA ||1 = ||ρTB ||1, it follows that EN (ρ) is
uniquely defined for any given bipartition of a given density
matrix, ρ. Furthermore, a fully separable state can always be
written such that the elements ρij = 0, when i = j and since
||ρTA ||1 = 1, meaning that EN (ρ) = 0 for any nonentangled
state.

When considering multiple parties, one way to classify the
entanglement is to look at every bipartite splitting of the system
[38]. For example, in a four-mode entangled state, ρ1234, there
are 25 inequivalent measures of entanglement which can be
calculated, four of which can be found by considering the
splitting 1 − 234 and its permutation, three others can be
found by looking at the 12 − 34 splitting and its permutations,
12 different measures exist when looking at Tr(1)2 − 34 and
permutations, and finally six other measures are seen when we
consider the splitting Tr(12)3 − 4 and its permutations. The
logarithmic negativity of a splitting like 1 − 234 quantifies
the strength of the correlations between party 1 and the three
other parties as a whole. Then, after observing all splittings,
one can say that the multipartite entanglement has increased
if the logarithmic negativity has increased in every individual
splitting [21].

One should note that although these measures are inde-
pendent of each other since a partial trace is part of LOCC,
the logarithmic negativity under such an operation can only
decrease, meaning that there is an underlying hierarchy in such
splittings [21]. Namely,

EN (ρ123−4) � EN (ρTr(1)23−4) � EN (ρTr(12)3−4), (B2)

and similarly for other splittings [21,38].

APPENDIX C: TRACES

In this section, the splittings where certain modes are traced
out will be considered. To achieve this extension, Eq. (16) also
needs to be extended to four modes. Hence, using Eq. (A13),
it can be seen that∣∣∣∣φ1

(
N,

r

k + 1
,

kr

k + 1

)〉

=
N∏

l=1

Ŝl

(
kr

k + 1

)[
b̂A cosh

(
kr

k + 1

)
− b̂

†
A sinh

(
kr

k + 1

)]

× exp

⎡
⎣−r

2

(
b̂A+√

n − 1b̂B + √
mb̂C + √

lb̂D√
N

)2

−H.c.

⎤
⎦

× |vac〉A,B,C,D, (C1)

FIG. 8. Extension of Fig. 4 for all bipartite splittings. The gain in
entanglement for the N -mode state with squeezing parameter r = 0.2,
|φ1(N, 0.2

k+1 , k(0.2)
k+1 )〉, is plotted against k, the ratio between the input

squeezing parameter in mode â1 and the squeezing parameter from
the other N − 1 single-mode squeezed vacuum (SMSV) inputs. These
SMSV states are passed through directional couplers used to generate
a CV GHZ state, |φ0(N, 0.2

k+1 , k(0.2)
k+1 )〉, which sees an enhancement in

the entanglement after photon subtraction. In this figure mode A is
assumed to be the photon subtracted mode, while B and C are the
groupings of modes such that i and j in (AB)i and Cj represent the
ratio of modes contained in the given splitting.

where b̂B = b̂i1 +···+b̂in√
n

, b̂C = b̂j1 +···+b̂jm√
m

, and b̂D = b̂k1 +···+b̂kp√
p

,
such that n + m + p + 1 = N . Also, i1, . . . ,in, j1, . . . ,jm, and
k1, . . . ,kp are any orderings of the N − 1 remaining modes
once the photon subtracted mode, A, has been chosen.

Now the completed version of the plots discussed in the
body of this work can be presented. To start off, Fig. 8
expends upon Fig. 4, and it is by observing the former of
these two figures that it can be seen that when N = 8 and
k ∈ [0.21,0.33] the multipartite entanglement of a four-party
scheme is higher than that of a single source, i.e., k = 0.
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FIG. 9. Extension of Fig. 5 for all bipartite splittings. The gain
in entanglement of the photon subtracted state, |φ1(N, r

k+1 , kr

k+1 )〉, is
plotted as a function of the number of modes N for values of k = 0,
0.24, and 0.82 (squares, triangles, and diamonds, respectively; solid
lines are only a guide to the eye). In each plot, mode A is the photon
subtracted mode, while B and C are the groupings of modes such that
i and j in (AB)i − Cj represent the ratio of modes contained in the
respective splitting. Note that, for the plot (AB)1/2 − C1/2, the number
of modes N = 2n, while in all other plots, N = 4n, where n ∈ N. All
result are evaluated at a squeezing parameter value of r = 0.2.

Similarly, when N = 4, the logarithmic negativity of the single
source in the (AB)1/4 − C3/4 is only surpassed when k � 1.02,
while for the Tr((AB)1/2)C1/4 − D1/4 splitting it is needed
that k � 1.01, meaning that there is no situation where the
multipartite entanglement is universally better than that of a
single source, but significant improvement can be seen in any
given splitting using multiple sources.

The whole set of splitting for Fig. 5 is continued in Fig. 9,
which helps complete the general trend that, as k decreases,

FIG. 10. Extension of Fig. 6 for all bipartite splittings. The effects
of loss on the gain in entanglement of the four-mode CV GHZ state
with squeezing parameter r = 0.2 and the ratios between squeezing
parameters, k = 0, 0.82, and |φ1(4, 0.2

k+1 , (0.2)k
k+1 )〉. The loss is considered

to have been applied after the generation of the CV GHZ state, but
before the photon subtraction, as shown in Fig. 2. In this figure, the
mode A is the photon subtracted mode, B and C are the groupings
of modes such that i and j in (AB)i , and Cj represents the ratio
of modes contained in a splitting. Note that, for the k = 0.0 curve
(dotted), N is not specified since there is only a single source; hence
it is independent of N .

the higher is the number of modes, N , needed to have an
improvement in the four-party multipartite entanglement.

Finally, Fig. 6 is completed in Fig. 10. It can be seen in
the latter figure that, in the Tr(D1/2)(AB)1/2 − C1/4 splitting,
the loss for the N = 4, k = 0.82 curve (dashed) decays quite
rapidly making its four-party multipartite entanglement more
susceptible to loss. However, its bipartite entanglement in the
(AB)1/2 − C1/2 splitting is still at an advantage.
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