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Physical implementations of quantum information processing devices are generally not unique, and we are
faced with the problem of choosing the best implementation. Here, we consider the sensitivity of quantum devices
to variations in their different components. To measure this, we adopt a quantum metrological approach and find
that the sensitivity of a device to variations in a component has a particularly simple general form. We use
the concept of cost functions to establish a general practical criterion to decide between two different physical
implementations of the same quantum device consisting of a variety of components. We give two practical
examples of sensitivities of quantum devices to variations in beam splitter transmittivities: the Knill-Laflamme-
Milburn (KLM) and reverse nonlinear sign gates for linear optical quantum computing with photonic qubits, and
the enhanced optical Bell detectors by Grice and Ewert and van Loock. We briefly compare the sensitivity to the
diamond distance and find that the latter is less suited for studying the behavior of components embedded within
the larger quantum device.
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I. INTRODUCTION

Quantum technologies promise dramatic improvements in
computation, sensing, and communication, and many efforts
are under way to develop it into a mature technology. One
of the general challenges is that quantum devices typically
need to be extraordinarily precise. We know from quantum
fault tolerance theory that models with uncorrelated gate,
propagation, and measurement errors may have an error rate
of 0.75% per element [1], and it is not known whether more
forgiving thresholds exist for equally realistic error models.
The tolerances in quantum communication devices are likely
less severe, but quantum sensing models are again known to
be very susceptible to imperfections in the implementation [2].
This means that these quantum devices must be fabricated to
a very high standard.

The precision of a device is usually specified in terms
of the fidelity, which measures how much the actual output
state of a device deviates from the intended (ideal) output
state. In cases where the ideal output state is pure, the fidelity
can be interpreted as the probability of mistaking the actual
output state for the ideal output state [3]. It was shown by
Myerson et al. that a single-shot readout of a qubit in an ion
trap can be read out with 99.99% fidelity [4], and single- and
two-qubit gates can achieve fidelities of 99.99% and 99.9%,
respectively [5]. In other implementations, similar fidelities
have been achieved [6]. A general method for calculating the
fidelity of quantum operations was given by Pedersen et al.
[7], and there is a sizable literature on measuring deviations
from ideal operations using various mathematical techniques
[8–10]. However, it was pointed out among others by Sanders
et al. [11] that the average gate fidelity is problematic when
it comes to assessing the quality of a quantum gate for

*p.kok@sheffield.ac.uk

quantum computing. They show that the gate error rate can be
dramatically higher than the fault tolerant threshold even when
the average gate fidelity is 99%. In other words, the average
gate fidelity is too optimistic. Even when fault tolerance is not
our main concern, such as in various quantum communication
protocols, the average gate fidelity may not be the most suitable
figure of merit.

There are often multiple ways to implement a device, some-
times with dramatically different susceptibilities to variations
in the device’s components [12]. Given additional constraints
such as costs, it is not clear a priori how an array of fidelities
associated with different component variations should be com-
bined into a single number that can be used to identify the best
way to implement the device. Another technical complication
is that the fidelity is a function of device parameters, rather
than a single number. In order to obtain a meaningful value
for the fidelity, we must choose some nonzero deviation of
the device parameters since for zero deviations the fidelity
will by definition be equal to unity. This choice of deviation
introduces a level of arbitrariness into the metric that we wish
to avoid. Instead, we want a single number for each component
(operating perfectly) that indicates the sensitivity of the device
to deviations in that component.

In this paper, we propose a method for testing the sensitivity
of quantum devices that is not based on the fidelity. We use a
method from quantum metrology to approach this problem,
where the output state of the quantum device carries infor-
mation about the characteristics of the device’s components.
This leads to the definition of the sensitivity of the device to
variation in a component, and for a multicomponent device
we obtain a sensitivity matrix. Together with a cost function
for the different components, this sensitivity matrix provides a
clear metric for the performance of different architectures for
the same quantum device.

This paper is organized as follows: In Sec. II we introduce
the sensitivity for a device component. To realize this, we
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FIG. 1. Decomposition of a quantum device into unitary compo-
nents, specifically highlighting the componentuj . The horizontal lines
may be qubits or optical modes, depending on the implementation.
(a) A gate |ψout〉 = Ug |ψin〉 with input state |ψin,A〉 and postselected
on a projection on |D〉; (b) a quantum measurement device that has
no output state, but gives a classical output “m,” indicated by the state
|Dm〉. Entangling the input |ψin〉 with an auxiliary system prior to the
device’s operation (|�in〉) allows us to apply the techniques for (a) to
measurements.

divide quantum devices into two categories, namely, gates
and measurement devices. The latter differs from the former
in that there is no output state to the device. In Sec. III we
demonstrate how the sensitivity works for two incarnations of
the nonlinear sign gate in linear optical quantum computing
[12,13], and for two implementations of the enhanced optical
Bell measurement [14,15]. In Sec. IV we bring together the
sensitivities for different components into a single metric that
tests different implementations of a quantum device. In Sec. V
we briefly comment on the relation between our sensitivity and
the diamond norm. We conclude our discussion in Sec. VI.

II. DEFINING THE SENSITIVITY FOR COMPONENTS
OF QUANTUM DEVICES

We wish to consider the component sensitivity of two kinds
of quantum devices. First, we consider quantum gates that
have an input and an output, and which may be based on
postselection of auxiliary quantum systems (e.g., qubits or
photons). This situation is depicted in Fig. 1(a). As an example
of this type of device, we consider the nonlinear sign gate
of linear optical quantum computing with photonic qubits
[12,13]. Second, we consider complex detection devices that
use quantum gates to implement the desired observable. In
this situation there is no surviving quantum state that can be
used to track variations in components. To remedy this, we use
entangled input states that allow us to define the action of a
measurement in terms of a surviving quantum state [16]. This
situation is depicted in Fig. 1(b). As an example of this type of
device, we consider enhanced Bell measurements [14,15].

A. Quantum gates

Consider a quantum gate g described by the unitary evolu-
tion |ψout〉 = Ug |ψin〉, where the evolution can be postselected

using an auxiliary input state |A〉 and a detected state |D〉 (see
Fig. 1). The detected state may be one of a family of states
that herald a successful gate. The intervening evolution can
often be decomposed in terms of N smaller unitary operations
U = ∏N

j=1 uj . These uj are the physical components of the
quantum device generated by a Hamiltonian Hj :

uj = exp(−iθjHj ), (1)

with θj the component parameter whose value determines the
gate operation. In general, the practical gate operation is more
accurately described by a completely positive map that allows
for imperfections in the device, but here we are interested in
the ideal device and how deviations in the components affect
the gate. While a more general discussion is certainly possible,
it would also obscure some of the more intuitive aspects of this
work.

After normalization, the output of the device can be written
as

|ψout〉 = 1√
p

〈D|U |ψin,A〉, (2)

wherep = ||〈D|U |ψin,A〉||2 is the probability of success of the
quantum device that implements the operation Ug . Suppose we
are interested in the j th component of the device, denoted by
uj . Define

Vj =
j−1∏
k=1

uk and Wj =
N∏

k=j+1

uk. (3)

Then we can decompose the output state as [see Fig. 1(a)]

|ψout〉 = 1√
p

〈D|WjujVj |ψin,A〉. (4)

We can treat the sensitivity of the device to variations in uj as an
estimation problem of the parameter θj that characterizes the
component uj . To this end we use the output state |ψout〉 as the
basis for the estimation procedure. This state is already post-
selected on the correct measurement outcome �D ≡ |D〉 〈D|.
This is consistent with the operation of the gate, where the
quantum computer trusts that upon getting the measurement
outcome “D” the gate does what it is supposed to do.

Fortunately, we do not explicitly have to perform a com-
plicated estimation procedure. Instead, we can calculate the
average amount of information about θj that is contained in
the output state |ψout〉. If the output state is very sensitive to
variations in θj (the aspect we are trying to capture), then it
must by definition vary strongly when the value of θj changes.
The variation of the output state with θj is quantified by the
quantum Fisher information I

(j )
Q , according to [17]

I
(j )
Q = 〈∂jψout|∂jψout〉 − |〈ψout|∂jψout〉|2, (5)

where ∂j is the partial derivative with respect to θj . When we
define

|φin〉 = ujVj |ψin,A〉 and |φout〉 = W
†
j |ψout,D〉 , (6)

the derivative of the output state is compactly written as

|∂jψout〉 = −i√
p

〈D|WjHj |φin〉 + 1

2
(∂j ln p) | ψout〉, (7)
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where Hj is the generator of translations in θj . We can then
explicitly calculate the quantum Fisher information. First we
calculate

〈∂jψout|∂jψout〉 = 1

p
||〈D|WjHj |φin〉||2 + 1

4
(∂j ln p)2

− ∂j ln p√
p

Im 〈φin|Hj |φout〉, (8)

and

〈ψout|∂jψout〉 = −i√
p

〈φout|Hj |φin〉 + 1

2
(∂j ln p). (9)

From this, we find that

I
(j )
Q = 1

p
||〈D | WjHj | φin〉||2 − 1

p
|〈φout | Hj | φin〉|2. (10)

We can clean up this expression by inserting a resolution of
the identity I = |ψout〉 〈ψout| + ∑

k |k〉 〈k| in the first term of
I

(j )
Q , where the orthonormal states |k〉 complete |ψout〉 to form

an orthonormal basis of the output Hilbert space. We find that

I
(j )
Q = 1

p

∑
k

|〈φk | Hj | φin〉|2, (11)

where we defined |φk〉 ≡ W
†
j |k,D〉. We can understand this

expression as the quadratic sum over the weak values of the
generator Hj given the input state |ψin,A〉 and the output
states |k,D〉 that are orthogonal to the intended output state
|ψout,D〉. The success probability p of the quantum device
is a common factor in I

(j )
Q and does not play a role in

the determination of the component sensitivity of a device
(although it is important to include this factor when comparing
the sensitivity of components in different devices with different
p). In general, p changes when the component uj changes, and
this can in principle be used in an estimation procedure of θj .
However, we postselect the state on the detection outcome �D ,
which means we have already discarded the information about
the success rate of the quantum device. This is consistent with
the normal operation of the gate Ug .

The sensitivity Sj of the quantum device to components uj

can now be defined as

Sj ≡
∑

k

|〈φk|Hj |φin〉|2. (12)

While this is an elegant theoretical expression that gives a
clear intuitive meaning for Sj , for practical purposes it may
be beneficial to express Sj instead as

Sj = 〈φin|HjKDHj |φin〉 − | 〈φout|Hj |φin〉 |2, (13)

using KD = W
†
j (I ⊗ �D)Wj . This expression does not require

the construction of the complementary basis states |k〉. It also
holds for gates that rely on higher rank postselection described
by projectors �D , such as, for example, the double heralding
procedure for creating entangled networks [18].

To determine a general, non-state-specific sensitivity of
a device, we can average Sj over all possible input states.
Alternatively, we can take as a standard input state an equal
superposition of the eigenstates of Ug , which is computation-
ally much more straightforward.

B. Quantum measurement devices

Next, we consider quantum measurement devices, as shown
in Fig. 1(b). The situation is slightly more complicated than
the sensitivity for gate components, since there are typically
multiple detection outcomes m, corresponding to projections
onto |Dm〉 (which in turn are generally projections onto a
subspace of the output space). The corresponding surviving
quantum state |ψ (m)

out 〉 is defined by∣∣ψ (m)
out

〉 = 1√
pm

〈Dm|U |�in,A〉, (14)

where the input state |�in〉 is a maximally entangled state that
allows us to relate the measurement outcome to an output state
that can be used to define the sensitivity:

|�in〉 = 1√
d

∑
k

| Bk,Bk〉, (15)

with d the dimension of the input state space of the measure-
ment device. The states |Bk〉 are the orthonormal eigenstates
of the observable measured in the measurement device [16].

To calculate the sensitivity of the j th component of the
measurement device, parametrized by θj , we again calculate
the quantum Fisher information of θj in the output state |ψ (m)

out 〉.
Clearly, this will be different for different outcomes m, and
we define the quantum Fisher information I

(j,m)
Q for each

component j and measurement outcome m. The total quantum
Fisher information for the j th component is then the weighted
sum over all measurement outcomes,

I
(j )
Q =

∑
m�=mf

pm I
(j,m)
Q . (16)

One subtlety that we encounter in the next section is that
sometimes there are outcomes mf of the measurement de-
vice that indicate the measurement has failed to produce a
useful outcome. There may still be information in |ψ (m)

out 〉, but
since these outcomes (and any postselection based on these
outcomes) are discarded in normal operation of the device,
deviations in |ψ (mf )

out 〉 have no effect on the device operation and
we must not include I

(j,mf )
Q in the calculation of the sensitivity.

Proceeding with the calculation of I
(j,m)
Q , we use that

I
(j,m)
Q = 〈

∂jψ
(m)
out

∣∣ ∂jψ
(m)
out

〉 − ∣∣〈ψ (m)
out

∣∣ ∂jψ
(m)
out

〉∣∣2
. (17)

Following the same method as in the previous section, we find
that

I
(j,m)
Q = 1

pm

〈φin | HjW
†
j (�m ⊗ I)WjHj | φin〉

− |〈φ(m)
out

∣∣Hj | φin〉|2, (18)

where �m is the projector onto the subspace associated with
the state |Dm〉, which may have rank greater than 1, and the
states |φ(m)

out 〉 and |φin〉 are defined as

|φin〉 = ujVj |�in,A〉 and
∣∣ψ (m)

out

〉 = W
†
j

∣∣ψ (m)
out ,Dm

〉
. (19)

The unitary evolutions uj , Vj , and Wj are defined as in
Fig. 1(b). We can insert a resolution of the identity into the
first term:

I = ∣∣ψ (m)
out

〉 〈
ψ

(m)
out

∣∣ +
∑

k

∣∣ξ (m)
k

〉 〈
ξ

(m)
k

∣∣ , (20)
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for some orthonormal set {|ξ (m)
k 〉} that spans the subspace I −

|ψ (m)
out 〉 〈ψ (m)

out |, and this leads to

I
(j,m)
Q = 1

pm

∑
k

∣∣〈φ(m)
k | Hj | φin

〉∣∣2
, (21)

with |φ(m)
k 〉 = W

†
j |ξ (m)

k ,Dm〉. The sensitivity then becomes

Sj =
d−1∑
k=1

∑
m�=mf

∣∣〈φ(m)
k

∣∣Hj

∣∣φin
〉∣∣2

=
d−1∑
k=1

∑
m�=mf

〈φin|Hj (�̃m ⊗ I)Hj |φin〉 , (22)

where �̃m ≡ W
†
j �mWj . Two explicit examples of the beam

splitter sensitivity of optical Bell measurements are given in
Sec. III B.

One may notice that the sensitivity, as measured by the
quantum Fisher information, carries units of the inverse square
of θj . When the θj refer to different components in a device,
these units may be different, and a straight comparison will
not be possible. Indeed, this is a key problem in constructing
a single metric for different implementations of a quantum
device, and we return to this issue in Sec. IV.

C. Variations in sources and detectors

The discussion so far has been restricted to unitary elements
in a quantum device, but in practice we also have to include
variations in the auxiliary input states and the detectors. These
can be included as unitary evolutions also. For example, an
auxiliary input state |A〉 may be transformed into a different
input state |A(θA)〉 according to a unitary evolution

|A(θA)〉 = uA(θA) |A〉 (23)

with

uA(θ) = exp

(
− i

h̄
HA · θA

)
, (24)

where θA is a vector of parameters associated with the
evolution from |A〉 to |A(θA)〉 generated by HA. In the ideal
case, θA = 0 and we recover the original auxiliary state. The
sensitivity of the device to the auxiliary input state with respect
to a particular variation θA,j , the j th entry of θA, is then defined
as

SA,j = 〈ψin,A|HA,jU
†(I ⊗ �D)UHA,j |ψin,A〉, (25)

where HA,j is the j th entry of HA, and U = WjujVj is the
unitary evolution defined in Eq. (2) and Fig. 1. Often, a physical
imperfection in the source will lead to auxiliary input states that
are mixed. However, due to the convex nature of the quantum
Fisher information, we need only consider the effect of unitary
deviations from the pure ancilla state.

Similarly, for imperfect detectors there is a way of calculat-
ing the sensitivity using the technique developed above. In the
most general terms, an imperfect detector does not measure
the exact observable MD , but instead some rotated observable

MD(θD) = uDMDu
†
D, (26)

where uD = exp(−i HD · θD/h̄) is the unitary evolution that
rotates the eigenbasis of MD to the eigenbasis of MD(θD). The
sensitivity of the device to detector imperfections with respect
to a particular variation θD,j is then defined as

SD,j = 〈ψin,A|U †(I ⊗ HD,j�DHD,j )U |ψin,A〉, (27)

where HD,j is the j th entry of HD . This allows for a
complete analysis of which variations in the observable are
most detrimental to the device operation.

D. Stochastic noise

So far, we have considered sensitivities to systematic errors
in the device components. A natural question is whether we can
include stochastic noise in the analysis of our quantum devices.
Stochastic noise models generally describe the situation where
some of the parameters θj are fluctuating over time, rather than
offset by some amount from the ideal value. It is important to
note that the sensitivity defined here is an intrinsic property of
each device component and does not change with the type of
deviation from the ideal values of the parameters, systematic or
stochastic. Therefore, the device component analysis presented
in this section is complete. The different types of errors and
noise that a device exhibits is included instead in the metric
used to decide between implementations. We return to this
aspect in Sec. IV.

III. EXAMPLES

To demonstrate the sensitivity measure, we consider several
examples. We calculate the sensitivities to variations in the
beam splitters in nonlinear sign (NS) gates for photonic linear
optical quantum computing. These devices fall in the category
of quantum gates. Next, we calculate the sensitivities to varia-
tions in the beam splitters in two types of optical Bell detectors,
which fall in the category of quantum measurement devices.
We compare the sensitivities to the device fidelity in order to
show that the sensitivity behaves as expected. The dependence
of optical gates on their constituent optical components has
been studied before [19–25], but to our knowledge a unifying
model for comparing implementations in arbitrary quantum
device architectures has not yet been proposed.

A. The nonlinear sign gate in LOQC

The NS gate is a key component in the original proposal
for linear optical quantum computing with photonic qubits by
Knill, Laflamme, and Milburn in 2001 [13]. It is a probabilistic
gate that implements the unitary evolution

α |0〉 + β |1〉 + γ |2〉 → α |0〉 + β |1〉 − γ | 2〉, (28)

with |n〉 denoting single-mode optical Fock states. The success
probability is one-quarter, and there are several inequivalent
ways to implement the NS gate, two of which are shown in
Fig. 2. The beam-splitter values in the two implementations are
different, and we reported in Ref. [12] that the gate operation
in the presence of variations in the beam splitter reflectivities
depends strongly on the implementation.

For both the KLM and reverse NS gate we choose the
following description of the beam-splitter operation acting on
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KLM NS Gate
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1

0 BS1

BS2

BS3

Reverse NS Gate

in out
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FIG. 2. The nonlinear sign (NS) circuit for linear optical quantum
computing. There are multiple versions of this circuit that are equiv-
alent in terms of the success probability, number of optical elements,
auxiliary photons, and detectors, but they exhibit inequivalent behav-
ior in the presence of variations in the components. Here, we consider
the Knill-Laflamme-Milburn (KLM) NS gate (top) introduced in
Ref. [13], and the reverse NS gate (bottom) introduced in Ref. [12].

modes a1 and a2:(
b̂1

b̂2

)
=

(
cos θ sin θ

− sin θ cos θ

)(
â1

â2

)
, (29)

where hats denote mode operators and θ is the defining
parameter of the beam splitter. For the KLM NS gate, the three
beam-splitter parameters θj are

θ1 = arccos

(
1

4 − 2
√

2

)
,

θ2 = arccos(3 − 2
√

2), (30)

θ3 = −θ1,

whereas for the reverse NS gate, the three beam-splitter
parameters ξj are

ξ1 = arctan( 4
√

8), ξ2 = π − arctan

(√
16

√
2 − 13

7

)
,

ξ3 = −ξ1. (31)

Both implementations use the same number of auxiliary
photons and detections.

We calculate the sensitivity of the two NS gates to the
various beam splitters. The results are shown in Fig. 3. Clearly,
the sensitivity to variations in BS2 in the KLM NS gate is much
greater than the sensitivity to variations in BS1 and BS3. This
is reflected in the average fidelity of the output state of the
KLM NS gate. By contrast, the sensitivity to variations in BS2
in the reverse NS gate is much smaller than the sensitivity
to variations in BS1 and BS3. Again, this is borne out in the
average fidelities of the output state of the reverse NS gate.

FIG. 3. Sensitivities SKLM and SReverse of the beam splitters in the
KLM NS gate (top) and the Reverse NS gate (bottom), averaged
over all input states. The units along the vertical axis are technically
rad−2, but are not important for the comparison of similar components
in a gate. These results are consistent with the detailed analysis in
Ref. [12].

B. Enhanced linear optical Bell state detectors

Optical Bell measurements are an important tool in optical
quantum information processing. They are used in a variety of
applications, including teleportation [26–28], optical quantum
computing [29], and quantum repeater proposals [30–32].
Originally, the optical Bell detector was introduced by We-
infurter [33] and Braunstein and Mann [34], and both schemes
have a success probability of one-half. In particular, these Bell
detectors are capable of identifying the Bell states

|�±〉 ≡ |H,V 〉 ± |V,H 〉√
2

, (32)

while they are completely incapable of distinguishing between
the Bell states

|±〉 ≡ |H,H 〉 ± |V,V 〉√
2

, (33)

where |H 〉 and |V 〉 denote horizontally and vertically polarized
photons, respectively. It was proved by Vaidman and Yoran
[35] and Lütkenhaus et al. [36] that optical Bell detectors
without auxiliary photons have an upper bound of one-half on
the success probability. This severely increases the overhead of
any practical application relying on these Bell detectors, since
provisions must be made to ensure a failed Bell measurement
does not negatively affect the operation of the quantum device
(e.g., see the solution provided by the original proposal for
linear optical quantum computing by Knill, Laflamme, and
Milburn [13]).

A modification of the optical Bell detector was proposed
by Grice [14], and Ewert and van Loock [15], who suggested
employing auxiliary photons to help distinguish between the
remaining Bell states |±〉. They showed that using one or two
photon pairs increases the success probability to three quarters,
and, more generally, the use of n photons leads to a success
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Ewert & van Loock Bell Detector

aux in

aux in
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in

D1

D2

D3

D4

BS1

BS2

BS3

a

b

c

d

FIG. 4. The entanglement-assisted Bell detection circuits of Grice
(top) and Ewert and van Loock (bottom). The Grice detector takes
as input two photonic polarization qubits and a polarization Bell
state (|H,H 〉 + |V,V 〉)/√2 in the auxiliary input. Every mode car-
ries a polarization degree of freedom. The Ewert–van Loock Bell
detector operates on dual-rail photonic qubits with auxiliary input
states (|2,0〉 + |0,2〉)/√2, but here we translated it to a polarization
implementation: each mode carries a polarization degree of freedom.
In this paper we consider only the sensitivity of the Bell detection
circuits to beam-splitter variations.

BS1 BS2

BS3 BS4

0

2

4

6
SGBD

Grice Bell Detector

FIG. 5. The beam-splitter sensitivities of the Bell detection cir-
cuits of Grice, compared with the fidelities for the different beam-
splitter variations. Beam splitters BS1 and BS2 are entirely equivalent,
as are BS3 and BS4. The sensitivities for BS1 and BS2 are 5.2, while
the sensitivities for BS1 and BS2 are 3.4. The fidelities (right) reflect
this sensitivity.

probability of

pGrice(n) = 1 − 1

n + 2
and pEvL(n) = 1 − 1

2n/2
.

The circuits for the Grice and Ewert–van Loock Bell detectors
using two and four auxiliary photons, respectively, are given
in Fig. 4. To obtain a success probability of three-quarters, the
Grice circuit requires a two-photon input state of the form

|+〉 = |H,H 〉 + |V,V 〉√
2

, (34)

while the Ewert–van Loock circuit requires two two-photon
input states in modes c and d of the form

|ϒ〉 = |2H 〉 + |2V 〉√
2

. (35)

Note that while the Ewert–van Loock circuit requires twice
as many auxiliary photons to achieve the same success prob-
ability of three-quarters as Grice’s circuit, for higher success
probabilities the Ewert–van Loock family of circuits is more
efficient.

We calculate the sensitivity of the beam splitters in the Grice
circuit, shown in Fig. 5. We choose as input to the quantum
measurement device in Fig. 1(b) the state

|�in〉 = 1
2 |+,+〉 + 1

2 |−,−〉 + 1
2 |�+,�+〉

+ 1
2 | �−,�−〉, (36)

and we calculate the fidelity of the output state of the device
with the expected Bell state due to the measurement outcome.
The first two beam splitters that the input photons encounter
(BS1 and BS2) exhibit a significantly lower sensitivity than the
last two beam splitters (BS3 and BS4). This is corroborated by
the fidelity of the output state.

For the Ewert–van Loock circuit we perform similar cal-
culations, with the same input state in Eq. (36), and we find
that it is the first beam splitter (BS1) that exhibits the greatest
sensitivity. As expected, due to the symmetry of the circuit,
beam splitters BS2 and BS3 have the same sensitivity. The
fidelity plots again confirm the sensitivities (see Fig. 6).

It is tempting to make a judgment, based on the above
analysis, of which NS gate or Bell detector is more suitable for
implementation. However, in our examples we have considered

BS1

BS2 BS3

0

3

6

9

12

SEvL
Ewert & van Loock

FIG. 6. The beam-splitter sensitivities of the Bell detection cir-
cuits of Ewert and van Loock, compared with the fidelities for the
different beam-splitter variations. Beam splitters BS2 and BS3 are
equivalent. The sensitivity for BS1 is 12, while the sensitivities for
BS2 and BS3 are 3.6. Again, the fidelities (right) reflect this sensitivity.
In particular, the large sensitivity of the device to variations in BS1 is
clear in the fidelity plot.
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only the sensitivities of the beam splitters, and we have not
included variations in path lengths (or phases), auxiliary input
states, or detector imperfections. These must all be taken into
account before a value judgment can be made about a particular
quantum device or gate implementation. However, it is already
clear that more resources (i.e., time spent in alignment, or
money spent on high-quality components) should be devoted
to BS1 and BS2 in the Grice circuit, and, more dramatically,
to BS1 in the Ewert–van Loock circuit.

IV. DEVICE ANALYSIS BASED ON THE SENSITIVITY

The discussion has so far been restricted to sensitivities of
individual components. However, quantum devices, including
those in the previous section, typically consist of multiple
components, and we would like to have some sense of which
components are more critical than others to the device’s
operation. In general it will be hard to compare sensitivities
of different types of components. For example, how should
we compare the numerical values for the sensitivity of the
device to a beam-splitter reflectivity (dimensionless) with the
sensitivity to a path-length variation (units of length)? To solve
this problem, we borrow the concept of cost functions from
estimation theory. It will also provide us with a single metric
that allows us to choose between different implementations
of the same quantum device. In this section we introduce the
concept of cost functions, show how they apply to quantum
device analysis, and give examples for the NS gates and Bell
detectors.

A. Cost functions and their construction

Multiple components in a device will lead to a multiparam-
eter estimation problem in our device analysis. Let the output
state |ψout〉 of a device (or |ψ (m)

out 〉 for measurement devices)
depend on an array of parameters corresponding to the different
device components:

θ = (θ1, . . . ,θM ), (37)

where M denotes the number of different components in
the quantum device. In quantum metrology, for each output
state |ψout〉 we assign a quantum Fisher information matrix—
defined on the parameter space of θ—that can be described
by

[IQ]jk = 4 Re[〈∂jψout | ∂kψout〉]
− 4 Re[〈∂jψout | ψout〉 〈ψout|∂kψout〉], (38)

where ∂j and ∂k are derivatives with respect to θj and θk ,
respectively. Calculating the derivatives as before, we obtain
the matrix elements

[IQ]jk = 4

p
Re[〈ψin,A|V †

j u
†
jHjW

†
j (I − |ψout〉 〈ψout|)

⊗�D WkHkukVk |ψin,A〉]. (39)

Once we have a quantum Fisher information matrix, a bound
on the covariance matrix of θ can be defined:

Cov(θ) � I−1
Q . (40)

This is the famous quantum Cramér-Rao bound for multiple
parameters [37], defined in the sense that Cov(θ ) − I−1

Q is

a positive-definite matrix. The bound is tight if and only if
the generators Hj are co-measurable [38]. The smaller the
covariances, the better we can estimate variations in θ from
the output state, and the more sensitive the implementation
is to variations in θ . The sensitivity, which in Eq. (12) was
proportional to the quantum Fisher information, now becomes
a sensitivity matrix.

In order to compare the sensitivities to different components
θj and θk , we need physically motivated unit scales �θj and
�θk . For example, suppose that the beam splitter BS2 in the
KLM NS gate can be manufactured to much higher precision
than BS1 and BS3, perhaps due to the different values of θj

in Eq. (30). Then a natural choice for the unit scale is the
manufacturing tolerance �θj . Consequently, even though S2

is larger than S1 and S3 (see Fig. 3), we could be in the position
that the dimensionless product of the tolerance squared (�θj )2

and the sensitivity Sj indicates that BS2 will have a lower
impact on the device performance than BS1 and BS3:

(�θ2)2S2 < (�θ1)2S1 = (�θ3)2S3. (41)

The cost function for a single parameter can then be given as
(�θj )2. In the context of covariance bounds, a real, symmetric,
positive-semidefinite cost matrix R is introduced such that
Eq. (40) becomes the simple inequality

Tr[R Cov(θ )] � Tr
[
R I−1

Q

]
. (42)

For our purpose of quantum device analysis, we are interested
in minimizing the sensitivity, rather than minimizing the
covariance of θ . We can achieve this by letting R = �(θ),
where �(θ) is the covariance matrix associated with the fluc-
tuations due to manufacturing tolerances (which is different
from Cov(θ ) in the Cramér-Rao bound). In the case where
components exhibit stochastic fluctuations of the parameter,
the diagonal elements of �(θ ) are the variances (�θj )2 of
the fluctuations. The dimensionless measure for the total
sensitivity is then

Tr[RS] =
M∑

j,k=1

�(θ )jk Skj . (43)

When a component is subject to both manufacturing tolerances
and stochastic fluctuations, we may combine their effects
according to the standard rule

(�θj )2 = (�manθj )2 + (�stθj )2, (44)

where �man and �st denote manufacturing and stochastic
errors, respectively. This formula can easily be extended to
include more types of noise in the components, including
correlated noise. In addition, we can include the economical
cost for each component as a multiplier. Such a choice will
favor devices with fewer components, ceteris paribus.

Now consider two quantum device implementations, I1

and I2. We can calculate the sensitivity matrices S(I1) and
S(I2) for these implementations according to Eq. (38) and
S = pIQ. Given two cost functions R1 and R2, we say that
implementation I1 is better than implementation I2 if

Tr[R1 S(I1)] < Tr[R2 S(I2)]. (45)

Note that the decision criterion in Eq. (45) depends on
the choice of cost functions. For example, for the NS gate
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implementation we can choose values of (�θ1,�θ2,�θ3) and
(�ξ1,�ξ2,�ξ3) such that either the KLM NS gate or the reverse
NS gate is easier to implement experimentally. The practically
achievable tolerances are, not surprisingly, an integral part of
the device analysis.

In general, we are forced to pick two different cost functions
R1 and R2 when the components of the two implementations
differ, and we must make sure that R1 and R2 are constructed
using the same criteria. In other words, the beam-splitter
variations in I1 should be constructed according to the same
physical principles as the beam-splitter variations in I2, even
though they may not result in identical numerical values
(c.f. our example of the KLM and reverse NS gates above).
This gives a natural sense in which devices with more or
harder-to-fabricate components are likely to perform worse
than simpler, easier-to-fabricate devices. When all components
(of the same type) have identical manufacturing tolerances and
are independent of the other components, the cost function may
be chosen as the identity matrix.

Finally, one may ask what the statistical interpretation of
Eq. (42) means for the task of differentiating between proposed
implementations of a quantum device, and hence how we
should interpret Eq. (45). When the Cramér-Rao bound in
Eq. (42) is achievable, we can extract the full quantum Fisher
information’s worth from measurements on the output state
|ψout〉 or |ψ (m)

out 〉. The sensitivity therefore immediately leads
to observable effects. On the other hand, the multiparameter
Cramér-Rao bound cannot be saturated in general, and this
leads to the question whether the decision condition in Eq. (45)
should be modified (e.g., along the lines of Ref. [39], using
right-logarithmic derivatives). However, we should remember
that we do not actually wish to estimate the parameters θ ,
but merely seek a measure of sensitivity for the quantum state
(which will typically be used in further processing) given a cost
matrix R. This is exactly what the multiparameter quantum
Fisher information—and therefore the sensitivity—provides.

B. Example of cost functions for Bell detectors

We can make a simple comparison between the Grice Bell
detector and the Ewert–van Loock Bell detector, where we
take into account only the cost of beam-splitter variations.
While the Grice Bell detector employs more beam splitters,
the beam splitters in the Ewert–van Loock Bell detector have
a higher sensitivity. Comparing the implementations with a
simple identity matrix cost function R = I (since we have no
reason to believe that there is a different cost or tolerance for
these beam splitters), we find that the Ewert–van Loock Bell
detector has an overall sensitivity of Tr[S(IEvL)] = 19.25, and
the Grice Bell detector has an overall beam-splitter sensitivity
of Tr[S(IGrice)] = 17.19. While the difference is not large,
this shows that, when we ignore path-length differences and
other imperfections, the design with lower sensitivities to the
beam-splitter variations is in this case marginally preferable to
the design with fewer beam splitters.

When a device has more components than there are degrees
of freedom in the output state, the quantum Fisher informa-
tion matrix may become singular. In that case we cannot
evaluate Eq. (45), and the method presented here does not
provide a value for the overall sensitivity. (And this device

implementation may allow for significant simplifications!)
However, our method will still be able to provide valuable
information about the relative importance of variations in the
constituent components, and, even when the sensitivity matrix
is not singular, a full device analysis must always include
the consideration of the individual elements. This will inform
us which components will give the greatest benefits in the
precision of the device when extra resources are spent on
improvements.

V. RELATION TO THE DIAMOND DISTANCE

We have compared the metrological approach to quantum
device characterization to the average gate fidelity. However,
another important metric for judging the quality of a quantum
device is the diamond distance. Here we briefly review some
key properties of the diamond distance and explore how it can
be used in device analysis.

The diamond distance is a unitarily invariant quantity for
measuring the distance between two general quantum channels
[40]. In the case of quantum information processors, the dia-
mond distance tells us how much an actual gate transformation
deviates from the intended gate transformation, and it is closely
related to the error rate of the gate [11]. Given the Schatten
1-norm ||·||1, the diamond norm of a quantum channel E is
defined as [40]

||E ||	 ≡ sup {||(E ⊗ I)(ρ)||1; ||ρ||1 � 1}, (46)

which leads to a diamond distance between two channels E
and E ′ given by

d	(E ,E ′) ≡ 1
2 ||E − E ′||	. (47)

It was shown in Refs. [41,42] that the diamond distance for
unitary channels uj and u′

j is upper bounded by the operator
norm

d	(uj ,u
′
j ) � ||uj − u′

j ||. (48)

For the types of unitary transformations discussed here, with
uj = exp(−iθjHj ) and u′

j = exp(−iθ ′
jHj ), and only small

difference between the parameters |θj − θ ′
j |, the diamond norm

is very close to the operator norm ||uj − u′
j || [43,44]. To see

this, we first define the ground state |m〉 and the maximum
eigenvalue state |M〉 of Hj . Without loss of generality (by
fixing a global phase) the eigenvalues of |m〉 and |M〉 are
−μ and +μ, respectively (μ > 0). We can then evaluate the
operator norm as

||uj − u′
j || = μ|θ ′

j − θj |. (49)

Next, we show that, in addition to the upper bound in Eq. (48),
we can construct a lower bound that approaches the upper
bound in the limit of vanishing |θj − θ ′

j |. By definition,

||uj − u′
j ||	 � ||(uj ⊗ I)ρ(u†

j ⊗ I) − (u′
j ⊗ I)ρ(u′

j

† ⊗ I)||1
(50)

for any quantum state ρ. Since any ρ will provide a valid lower
bound we are looking to choose ρ judiciously, such that it
maximizes the lower bound. Let ρ = |ψ〉 〈ψ | ⊗ I, with

|ψ〉 = |m〉 + |M〉√
2

. (51)
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We then obtain [44]

||uj − u′
j ||	 � 2μ|θ ′

j − θj |. (52)

Combining the upper and lower bounds in Eqs. (49) and
(52) with the diamond distance, and defining δθj = |θ ′

j − θj |
(assuming θj is the ideal value), leads to

d	(uj ,u
′
j ) = μδθj . (53)

This is the diamond distance betweenuj andu′
j , which depends

again on the deviation of θ ′
j away from θj . It can be interpreted

as the maximum possible angle between two quantum states
|ψ0〉 and |ψ(δθj )〉 ≡ exp(−iδθjHj ) |ψ0〉, where the maximiza-
tion is over the input states |ψ0〉. Our choice for ρ in Eq. (51)
achieves this maximum.

For pure states, the angle between quantum states is known
as the statistical distance between those states [45]. The square
of the derivative of the statistical distance with respect to the
angle is equal to the quantum Fisher information for that angle.
Therefore, the diamond distance for a device component—
translated into a Fisher information—provides us with the
largest amount of information about the component parameter
θj that can be extracted in a measurement procedure, since the
diamond distance involves a maximization over the input states
of the component. By contrast, the sensitivity presented in this
paper does not involve such a maximization, but instead uses
the quantum state of the system as produced at the point just
before the component uj . As such, the sensitivity allows us to
consider each component within the context of the device as a
whole, rather than as a stand-alone device for which we seek
the worst-case behavior. The diamond distance not distinguish
between similar elements in a device, e.g., the beam splitters
in the different implementations of the NS gates or the Bell
detectors. The diamond distance for individual components
therefore cannot be used to identify sensitivity bottlenecks in
a quantum device.

Finally, note that we have assumed a maximum eigenvalue
μ > 0 for the Hamiltonian Hj . In our examples involving
optical modes, such Hamiltonians are typically unbounded.
In our metrological approach we circumvent this problem by
averaging the sensitivity over the relevant input state space.

For example, the NS gate acts on at most two photons, and
the averaging is performed relative to the Haar measure on the
space of zero, one, and two photons in the input state. For
the diamond distance to be meaningful, a similar state-space
truncation must be employed.

VI. CONCLUSIONS

The construction of quantum information processing de-
vices is a challenging technical problem, and reducing sources
of errors is an essential element of it. We introduced a
method for comparing different physical implementations of a
quantum information processing device, including composite
quantum gates and detectors, in terms of the sensitivity of the
device to variations in its components. Our method is based
on the amount of information about a component parameter
present in the output state. This is measured by the quantum
Fisher information. For the examples considered here, we show
that this method is consistent with the predictions based on the
fidelity of the device given variations in the components. The
benefit of our method over the fidelity method is that we can
collect the combined effect of variations in all components into
a single overall sensitivity metric based on cost functions that
match our design requirements. Furthermore, the sensitivity
takes into account the context of each component in a quantum
device, as opposed to the diamond distance, which captures the
worst-case behavior of each component.

For each quantum device, quantum architecture designers
should consider as many different implementations as possible
and carry out a sensitivity analysis along the lines of the
discussion presented here. This may be a lengthy task, and it is
currently an open question whether we can construct guiding
design principles that provide shortcuts to this task. Such
principles will likely be highly implementation dependent.
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