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In classic cases, Reichenbach’s principle implies that discriminating between common causes and causality is
unprincipled since the discriminative results essentially depend on the selection of possible conditional variables.
For some typical quantum cases, K. Reid et al. [Nat. Phys. 11, 414 (2015)] presented the statistic C which can
effectively discriminate quantum common causes and quantum causality over two quantum random variables
(i.e., qubits) and which only uses measurement information about these two variables. In this paper, we formalize
general quantum common causes and general quantum causality. Based on the formal representation, we further
investigate their decidability via the statistic C in general quantum cases. We demonstrate that (i) C ∈ [−1, 1

27 ]
if two qubits are influenced by quantum common causes; (ii) C ∈ [− 1

27 ,1] if the relation between two qubits
is quantum causality; (iii) a geometric picture can illuminate the geometric interpretation of the probabilistic
mixture of quantum common causes and quantum causality. This geometric picture also provides a basic heuristic
to develop more complete methods for discriminating the cases corresponding to C ∈ [− 1

27 , 1
27 ]. Our results

demonstrate that quantum common causes and quantum causality can be discriminated in a considerable scope.
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I. INTRODUCTION

It is a scientific problem to discriminate common causes
and causality. The principle of causal explanation was first put
forward explicitly by Reichenbach [1]: if two physical vari-
ables A and B are statistically correlated (to be exact, they are
dependent), then they can be explained as follows: (i) common
causes, which mean that there are common causes influencing
both A and B; (ii) causality, namely, direct cause, which
means A (B) directly causes B (A). To some extent, the above
two definitions are informal and nonoperational. Therefore, a
central problem is how to discriminate them by means of data.

In classic cases, Reichenbach’s principle [1] sug-
gests that only if p(A,B) �= p(A)p(B) and p(A,B|X) �=
p(A|X)p(B|X) hold, where {X} represents the family of all
possible common cause sets, is it reasonable to infer that there
exists a causality betweenA andB. However, it is often difficult
to determine the set of all possible conditional variables. Even
if {X} can be properly defined, it often requires a large number
of samples to compute the statistics on {X}. Consequently,
the discrimination between common causes and causality is
difficult and heavily dependent on prior knowledge. Hence the
motto “Correlation does not imply causation” was coined.

In quantum cases, quantum common causes and quantum
causality (also known as quantum direct cause) can be formally
defined. And hence they can be exactly discriminated, at least,
in a considerable scope. Actually, quantum causal inference
does not depend on a conditional variables family {X}, but
only uses the measurement information on the two quantum
random variables considered (i.e., qubits).

Quantum correlation research dates back to at least Bell,
who [2] pioneered the study of nonclassical characters
of Einstein–Podolsky–Rosen-like correlations. Subsequently,
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great progress was made in the study of spatial correlations
[3–7] and time correlations [8–12]. For time correlations,
Fitzsimons et al. [11] defined a pseudodensity operator of a
temporally ordered bipartite quantum system. Additionally,
they demonstrated that an irregular pseudodensity operator
implied that there existed quantum causality between two
qubits. Reid et al. [13] developed the work of Fitzsimons et al.,
and presented a real statistic C to experimentally assess the
existence of causality in some typical cases [i.e., (i) a possible
quantum common cause can be represented as one of four Bell
states; (ii) a possible quantum causality can be represented as
one of four Pauli matrices].

Motivated by their work, this paper focuses on the discrimi-
nant between quantum common causes and quantum causality
in general cases. To this end, first we generalize the formal
representation of the relation of two quantum random variables
(i.e., qubits): (i) any four-dimensional density operator ρ cor-
responds to a possible quantum common cause and vice versa;
here, the quantum common causes include not only the usual
quantum correlations (i.e., the noncanonical correlation that
is induced by entanglement) but also product states and their
mixtures, for example, ρ = 1

2 |00〉〈00| + 1
2 |11〉〈11|; (ii) any

element in U(2) corresponds to a possible quantum causality
and vice versa; (iii) there can be a mixture of the above two
cases, as shown in Fig. 1.

Based on above representation, this paper theoretically
demonstrates the bound of the statistic C in cases (i) and (ii), the
results are shown in Sec. II and III, respectively. In Sec. IV,
a geometric picture is presented to illuminate the geometric
interpretation of case (iii). In Sec. V, a method is proposed to
distinguish the overlapped area of cases (i) and (ii). In Sec. VI,
we summarize and propose the future work.

II. QUANTUM COMMON CAUSES

In this section, we first review the statistic C. Reid et al.
[13] presented a scalar statistic C ≡ ∏3

i=1 Cii to indicate
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FIG. 1. Three possible relations of two qubits A,B [14,15]. Left
to right: quantum common causes (common causes X influence on A

and B), quantum causality (B = U · A), and a mixture of both, where
nodes represent qubits, directed edges represent causal influences,
and U represents the quantum causality transformation.

the following two illuminating cases: (i) if C = +1, then
it indicates the quantum causality transformations (quantum
direct cause) corresponding to four Pauli operators, i.e. σi,i =
0, . . . ,3; and (ii) if C = −1, then it indicates quantum common
causes entailing perfect correlations or anticorrelations when
measured by Pauli observables. In this case, they are four
Bell states. Table I displays more details. Apparently, the
statistic C can only take a value 1 or −1, which limits the
discriminant between quantum common causes and quantum
causality. Therefore, it is necessary to extend the scalar C to
the continuous real domain.

In the following, we show that CCC ∈ [−1, 1
27 ] in the cases

of the general quantum common causes, where CCC means
the statistic C in the cases of quantum common causes. The
general quantum common causes can be any four-dimensional
density operator ρ and vice versa; here, the quantum common
causes include not only the usual quantum correlations (i.e., the
noncanonical correlation that is induced by entanglement) but
also the possible correlations induced by the mixture of product

TABLE I. Signatures of causal structure [13]. Assume that the
same Pauli observable σi is measured on two qubits, i.e., (i,i) ∈
{(1,1),(2,2),(3,3)}, outcomes are k and m. Correlation indices
Cii ≡ p(k = m|ii) − p(k �= m|ii)(i = 1,2,3). A possible quantum

causality is one of four Pauli matrices: σ0 = I =
(

1 0
0 1

)
, σ1 =

X =
(

0 1
1 0

)
, σ2 = Y =

(
0 −i

i 0

)
, σ3 = Z =

(
1 0
0 −1

)
. A possi-

ble quantum common cause is one of four Bell states: |b1〉 =
|00>+|11>√

2
, |b2〉 = |00>−|11>√

2
, |b3〉 = |01>+|10>√

2
, |b4〉 = |01>−|10>√

2
.

Pattern of Causality Common
correlations (direct cause) cause

C11 C22 C33 C ≡
3∏

i=1
Cii

+1 +1 +1 +1 U = σ0 No
+1 −1 −1 +1 U = σ1 No
−1 +1 −1 +1 U = σ2 No
−1 −1 +1 +1 U = σ3 No
+1 −1 +1 −1 No ρ = |b1〉〈b1|
−1 +1 +1 −1 No ρ = |b2〉〈b2|
+1 +1 −1 −1 No ρ = |b3〉〈b3|
−1 −1 −1 −1 No ρ = |b4〉〈b4|

states. Additionally, we demonstrate that CCC ∈ [−1, 1
27 ] holds

too in the cases of quantum correlations.
Now, we analyze the bound of CCC (i.e., C in cases of quan-

tum common causes) in detail. If the same Pauli observable
σi(i = 1,2,3) is measured on the two qubits, outcomes are k

and m respectively, then

C(ρ) =
3∏

i=1

Cii(ρ)

=
3∏

i=1

[p(k = m|ii) − p(k �= m|ii)] ∈ [−1,1]. (1)

It is easy to check that CCC(ρ) = −1 if the two-qubit state is
one of four Bell states. Therefore, we only need to solve the
supremum bound of CCC(ρ). To this end, we need the following
definition:

Definition 1. The vector-valued function P(ρ) on the density
operator ρ is defined as

P(ρ) ≡

⎛
⎜⎝

C11(ρ)

C22(ρ)

C33(ρ)

⎞
⎟⎠. (2)

When ρ is a pure state, it is equivalent to define P(|ϕ〉) on a
state vector |ϕ〉. Then Lemma 1 is obtained.

Lemma 1. For all |ϕ〉 ∈ R4, P(|ϕ〉) forms a reg-
ular tetrahedron TCC with vertices P(|b1〉) = (1,−1,1)

′
,

P(|b2〉) = (−1,1,1)
′
, P(|b3〉) = (1,1,−1)

′
, and P(|b4〉) =

(−1, − 1,−1)
′
.1

Proof. Four Bell states |bj 〉 ∈ R4(j = 1, . . . ,4), and P(|bj 〉)
(j = 1, . . . ,4) form four vertices of a regular tetrahedron inR4.
Clearly, four Bell states are a set of standard orthonormal basis
in R4. So any pure state |ϕ〉 in R4 can be represented as

|ϕ〉 =
4∑

j=1

wj|bj〉, (3)

where wj ∈ R(j = 1, . . . ,4) and
∑4

j=1 wj
2 = 1. Then, ac-

cording to Eq. (3), Eq. (4) is obtained (see Supplemental
Material for proof [16]).

P(|ϕ〉) =
4∑

j=1

wj
2P(|bj 〉). (4)

Hence, ∀ |ϕ〉 ∈ R4, P(|ϕ〉) ∈ TCC, where TCC is a regular
tetrahedron with four vertices P(|bj 〉)(j = 1, . . . ,4), as shown
in Fig. 2 .

On the other hand, for a point in TCC, this point can be
represented as

∑4
j=1 wj

2P(|bj 〉), where wj ∈ R(j = 1, . . . ,4)

and
∑4

j=1 wj
2 = 1. The pure quantum state |ϕ〉 corresponding

to this point can be represented as

|ϕ〉 =
4∑

j=1

wj |bj 〉. (5)

�
Lemma 2. For all |ϕ〉 ∈ R4, CCC(|ϕ〉) � 1

27 .

1In this paper, denotes conjugate transpose.
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FIG. 2. Geometric interpretation of quantum common causes,
quantum causality, and a combination of both. Take the center of
the cube as the origin, the x, y and z axes are parallel to the sides
P(|b4〉)P(X), P(|b4〉)P(Y), P(|b4〉)P(Z), and the positive directions
point to P(X), P(Y), P(Z) respectively. The red regular tetrahedron
TCC consists of P(|ϕ〉). The blue regular tetrahedron TDC consists of
P(U). Oi(i = 1, . . . ,6) are the central points of the six faces of the
cube. The overlapped area O of TCC and TDC is shown in Fig. 3.

Proof. Maximizing CCC(|ϕ〉) = ∏3
i=1 Cii(|ϕ〉) under the

condition of P(|ϕ〉) ∈ TCC is equivalent to

max
|ϕ〉∈R4

CCC(|ϕ〉)
s.t. 〈ϕ |ϕ〉 = 1.

(6)

According to Eq. (6), apparently the feasible region is a convex
set. And the objective function CCC(|ϕ〉) is a simple cubic
function; although it is not a convex function, it is convenient to
construct a Lagrangian function F (|ϕ〉,λ) to solve all extreme
points:

F (|ϕ〉,λ) = CCC(|ϕ〉) − λ(〈ϕ |ϕ〉 − 1). (7)

All local extreme points (134 in total, see Supplemental
Material [16]) are solved with Karush-Kuhn-Tucker (KKT)
conditions. And the maximum

max CCC(|ϕ〉) = 1

27
. (8)

�
Lemma 3. For all |φ〉 ∈ C4, CCC(|φ〉) � 1

27 .
Proof. Given an arbitrary pure quantum state |φ〉 =(

a + bi

c + di

m + ni

p + qi

)
, a,b,c,d,m,n,p,q ∈ R, it can be decomposed into

|φ〉 = cos α|x〉 + sin α |y〉 i, (9)

where cos α = ±
√

a2 + c2 + m2 + p2, sin α =

±
√

b2 + d2 + n2 + q2, |x〉 = 1
cos α

(
a

c

m

p

)
, and |y〉 = 1

sin α

⎛
⎜⎝

b

d
n
q

⎞
⎟⎠

when cos α �= 0 and sin α �= 0. Specially, when cos α = 0 or
sin α = 0, |x〉 = 0 or |y〉 = 0 (i.e., |φ〉 = |y〉i or |φ〉 = |x〉).

Then, according to Eq. (9), Eq. (10) is further calculated
and obtained (see Supplemental Material for proof [16]):

P(|φ〉) = cos2 α P(|x〉) + sin2 α P(|y〉). (10)

According to Eq. (10) and Lemma 1, ∀ |φ〉 ∈ C4, there must
exist |ϕ〉 ∈ R4 such that P(|φ〉) = P(|ϕ〉) holds. According to
Lemma 2, CCC(|φ〉) � 1

27 . �

Theorem 1. ρ is an arbitrary density operator of a two-qubit
system, CCC(ρ) ∈ [−1, 1

27 ].
Proof. Lemma 3 has proved that CCC(ρ) � 1

27 when ρ is
a pure state. When ρ is a mixed state, it can be regarded
as a convex combination of several pure states. According
to Lemmas 1 and 2, there must exist |ϕ〉 ∈ R4 such that
CCC(ρ) = CCC(|ϕ〉) holds. Thus, CCC(ρ) ∈ [−1, 1

27 ]. �
In general quantum common causes, CCC ∈ [−1, 1

27 ] is
proved in Theorem 1. Note that the lower bound (−1) and
the upper bound ( 1

27 ) are also tight in terms of the quantum
entanglement states since the lower bound (−1) and the upper
bound ( 1

27 ) can be by approached by, e.g., Bell states or

|ϕ〉 =
⎛
⎝− 2√

6
1√
6

− 1√
6

0

⎞
⎠, respectively.

III. QUANTUM CAUSALITY

What is quantum causality? Given a single-qubit system A,
A is measured. After a unitary evolution, A becomes a new
single-qubit system B. B is measured again. Then quantum
causality means that the measurement result of B is causally
influenced by a certain unitary evolution on the measurement
result of A.

In the following, we show CDC ∈ [− 1
27 ,1] in the cases of

the general quantum causality, where CDC means the statistic
C in cases of quantum direct causes (also known as quantum
causality). The general quantum causality can be each element
in U(2) and vice versa.

Now, we analyze the bound of CDC (i.e., C in cases of
quantum direct cause) in detail. According to Eq. (1), CDC � 1.
And it is easy to check CDC = 1 when U = σi(i = 0, . . . ,3).
So we just need to prove the infimum of CDC. First, we observe
Lemma 4 and its proof.

Lemma 4. CDC only depends on U; it is invariant to ρ, where
ρ is the initial state of a single-qubit system.

Proof. Suppose that ρ is a pure state of the single-qubit
system A, here, ρ ∈ C2×2. A and B are measured by the Pauli
matrix X. Two measurement results include two cases: (i) Both
A and B are collapsed to |x0〉 or |x1〉 (two eigenstates of X);
(ii) B is collapsed to |x1〉 or |x0〉 under the condition that A is
collapsed to |x0〉 or |x1〉. According to Eq. (1), then

C11 = pA(|x0〉)pB|A(|x0〉) + pA(|x1〉)pB|A(|x1〉)
−{1 − [pA(|x0〉)pB|A(|x0〉) + pA(|x1〉)pB|A(|x1〉)]},

(11)

where pA(|x0〉) or pA(|x1〉) is the probability that A is collapsed
to |x0〉 or |x1〉. pB|A(|x0〉) or pB|A(|x1〉) is the conditional
probability that B is collapsed to |x0〉 or |x1〉 under the
condition that A is collapsed to |x0〉 or |x1〉. And

pB|A(|x0〉) = (U|x0〉)′Px0 (U|x0〉),
pB|A(|x1〉) = (U|x1〉)′Px1 (U|x1〉),

(12)

where U is the causal evolution; Px0 = |x0〉〈x0| and Px1 =
|x1〉〈x1| are measurement operators.
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We aim to prove CDC is invariant to ρ; according to Eq. (1),
we just need to prove Cii(i = 1, · · · ,3) is invariant to ρ. First,
we prove Eq. (11) is invariant to ρ.

According to Eq. (12), it is convenient to prove pB|A(|x0〉) =
pB|A(|x1〉). Because U|x0〉 (U|x1〉) means a rotation of |x0〉
(|x1〉), and the angle of |x0〉 and |x1〉 is same as the angle of
U|x0〉 and U|x1〉. Therefore, there must exist

pB|A(|x0〉) = pB|A(|x1〉). (13)

Clearly, pA(|x0〉) + pA(|x1〉) = 1, according to Eq. (13), and
Eq. (11) is simplified as

C11 = 2pB|A(|x0〉) − 1 = 2pB|A(|x1〉) − 1. (14)

Similarly, C22 = 2pB|A(|y0〉) − 1, and C33 = 2pB|A(|z0〉) − 1.
According to Eq. (12), pB|A(|x0〉) only depends on U, it is
invariant to ρ. Therefore, Cii(i = 1, . . . ,3) only depend on U,
they are invariant to ρ.

The above conclusion is easy to extend to the case of mixed
states. When U is given, ρ is a mixture of several pure states |ϕ〉,
and each pure state corresponds to the same Cii(i = 1, . . . ,3).
Thus, Cii(ρ)=Cii(|ϕ〉). �

According to Lemma 4, formally, we define P(U) as follows.
Definition 2. The vector-valued function P(U) on the unitary

matrix U is defined as

P(U) ≡

⎛
⎜⎝

C11(U)

C22(U)

C33(U)

⎞
⎟⎠. (15)

Lemma 5. For all U ∈ U(2), there must exist
pj � 0 (j = 0, . . . ,3),

∑3
j=0 pj = 1 such that P(U) =∑3

j=0 pj P(σj ) holds, where P(σ0) =
(

1
1
1

)
, P(σ1) =

(
1

−1
−1

)
,

P(σ2) =
(−1

1
−1

)
, and P(σ3) =

(−1
−1
1

)
.

Proof. An arbitrary unitary matrix U ∈ U(2) can be
parametrized as

U =
(

a1 + a2i b1 + b2i

−eαi(b1 − b2i) eαi(a1 − a2i)

)
, (16)

where a1
2 + a2

2 + b1
2 + b2

2 = 1, α ∈ R.
According to Eq. (16), it is easy to calculate and obtain

C11(U) = 2(c − d) − 1,

C22(U) = 2(c + d) − 1, (17)

C33(U) = 2(a2
1 + a2

2) − 1,

where c = 1
2 + a1a2 sin α + cos α

2 (a1
2 − a2

2), and d =
b1b2 sin α + cos α

2 (b1
2 − b2

2).
If the solutions pj (j = 0, . . . ,3) of Eq. (18) exist, and pj �

0(j = 0, . . . ,3), then Lemma 5 is proved.

P(U) =
3∑

j=0
pj P

(
σj

)
,

3∑
j=0

pj = 1.

(18)

The only solution of Eq. (18) is as follows:

p0 = 1

4
[C11(U) + C22(U) + C33(U) + 1],

p1 = 1

4
[C11(U) − C22(U) − C33(U) + 1],

(19)

p2 = 1

4
[−C11(U) + C22(U) − C33(U) + 1],

p3 = 1

4
[−C11(U) − C22(U) + C33(U) + 1].

Furthermore, according to Eq. (17), it is easy to prove pj �
0 (j = 0, . . . ,3).

p0 = 1
2 [a1

√
(1 + cos α) ± a2

√
(1 − cos α)]2 � 0,

p1 = 1
2 [b1

√
(1 − cos α) ± b2

√
(1 + cos α)]2 � 0,

p2 = 1
2 [b1

√
(1 + cos α) ± b2

√
(1 − cos α)]2 � 0,

p3 = 1
2 [a1

√
(1 − cos α) ± a2

√
(1 + cos α)]2 � 0. (20)

�
Lemma 5 just illustrates that for an arbitrary U, P(U)

corresponds to a point in the regular tetrahedron TDC with four
vertices P(σj )(j = 0, . . . ,3), as shown in Fig. 2. Next, Lemma
6 (i.e., the inverse proposition of Lemma 5) will illustrate that
for a point in TDC, there must exist U ∈ U(2) such that P(U)
corresponds to this point. Now, Lemma 6 is proved as follows.

Lemma 6. ∀ pj � 0,
∑3

j=0 pj = 1, there must exist U ∈
U(2) such that P(U) = ∑3

j=0 pj P(σj ).
Proof. Equation (16) shows that U is a unitary matrix

regardless of α; here let α = 2kπ , where k ∈ Z. And Eq. (17)
shows the detailed representation of P(U). Given a set of
pj (pj � 0,

∑3
j=0 pj = 1, j = 0, . . . ,3), only if solutions

a1,a2,b1,b2 of Eq. (21) exist, is the Lemma 6 proved.

P(U) =
3∑

j=0
pj P

(
σj

)
,

a1
2 + a2

2 + b1
2 + b2

2 = 1.

(21)

Solutions of Eq. (21) are easy to be obtained as follows.

a1 = ±√
p0,

a2 = ±√
p3,

b1 = ±√
p2,

b2 = ±√
p1.

. (22)

�
We aim to find the infimum inf CDC. Lemmas 5 and 6

illustrate that for all U ∈ U(2), P(U) forms the regular tetra-
hedron TDC. Therefore, inf U∈U(2) CDC = minTDC CDC. Now
minTDC CDC is calculated as follows.

Theorem 2. ∀ U ∈ U(2),CDC(U) ∈ [− 1
27 ,1].

Proof. According to Lemma 5, P(σj ) =
(C11(σj ),C22(σj ),C33(σj ))′ (j = 0, . . . ,3) are four vertices of
TDC. Therefore, minTDC CDC is equivalent to

min
TDC

CDC =
3∏

i=1

3∑
j=0

pjCii

(
σj

)
,

s.t.
3∑

j=0
pj = 1.

(23)
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A Lagrangian function is constructed as follows.

F (pj ,λ) =
3∏

i=1

3∑
j=0

pjCii

(
σj

) − λ

⎛
⎝ 3∑

j=0

pj − 1

⎞
⎠. (24)

A total of 92 extreme points (see Supplemental Material [16])
are obtained with KKT conditions, and minTDC CDC = − 1

27 .
Hence, CDC(U) � − 1

27 . �

IV. MIXTURE OF QUANTUM COMMON CAUSES AND
QUANTUM CAUSALITY

The mixture of quantum common causes and quantum
causality means that two qubits come from the p mixture
of quantum common causes (ρ) and quantum causality (U),
where p is the probability of quantum common causes, which
corresponds to the right one in Fig. 1. In order to discriminate
quantum common causes, quantum causality, and a combi-
nation of both in general, first the vector-valued function
P(ρ,U,p) is defined as follows.

Definition 3. The vector-valued function P(ρ,U,p) on the
p mixture of density operator ρ and the unitary matrix U is
defined as

P(ρ,U,p) ≡

⎛
⎜⎝

C11(ρ,U,p)

C22(ρ,U,p)

C33(ρ,U,p)

⎞
⎟⎠. (25)

The following theorem shows that P(ρ,U,p) corresponds to a
probabilistic mixture of two points in TCC and TDC.

Theorem 3. For ∀ρ ∈ C4×4,∀U ∈ U(2), p ∈ [0,1],
P(ρ,U,p) = pP(ρ) + (1 − p)P(U) holds, where P(ρ) ∈ TCC,
P(U) ∈ TDC.

Proof. If p = 1 or p = 0, then P(ρ,U,p) ∈ TCC or
P(ρ,U,p) ∈ TDC. Theorem 3 holds immediately. Therefore,
it is only necessary to prove Theorem 3 holds when p ∈ (0,1).

When p ∈ (0,1), according to Eq. (1), apparently, any point
P(ρ,U,p) ∈ D, where D is a regular hexahedron with vertices
P(|bj 〉)(j = 1, . . . ,4), P(σk)(k = 0, . . . ,3), see Fig. 2. Since
that D is a convex set. Hence,

P(ρ,U,p) =
4∑

j=1

[pj P(|bj 〉)] +
8∑

k=5

[pkP(σk−5)], (26)

where pj � 0(j = 1, . . . ,4), pk � 0(k = 5, . . . ,8), and∑4
j=1 pj + ∑8

k=5 pk = 1.

Let p = ∑4
j=1 pj , qj = pj

p
� 0(j = 1, . . . ,4). qk =

pk

1−p
� 0(k = 5, . . . ,8). Then

∑4
j=1 qj = 1,

∑8
k=5 qk = 1.

Equation (26) is equivalent to

P(ρ,U,p) = p

4∑
j=1

[qj P(|bj 〉)] + (1 − p)
8∑

k=5

[qkP(σk−5)]

= pP(ρ) + (1 − p)P(U),
(27)

where P(ρ) ∈ TCC, P(U) ∈ TDC, p ∈ (0,1). �

FIG. 3. Overlapped area O of TCC and TDC. The corresponding
six vertices are Oi(i = 1, . . . ,6), respectively, which are the central
points of the six faces of the cube in Fig. 2.

V. QUANTUM COMMON CAUSES AND QUANTUM
CAUSALITY IN THE OVERLAPPED AREA

Figure 2 implies that quantum common causes and quantum
causality cannot be discriminated in the overlapped area O of
TCC and TDC by P (O is shown in Fig. 3). To discriminate quan-
tum common causes and quantum causality more completely,
a heuristic principle is presented in this section: we try to find
a new vector-valued function P′ such that quantum common
causes and quantum causality in O can be distinguished, at least
to some extent. Then the combination of P and P′ can more
effectively identify quantum common causes and quantum
causality. In general, P′ can be constructed via transforming
the basis vectors of project measurements, i.e., |x0〉, |x1〉, |y0〉,
|y1〉, |z0〉, and |z1〉, by an appropriate unitary transformation
V. In the following part, some theoretical observations and
simulation results are given to facilitate the above heuristic
principle. Specifically, Theorems 4 and 5 show how to connect
P′ under the transformed basis vectors to P under the original
basis vectors.

Theorem 4. ∀ ρ ∈ C4×4, if the P′(ρ) is constructed by
the effect of a unitary transformation V on the basis vectors
of project measurements with measurement operators σi ⊗
σi(i = 1, . . . ,3), then P′(ρ) = P((V ⊗ V)

′
ρ(V ⊗ V)), where

V ∈ U(2).

Proof. Let P′(ρ) ≡
⎛
⎝C11

′(ρ)
C22

′(ρ)
C33

′(ρ)

⎞
⎠. According to Eq. (1),

Cii
′(ρ) ≡ p′(k = m|ii) − p′(k �= m|ii)(i = 1, . . . ,3), where

p′(k = m|ii) and p′(k �= m|ii) are the probabilities of the same
measurement result and the different measurement results that
the transformed observable (VσiV′) ⊗ (VσiV′) is used on the
ρ, where V ∈ U(2). When ρ is a pure state, it is equivalent to
define Cii

′(|ϕ〉) on the state vector |ϕ〉, where |ϕ〉 ∈ C4. That
is to prove Cii

′
(|ϕ〉) = Cii((V ⊗ V)

′ |ϕ〉) (i = 1, . . . ,3).

C
′
ii(|ϕ〉) ≡ p

′
(k = m|ii) − p

′
(k �= m|ii)

= 2p
′
(k = m|ii) − 1

= 2{〈ϕ|(V|m0〉) ⊗ (V|m0〉)[(V|m0〉) ⊗ (V|m0〉)]′ |ϕ〉
+ 〈ϕ|(V|m1〉) ⊗ (V|m1〉)[(V|m1〉) ⊗ (V|m1〉)]′ |ϕ〉} − 1
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TABLE II. Proportion of the overlapped area O transferred to the distinguishable area OTC/O (OTD/O) via the specific V. Randomly
generate 20 000 ρ (U) meeting P(ρ) ∈ O [P(U) ∈ O], and calculate the proportion of ρ(U) transformed to OTC/O (OTD/O). For V1 and V2,
they could make O be converted to OTC via the single V1 or V2. However, O could not be converted to OTC via the single V3 or V4. This
might be the reason why transfer ratios of the second column under the effect of V1 and V2 are larger than the counterparts of V3 and V4. O
could be converted to OTD via the single V1, V2, V4, but O could not be converted to OTD via the single V3. This might be the reason why
the transfer ratio of the third column under the effect of V3 is lower than the counterparts of V1, V2, and V4.

Unitary matrix Proportion of Proportion of
V P(ρ) ∈ O → P′(ρ) ∈ OTC/O P(U) ∈ O → P′(U) ∈ OTD/O

V1 ≈
(

0.1813 − 0.5744i

−0.6807 + 0.4170i

0.2656 + 0.7527i

−0.2213 + 0.5602i

)
36.44% 58.91%

V2 ≈
(−0.1080 + 0.7959i

−0.4763 − 0.3577i

0.4848 − 0.3461i

−0.0888 − 0.7983i

)
35.84% 57.32%

V3 ≈
(−0.2947 + 0.5266i

−0.6926 − 0.3950i

0.7483 − 0.2754i

−0.2039 − 0.5680i

)
29.9% 50.64%

V4 ≈
(

0.3482 + 0.3352i −0.3442 + 0.8050i
−0.2069 + 0.8507i 0.4796 − 0.0597i

)
33.45% 52.56%

= 2{〈ϕ|(V ⊗ V)|m0m0〉〈m0m0|(V ⊗ V)
′ |ϕ〉

+ 〈ϕ|(V ⊗ V)|m1m1〉〈m1m1|(V ⊗ V)
′ |ϕ〉} − 1

= Cii((V ⊗ V)
′ |ϕ〉), (28)

where |m0〉 and |m1〉 represent two eigenstates of σi(i =
1, . . . ,3).

When ρ is a mixed state, ρ= ∑n
j=1 pj |ϕj 〉〈ϕj |, where∑n

j=1 pj = 1, it can be regarded as a convex combination of n

pure states. For each pure state |ϕj 〉, Eq. (28) holds. Therefore,
Cii

′(ρ) = Cii((V ⊗ V)′ρ(V ⊗ V))(i = 1, . . . ,3) holds. �
According to Theorem 4 and Lemma 1, clearly, for all ρ ∈

C4×4, P′(ρ) forms the regular tetrahedron TCC. Therefore, for
a ρ in the overlapped area O, if there exists a unitary matrix
V ∈ U(2) such that P′(ρ) = P((V ⊗ V)

′
ρ(V ⊗ V)) /∈ O, then

the ρ is rotated to TCC/O via the unitary matrix V. That is to
say, this case is discriminated.

Based on the above theoretical observation, some
simulation experiments of the overlapped area O were carried
out. First, the simulation results show that O can be converted to
OTC under the effect of all appropriate unitary transformations
V, where OTC is the regular tetrahedron TCC from which is
dug out a small tetrahedron with vertices P(|b3〉),O4,O5,O6.
The reason why OTC does not include the small tetrahedron
is that the form of (V ⊗ V)

′
ρ(V ⊗ V) limits the arbitrariness

of the resulted 4×4 density matrix. Interestingly, there
exists some special unitary matrices V, for example,

V ≈
(

0.1813 − 0.5744i

−0.6807 + 0.4170i

0.2656 + 0.7527i

−0.2213 + 0.5602i

)
,

such that the overlapped area O is converted to OTC by the
single unitary matrix V. Although it does not mean that any
unitary matrix can make O be transferred to OTC. For more
specific instructions, the proportion that ρ in O is transformed
to OTC/O is investigated via some specific V, the simulation
results are shown in Table II.

Theorem 5. ∀ U ∈ U(2), if P′(U) is constructed by the effect
of a unitary transformation V on the basis vectors of project
measurements with measurement operators σi(i = 1, . . . ,3),
then P

′
(U) = P(V

′
UV), where V ∈ U(2).

Proof. Let P′(U) ≡
(

C11
′(U)

C22
′(U)

C33
′(U)

)
. According to Eq. (15), it

is only necessary to prove that Cii
′(U) = Cii(V′UV) (i =

1, . . . ,3). According to Eq. (14), Eq. (29) is derived as follows:

C ′
ii(U) = 2pB|A′(|m0〉) − 1

= 2pB|A(V|m0〉) − 1

= 2(UV|m0〉)′V|m0〉〈m0|V′UV|m0〉 − 1

= 〈m0|V′U′V|m0〉〈m0|V′UV|m0〉 − 1

= Cii(V′UV), (29)

where pB|A(V|m0〉) represents the probability that B is col-
lapsed to V|m0〉 under the condition that A is collapsed
to V|m0〉 measured by V|m0〉. |m0〉 represents one of two
eigenstates of Pauli matrices σi(i = 1, . . . ,3). �

According to Theorem 5 and Lemma 5, obviously, for all
U ∈ U(2), P′(U) forms the regular tetrahedron TDC. Hence,
for a U in O, if there exists V ∈ U(2) such that P

′
(U) =

P(V
′
UV) /∈ O, then U is shifted out to TDC/O via the unitary

matrix V. This case is discriminated.
In terms of simulations, simulation results illustrate that

O is transformed to OTD under the effect of all appropri-
ate unitary transformations V, where OTD is the regular
tetrahedron TDC from which is dug out a small tetrahe-
dron with vertices O1,O2,O3,P(Z). The reason why OTD
is dug out the small tetrahedron is that V′UV limits the
arbitrariness of the resulted 2×2 unitary matrix. Interestingly,
there exists some special unitary matrices V, for example,

V ≈
(

0.3482 + 0.3352i −0.3442 + 0.8050i

−0.2069 + 0.8507i 0.4796 − 0.0597i

)
, such that

the overlapped area O is converted to OTD by the single unitary
matrix V. However, it does not mean that any unitary matrix can
make O be transferred to OTD. For more specific instructions,
the proportion that U in O is transformed to the OTD/O is
investigated via some specific V, the simulation results are
shown in Table II.

VI. CONCLUSIONS AND FUTURE WORKS

In a general configuration, we investigate the decidability
of quantum common causes and quantum causality via the
statistic C, which has the potential to assess the existence of
causality between two qubits. To this end, C is extended to
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the real domain. It turns out that C ∈ [−1, 1
27 ] if two qubits

are caused by quantum common causes; C ∈ [− 1
27 ,1] if two

qubits are quantum causality. In addition, this paper provides an
intuitive geometric interpretation of quantum common causes,
quantum causality and a combination of both (see Fig. 2),
which can discriminate them in a different way.

Figure 2 illustrates that quantum common causes and
quantum causality in Fig. 3 cannot be discriminated via the
vector-valued function P. In this paper, the combination of
P and P′ is proposed to more effectively identify quantum
common causes and quantum causality. The rationality of the
combination of P and P′ is well analyzed, and some simulation
results are obtained. We leave a more detailed analysis on

the decidability of quantum common causes and quantum
causality via a combination of P, P′, etc., to future work.
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