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The operation of autonomous finite-time quantum heat engines relies on the existence of a stable limit cycle
in which the dynamics becomes periodic. The two main questions that naturally arise are therefore whether such
a limit cycle will eventually be reached and, once it has, what the state of the system is within the limit cycle.
In this paper we show that the application of Floquet’s theory to Lindblad dynamics offers clear answers to both
questions. By moving to a generalized rotating frame, we show that it is possible to identify a single object, the
Floquet Liouvillian, which encompasses all operating properties of the engine. First, its spectrum dictates the
convergence to a limit cycle. Second, the state within the limit cycle is precisely its zero eigenstate, therefore
reducing the problem to that of determining the steady state of a time-independent master equation. To illustrate
the usefulness of this theory, we apply it to a harmonic oscillator subject to a time-periodic work protocol and
time-periodic dissipation, an open-system generalization of the Ermakov-Lewis theory. The use of this theory to
implement a finite-time Carnot engine subject to continuous frequency modulations is also discussed.
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I. INTRODUCTION

Recent decades have witnessed remarkable progress in
the experimental manipulation of a variety of quantum plat-
forms, enabling for the first time the coherent control over
genuinely quantum mechanical resources. This progress has
in turn motivated substantial research in addressing which
types of applications may be drawn up using such platforms.
One promising such avenue concerns the use of quantum
effects in the operation of heat engines and refrigerators
[1–5]. This would allow, for instance, one to extend the effi-
ciency above classical bounds using nonequilibrium reservoirs
[6–11], operate adiabatic cycles at finite times using shortcuts
to adiabaticity [12–14], implement informationally driven
engines [15–19], and even substitute work and heat by quantum
resources, such as entanglement [20] and coherence [21].

Despite the surge in interest, several scenarios still remain
unexplored, with most studies so far having focused on either
continually operated engines, such as absorption refrigerators
[3,22–26] or stroke-based engines, with a particular focus on
the Otto cycle [1–14,27–34]. Carnot or Stirling cycles have
also been studied, but to a lesser extent [35–38]. The same is
true for continually operated work protocols [39–42].

The main reason behind the focus on the Otto cycle is
due to its convenient separation of the work and heat strokes,
which facilitates the theoretical modeling since it allows one
to use unitary dynamics for the former and time-independent
dissipative dynamics for the latter. Moreover, it is usually
assumed that the heat strokes act for a sufficiently long time
so as to allow for a full thermalization. Studies dealing with
finite-time operations over all strokes remain scarce. In this
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case a subtle question arises concerning the convergence or not
to a limit cycle, in which the operation of the engine becomes
periodic. As shown in [27–31], depending on the work protocol
and its corresponding injection of energy, unusually large
values of dissipation may be necessary in order to obtain a
stable cycle. Consequently, these considerations may have an
important impact in translating optimization protocols, such as
shortcuts to adiabaticity, to the finite-time regime.

In the context of finite-time engines, the problem may
therefore be divided into two parts. The first is the convergence
towards a limit cycle and the second concerns the behavior of
the system within this cycle. A more thorough understanding
of these two features is therefore essential for advancing our
theoretical understanding of quantum heat engines. However,
such advances are hampered by the lack of a consistent
theoretical framework to address the properties of the cycle
as a whole, instead of each individual stroke.

In this paper we attempt to fill this gap by showing how the
operation of a heat engine may be neatly formulated in terms
of Floquet’s theory applied to Lindblad dynamics. Instead of
analyzing each stroke separately, we consider the full cycle as
modeled by a time-dependent periodic Liouvillian Lt . Then,
applying Floquet’s theory and moving to a generalized rotating
frame, we show how all relevant aspects of the heat engine
are completely dictated by a superoperator LF (t), which we
refer to as the Floquet Liouvillian. First, the convergence to a
limit cycle is directly associated with the eigenvalues of LF (t)
(which are independent of t). Second, the state of the system
after the limit cycle has been reached is precisely the zero
eigenstate of LF (t), with t a parameter. This therefore reduces
the problem of finding the limit cycle to that of finding the
steady state of a time-independent master equation.

Floquet theory has seen a boom of interest in recent decades,
especially due to its potential use in quantum simulation.

2469-9926/2018/97(6)/062121(12) 062121-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.97.062121&domain=pdf&date_stamp=2018-06-20
https://doi.org/10.1103/PhysRevA.97.062121


STEFANO SCOPA, GABRIEL T. LANDI, AND DRAGI KAREVSKI PHYSICAL REVIEW A 97, 062121 (2018)

Important advances in its extension to open quantum systems
have also appeared recently [39,40,43–47]. In particular, we
call attention to Refs. [39,40], where the authors describe
a method to derive quantum master equations for systems
subject to a periodically driven Hamiltonian and in contact
with a heat bath. Such a framework has direct applications
in the context of quantum heat engines (cf. [3,42]). However,
it cannot be used to describe stroke-based engines containing
unitary (isentropic) branches, such as the Carnot cycle, since
it assumes that the system-bath coupling remains on at all
times. To do so, one must be able to couple and uncouple the
system from the bath periodically. Although there are ways
of bypassing this, such as using sufficiently fast drives or
implementing protocols which ensure that the heat flow is zero
on average [48,49], in order to describe Carnot and related
cycles in all generality, one must eventually make use of some
uncoupling mechanism. This is the main advantage of our
approach. We will take as a starting point an arbitrary master
equation, whose parameters are assumed to vary periodically
following some protocol (while ensuring complete positivity at
all times). Even though this has the disadvantage of losing the
microscopic interpretation of a system-environment coupling,
it has the advantage of being able to deal with arbitrary coupling
protocols. Moreover, it also works for engineered reservoirs
and phenomenological equations.

To illustrate the usefulness of this theory, we apply it
to the exactly soluble model of a harmonic oscillator under
the influence of an arbitrary time-periodic work protocol
and arbitrary time-periodic and Gaussian-preserving environ-
ments. This corresponds to an open-system generalization of
the Ermakov-Lewis theory [50–53] describing a harmonic
oscillator subject to a frequency modulation. In our theory all
parameters may be time dependent, including the frequency,
mass, damping rate, temperature, and squeezing (magnitude
and angle), provided they all share the common period of the
cycle. This therefore allows one to implement any type of
single-oscillator engine, including protocols for shortcuts to
adiabaticity or the use of (possibly time-dependent) squeezing
effects to maximize efficiency. Given the widespread use of
harmonic systems as working fluids, we believe that these
results should prove valuable in the design and optimization
of more efficient engines. As an example, we briefly discuss
their application to the study of a finite-time Carnot engine.

II. LINDBLAD-FLOQUET THEORY

We consider here an arbitrary quantum heat engine oper-
ating periodically with period T . The different strokes of the
engine may contain both unitary and dissipative contributions.
Instead of describing these effects separately, we combine them
into a single master equation for the working fluid’s density
matrix ρ(t), subject to a certain time-dependent periodic
Liouvillian operatorLt satisfyingLt+T = Lt . For convenience
we write the master equation in superoperator space as

d|ρt 〉
dt

= Lt |ρt 〉, (1)

where |ρt 〉 is the density matrix written in vectorized form.
To clarify our notation, let us consider the implementation

of an Otto cycle. Let �(t) denote a generic work parameter,

FIG. 1. Modeling of quantum heat engines using Lindblad-
Floquet theory. (a) A thermodynamic cycle, for instance, with a
harmonic oscillator as the working fluid, may be described by means
of a time-periodic Liouvillian Lt which encompasses the evolution
of the work parameter �(t), the different bath temperatures TH and
TC , and the on-off protocol for the bath couplings, modeled by γt .
Diagrams are shown for the (b) Otto and (c) Carnot cycles. The green
regions correspond to the unitary expansion and compression strokes,
whereas the red and blue regions denote the interactions with the two
reservoirs. The black curves illustrate typical work protocols �(t)
for the two cycles. In the Otto cycle � is constant in the red and blue
regions, whereas in the Carnot cycle the hot isothermal is an expansion
and the cold isothermal a compression. (d) and (e) Corresponding
quasistatic cycles in a 〈H 〉 vs 1/� diagram.

γ (t) the bath-coupling constant, and T (t) the temperature. An
Otto cycle would then be described by the following protocol
[see Fig. 1(b)]:

� : (�1,�2(t),�3,�4(t)),

γ : (γ1,0,γ3,0),

T : (TH , − ,TC,−).

The first and third strokes are the thermalization (isochoric)
heat strokes for which the work parameter is fixed and the
system is allowed to partially relax in contact with heat baths
at temperatures TH and TC . The second and fourth strokes,
on the other hand, are the unitary (isentropic) work strokes
for which the system is detached from the bath (γ = 0). Each
stroke may have different durations, but we denote by T the
total period of the cycle. It is clear from this example that any
type of cycle may be constructed by appropriately choosing the
parameters in the master equation. For instance, the protocol
for constructing a Carnot cycle is illustrated in Fig. 1(c).

We now cast the master equation (1) within the framework
of Floquet’s theory. We begin by moving to a generalized
rotating frame by defining a new state |ρ̃t 〉 = W (t)|ρt 〉, where
W (t) is a time-periodic superoperator. In this rotating frame
|ρ̃t 〉 will satisfy an equation analogous to (1) but subject to the
effective Liouvillian

L̃ = W (t)LtW
−1(t) + dW (t)

dt
W−1(t). (2)

If we can now choose W (t) such that L̃ is time independent,
then the evolution in this rotating frame, between times t0 and
t , will be given simply by |ρ̃t 〉 = e(t−t0)L̃|ρ̃t0〉. Moving back to
the original frame then allows us to write the evolution of |ρt 〉
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as

|ρt 〉 = K(t,t0)e(t−t0)LF (t0)|ρt0〉, (3)

where we have defined the Floquet Liouvillian

LF (t0) = W−1(t0)L̃W (t0) (4)

and the micromotion superoperator

K(t,t0) = W−1(t)W (t0). (5)

Since W (t) is periodic, it follows that LF (t0 + T ) = LF (t0).
The same is true for both arguments of K(t,t0).

From Eq. (5) one also has that K(t0,t0) = 1. Hence, the
stroboscopic evolution of the system will be governed solely
by the Floquet Liouvillian

|ρt0+nT 〉 = enT LF (t0)|ρt0〉. (6)

This leads us to our first main result: A sufficient condition for
the system to converge to a limit cycle is that all eigenvalues
of LF (t0) have a nonpositive real part. Instead of looking at
LF (t0), one may also look directly at L̃ since the two are
connected by a similarity transformation [Eq. (4)]. As will
be illustrated below, this will in general be much simpler and
also serves to show that the spectrum of LF (t0) is independent
of t0.

Next let |ρF (t0)〉 denote the steady state of LF (t0), that is,
LF (t0)|ρF (t0)〉 = 0. For simplicity, we will henceforth assume
that this steady state is unique. Then, after a sufficiently long
time, the engine will eventually converge to a limit cycle for
which the density matrix becomes periodic and is given by

|ρt 〉 = K(t,t0)|ρF (t0)〉. (7)

However, since the micromotion is periodic, we may now set
t0 = t , which then finally gives

|ρt 〉 = |ρF (t)〉. (8)

This is our second main result: Within the limit cycle the state
of the system will be simply the zero eigenstate of LF (t),
provided this eigenstate is unique. This result is a consequence
of the convergence towards a steady state. It is therefore a
feature unique of open systems and allows for a remarkable
simplification in the description of the problem.

It is also useful to compare these results with the method
developed in Refs. [39,40], which consists in generalizing
the microscopic derivations to include a periodic drive in the
system Hamiltonian. Our approach can therefore be viewed
as complementary. We assume no information about the
environment or the processes which led to the master equation.
Instead, we take the Liouvillian as given and then cast it in
terms of Floquet’s theory to extract its main properties. This
has the advantage of allowing for the coupling constant and the
bath temperature to be turned on and off at will. One should
note, however, that even if the bath parameters are constant,
both models may not necessarily give the same result. The
reason is that in the method of Refs. [39,40] one takes into
account the effects that the driving on the system has on the
exchange of excitations between the system and bath. However,
it is expected that these effects will become important only if
the timescales of the drive become comparable to the bath
correlation times. If that is not the case, then from physical

grounds one expects that the master equation will be such that
it instantaneously thermalizes the system at each instant of
time.

We also would like to call attention to some known dif-
ficulties of dealing with Floquet Liouvillians. Even though
the computation of the stroboscopic map (6) is always well
defined, the calculation of the Floquet Liouvillian LF may
be problematic, leading to generators that do not preserve
complete positivity. A numerically exact illustration of this
was given recently in Fig. 4 of Ref. [46]. This can turn out
to be a serious issue when one is interested in finding LF by
means of high-frequency Magnus expansions, which is often
the case since the problem is usually analytically intractable. In
this sense, another important development to call attention to is
Ref. [43], where the authors have developed a method to build
high-frequency Magnus expansions that preserve complete
positivity at all orders. Interestingly, the seeming inconsistency
between this and the results in Ref. [46] seems to point to
a limited radius of convergence of the Magnus expansion.
Here we will avoid this issue by looking at an exactly
soluble model for which the dynamics is always completely
positive.

III. APPLICATION TO A HARMONIC OSCILLATOR

We now consider the exactly soluble model of a bosonic
mode, described by an annihilation operator a, subject to
an arbitrary time-dependent and Gaussian-preserving open
system dynamics. Here we provide only the main ideas and
results, leaving some of the technical details to the Appendixes.
The Hamiltonian of the system is chosen to be

Ht = ωt

(
a†a + 1

2

)
+ λt

2
aa + λ∗

t

2
a†a†, (9)

where ωt and λt are arbitrary periodic functions satisfying
ω2

t > |λt |2. In a mechanical picture, the Hamiltonian (9)
describes a situation where both the mass and the spring
constant may be time dependent. The situation where the
mass is constant corresponds to η := ωt − λt being time
independent, in which case the mechanical frequency �t is
given by �2

t = ω2
t − λ2

t (see Appendix A).
The Hamiltonian (9) adds to Lt three superoperators

H0 = −i[a†a,•], (10)

H1 = −i[aa,•], (11)

H2 = −i[a†a†,•]. (12)

In addition, we consider the general effects of Gaussian-
preserving dissipation generated by

D1 = a • a† − 1
2 {a†a,•}, D2 = a† • a − 1

2 {aa†,•}, (13)

D3 = a† • a† − 1
2 {a†a†,•}, D4 = a • a − 1

2 {aa,•}. (14)

With these ingredients, we then parametrize our time-
dependent Liouvillian as

Lt = Ht + Dt , (15)
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where

Ht = ωtH0 + λt

2
H1 + λ∗

t

2
H2, (16)

Dt = γt (Nt + 1)D1 + γtNtD2 − γtMtD3 − γtM
∗
t D4, (17)

where γt , Nt , and Mt are periodic parameters satisfying γt >

0 and Nt (Nt + 1) > |Mt |2. Here γt represents the coupling
strength to the bath, whereas Nt and Mt may represent
both thermal and squeezing effects, depending on the choice
of basis. For instance, if λt = 0 then a thermal bath at a
temperature T correspond to Mt = 0 and Nt = (eωt /T − 1)−1.
For the general Hamiltonian (9), on the other hand, the thermal
bath is modeled by

Nt + 1

2
= ωt

2�t

coth

(
�t

2T

)
, Mt = − λt

2�t

coth

(
�t

2T

)
,

(18)
where �2

t = ω2
t − λ2

t .
Next we apply the rotating frame transformation (2). The

key property making this problem analytically tractable and
free of the aforementioned positivity issues is that the seven
superoperators {Hi ,Di} form a closed algebra [54] (see also
[55]). In particular, the sets {Hi} and {Di}, when taken
separately, satisfy independent algebras

[H0,H1,2] = ±2iH1,2, [H1,H2] = −4iH0 (19)

and

[D1,D2] = −(D1 + D2), [D3,D4] = 0,

(20)

[D1,D3,4] = −D3,4, [D2,D3,4] = D3,4.

Mixtures of the two sets, on the other hand, only produce
elements of the latter:

[H0,D1,2] = 0, [H0,D3,4] = ∓2iD3,4, (21)

[H1,D1,2] = −2iD4, [H2,D1,2] = 2iD3, (22)

[H1,D3] = −2i(D1 + D2), [H1,D4] = 0, (23)

[H2,D4] = 2i(D1 + D2), [H2,D3] = 0. (24)

This algebraic structure suggests that the operator W (t) in
Eq. (2) may be taken as

W (t) = V (t)U (t), (25)

where

V (t) = eg1D1eg2D2eg3D3eg4D4 (26)

and

U (t) = er0H0er1H1er2H2 . (27)

Here ri(t) and gi(t) are time-periodic c-number functions
which are to be suitably adjusted so as to make L̃ time
independent. The problem is then solved sequentially. First
one applies U (t) and adjusts the ri(t) to make the unitary
part time independent. Then V (t) is applied and the gi(t) are
adjusted to deal with the dissipative part. In this section, we will
illustrate the procedure in the simpler case when ω = λ = 0,

that is, when only the dissipative terms are present. The general
formulation is presented in Appendixes B and C and the main
results will be summarized in Sec. III B below.

A. Purely dissipative case

In the case ω = λ = 0 the situation simplifies dramatically
since only the dissipative part remains in the Liouvillian (15).
Consequently, it suffices to choose U (t) = 1 in Eq. (25). To
carry out the rotating frame transformation in Eq. (2) it is
necessary to evaluate products such as

eg1D1D2e
−g1D1 = e−g1D2 + (e−g1 − 1)D1, (28)

which can be found as usual, with the Baker-Campbell-
Hausdorff formula. One also requires the identity

d(egiDi )

dt
(e−giDi ) = dgi

dt
Di . (29)

Carrying out all computations we then find

L̃ = C1(t)D1 + C2(t)D2 + C3(t)D3 + C4(t)D4, (30)

where

C2(t) = e−g1 [ġ2 − γt + γte
g2 (Nt + 1)], (31)

C1(t) = ġ1 − ġ2 + γt + C2(t), (32)

C3(t) = eg2−g1 [ġ3 + γtg3 − γtMt ], (33)

C4(t) = eg2−g1 [ġ4 + γtg4 − γtM
∗
t ]. (34)

We now must choose time-periodic functions for the gi(t)
which will make all Ci(t) time independent. We see that this
may be accomplished by setting g2, g3, and g4 to be the time-
periodic solutions of

ġ2 − γt + γte
g2 (Nt + 1) = 0, (35)

ġ3 + γtg3 − γtMt = 0, (36)

ġ4 + γtg4 − γtM
∗
t = 0, (37)

which then imply C2 = C3 = C4 = 0. Note also that g4 = g∗
3 .

Finally, in order to make C1(t) time independent, we may
choose

g1(t) = g2(t) +
∫ t

0
dt ′[γ̄ − γ (t ′)], (38)

where we have defined the time average

γ = 1

T

∫ T

0
dt γ (t). (39)

With this form for g1 we then get C1 = γ̄ , so the rotating frame
Liouvillian becomes simply

L̃ = γ̄D1. (40)

Thus, in the rotating frame the system evolves as if coupled to
a zero-temperature bath with damping rate γ̄ .

We see from Eq. (36) that g3 satisfies a linear differential
equation, whereas the same is not true for g2. However, if we
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change variables to

G2 = e−g2 − 1
2 (41)

then Eq. (35) becomes

Ġ2 + γtG2 = γt (Nt + 1
2 ), (42)

which is linear in G2. Thus, we conclude that in the case of
purely dissipative dynamics, all Floquet variables satisfy linear
differential equations. We will see that when λt �= 0 in Eq. (9),
this will no longer be the case.

Having found the functions which make L̃ time indepen-
dent, we now apply the inverse procedure and compute the
Floquet Liouvillian in Eq. (4), with L̃ being given by Eq. (40).
As a result, we find

LF (t) = γ̄ [NF (t) + 1]D1 + γ̄ NF (t)D2

− γ̄MF (t)D3 − γ̄M∗
F (t)D4. (43)

which has the same form as the original dissipator (17), but with
time-independent damping γ̄ and new parameters NF (t) and
MF (t), which turn out to be simply given by NF (t) = G2(t)
and MF (t) = g3(t). Thus, in view of Eqs. (42) and (36), we
may recast the final result as the statement that the Floquet
parameters are the time-periodic solutions of

ṄF + γtNF = γtNt , (44)

ṀF + γtMF = γtMt . (45)

These solutions then determine the value of the thermal noise
and squeezing at any time t during the limit cycle.

In the Floquet Liouvillian the time dependence enters only
as a parameter and all we require is the steady state of LF for
a given t . This state turns out to be simply a squeezed thermal
state with covariances

〈a†a〉t = NF (t), 〈aa〉t = MF (t). (46)

Thus, once the periodic solutions of Eqs. (44) and (45) are
found, one knows exactly the density matrix in the limit cycle.

B. Summary of results for the general case

When λt �= 0 the situation becomes much more compli-
cated. In this case we must use the full transformation W =
V U in Eq. (25). The procedure is applied sequentially, first
dealing with the unitary part and then with the dissipative part.
In this section we will focus only on the main results and leave
the details of the calculations to Appendixes B and C.

Once the functions ri(t) and gi(t) in Eqs. (26) and (27) are
properly adjusted, one finds the surprisingly simple result for
the rotating frame Liouvillian

L̃ = �̄H0 + γ̄D1, (47)

where �(t) = ωt + 2iλt r2(t). The variable r2(t) [which is part
of the rotating frame transformation in Eq. (27)] turns out to
play a special role, being the time-periodic solution of the
Riccati equation

ṙ2 + 2iωt r2 − 2λtr
2
2 + λ∗

t

2
= 0, (48)

which is the only nonlinear equation in the problem. The result
in Eq. (47) is noteworthy. It shows that, in the generalized
rotating frame, the system always evolves as a simple harmonic
oscillator coupled to a zero-temperature bath with damping rate
γ̄ . We also note that in general, �̄ may be complex, which is
the source of potential instabilities, as explained below.

Next, applying Eq. (4), we obtain for the Floquet Liouvillian
(see Appendix D)

LF (t) = ωF (t)H0+λF (t)

2
H1 + λ′

F (t)

2
H2 + γ̄ [NF (t) + 1]D1

+γ̄ NF (t)D2 − γ̄MF (t)D3 − γ̄M ′
F (t)D4. (49)

This therefore has the same form as the original Liouvillian
(15), but with modified parameters ωF , λF , λ′

F , NF ,MF , and
M ′

F , whose explicit forms are given below in Eqs. (D1)–
(D6). We note also that, in general, λ′

F �= λ∗
F and M ′

F �= M∗
F .

However, this does not lead to unphysical results, as explained
in Appendix D. The steady state of LF (t) is also a squeezed
thermal state, with covariances given by Eqs. (C10)–(C12).
Thus, as in the purely dissipative case, knowing the Floquet
Liouvillian immediately allows us to know the state in the limit
cycle. We also call attention to the fact that the damping rate
that appears in Eq. (49) is γ̄ , which implies that the steady state
will be unique irrespective of how small γt is, unless γt = 0 at
all times.

When η := ωt − λt is time independent, we recover the
more common mechanical situation of a harmonic oscillator
H = (p2 + �2

t q
2)/2, subject to a time-periodic frequency

�t = ω2
t − λ2

t . In this case we may define a new variable ξ (t)
such that r2(t) = i

2 + ξ 2/(i + iξ 2 + ξ ξ̇/η). Then Eq. (48) im-
plies that ξ will satisfy the famous Ermakov-Pinney equation

ξ̈ + �2
t ξ = η2

ξ 3
, (50)

which is exactly the same as in the unitary problem. This
equation always has a time-periodic solution, but it may be
either real or such that ξ 2 is purely imaginary [52]. The
former case corresponds to a stable evolution whereas the
latter is unitarily unstable (that is, it would be unstable in the
absence of dissipation). For a purely unitary evolution, these
two regimes can be differentiated by the value of �̄ appearing in
Eq. (47), which is real in the unitarily stable phase and complex
otherwise. These instabilities refer to the fact that depending
on the drive, the trajectory of the harmonic oscillator may
grow unboundedly, a problem which also occurs in the case
of classical harmonic oscillators.

To know if a unitarily unstable solution will be stabilized by
the presence of dissipation, we must look into the eigenvalues
of L̃ in Eq. (47). Due to its simplicity, its eigenvalues can
actually be found analytically and read −γ̄ n/2 + 2i�̄k, where
n = 0,1, . . . and k ∈ [− n

2 , n
2 ], with
k = 1. Hence, we find that

the condition for the system to converge to a stable limit cycle
is

γ̄ > 2|Im(�̄)|. (51)

This formula provides a remarkably transparent method for
determining the minimum amount of damping required to
stabilize a cycle: One must simply compare the output of the
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unitary evolution with the average damping. This result holds
for any type of protocol, hence generalizing and simplifying
the approach introduced in Refs. [27,28].

IV. EXAMPLE: CARNOT CYCLE

Finally, to illustrate an application of the previous results,
we present the operation of a finite-time Carnot engine operat-
ing under continuous frequency modulations [cf. Fig. 1(c)].
We consider for simplicity the mechanical scenario where
η = ωt − λt is time independent so that the frequency protocol
is completely specified by �t = ω2

t − λ2
t (for concreteness we

choose η = �0). The order of the cycle is chosen as in Fig. 1(c):
ab, hot isothermal expansion at TH ; bc, isentropic expansion;
cd, cold isothermal compression at TC ; and da, isentropic
compression. For the harmonic oscillator, expansions (com-
pressions) mean decreasing (increasing) the frequency �. All
four strokes of the cycle were taken to have the same duration
of T /4.

Before we turn to the finite time operations of the engine, it
is necessary to review some properties of the quasistatic cycle.
During an isothermal stroke, the energy at any time will be
given by

〈H 〉t = ωt

(
Nt + 1

2

)
+ λtMt + λ∗

t M
∗
t

2
= �t

2
coth

(
�t

2T

)
.

(52)

If T 	 �t we get the classical result 〈H 〉t 
 T . The classical
harmonic oscillator therefore behaves like an ideal gas, in the
sense that the energy during the isothermal stroke is constant.
Conversely, for the quantum oscillator, the energy depends on
the frequency. In the isentropic strokes, on the other hand, the
evolution is purely unitary so that the quasistatic energy is
obtained from the adiabatic theorem and reads

〈H 〉t = �t

�t0

〈H 〉t0 , (53)

where t0 is the initial time of the unitary stroke.
From these results we may then write down the energy of

the system at the end of each quasistatic stroke

〈H 〉a = �a

�d

〈H 〉d , (54)

〈H 〉b = �b

2
coth

(
�b

2TH

)
, (55)

〈H 〉c = �c

�b

〈H 〉b, (56)

〈H 〉d = �d

2
coth

(
�d

2TC

)
.

We therefore see that, depending on the type of frequency
protocol being used, the cycle may not have a reversible
quasistatic limit. The reason is that, if by the end of the
isentropic strokes (c and a) the energies 〈H 〉c and 〈H 〉a are
not the same as the thermal equilibrium energies with the hot
and cold baths, respectively, then an inevitable dissipation will
take place, even in the quasistatic limit. The condition for the
existence of a reversible quasistatic limit is therefore obtained

by imposing that

〈H 〉a = �a

2
coth

(
�a

2TH

)

and

〈H 〉c = �c

2
coth

(
�c

2TC

)
.

This therefore implies the constraints [56,57]

TC

TH

= �c

�b

= �d

�a

, (57)

which we will refer to as the conditions for quasistatic re-
versibility.

We now turn to the finite time operation. With Eq. (57) in
mind, we choose for our cycle the frequency modulation

�(t) = 
 + δt cos3(2πt/T ), (58)

where 
 = 1 is a constant setting the overall energy scale.
Moreover, δt is chosen so as to satisfy Eq. (57), which implies

δt =

⎧⎪⎨
⎪⎩

δ for 0 < t < T /4

δ


+δ
for T /4 < t < 3T /4

δ for 3T /4 < t < T .

(59)

In the results to be presented below, we have chosen for
simplicity δ = 0.85. The choice (58) for �(t) leads to a
smooth function (only the third derivative is discontinuous)
while still preserving the spirit of the Carnot cycle of having
two expansion strokes followed by two compressions [see
Fig. 1(c)].

The damping rate was then chosen as

γt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ0 for 0 < t < T /4

0 for T /4 < t < T /2

γ0 for T /2 < t < 3T /4

0 for 3T /4 < t < T .

(60)

This is illustrated in Fig. 1(c): The red and blue rectangles
represent the two isothermal processes for which γt = γ0 and
the green rectangles represent the isentropic processes for
which γt = 0. Finally, the Lindblad parameters Nt and Mt are
chosen according to

Nt + 1

2
= ωt

2�t

coth

(
�t

2Tt

)
, Mt = − λt

2�t

coth

(
�t

2Tt

)
,

(61)

where Tt is given by

Tt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

TH for 0 < t < T /4

− for T /4 < t < T /2

TC for T /2 < t < 3T /4

− for 3T /4 < t < T .

(62)

Here the notation − means that the value of the temperature
in the isentropic strokes is irrelevant since γt = 0. The hot
temperature was chosen as TH = 1 (in units of 
 = 1). Then,
from Eq. (57) one finds that the cold bath must have a
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FIG. 2. Operation of a finite-time Carnot engine. The frequency
modulation was chosen to be �(t) = 
 + δt cos3(2πt/T ) [Fig. 1(c)]
and all quantities are given in units of 
 = 1. Quasistatic reversibil-
ity [56,57] requires that we choose δt = δ in (ab,da) and δt =

δ/(
 + δ) in (bc,cd). The other parameters are δ = 0.85, TH = 1,
TC = 
TH /(
 + δ), and γ = 0.03 in the isothermal strokes (and
zero otherwise). (a) Stable cycles in an 〈H 〉t vs 1/�t diagram for
periods T = 1000, 700, and 300 (from outermost to innermost).
The black dashed lines represent the corresponding quasistatic cycle.
(b) Efficiency η = −W/QH (blue circles) and output power P =
−W/T (red squares; arbitrary units) as a function of the periodT . The
uppermost dashed line corresponds to the classical Carnot efficiency
ηC = 1 − TC/TH . Maximum power output is attained at T ∼ 700.
(c) Stability analysis using Eq. (51), obtained by plotting 2|Im(�̄)|/γ̄
vs T . When this quantity is larger than unity (horizontal dashed line)
the cycle becomes unstable.

temperature

TC = 


δ + 

TH 
 0.54. (63)

Examples of finite time cycles are shown in Fig. 2(a), in
which the gradual convergence towards the quasistatic limit
can be clearly observed. In Fig. 2(b) we present the efficiency
and the output power. The analysis of the quasistatic work,
heat, and efficiency is presented in Appendix F. As expected,
when the cycle duration T becomes large the efficiency tends
to the Carnot efficiency and the output power tends to zero.
Maximum power output is attained at T ∼ 700. Finally, we
consider the stability of the cycle in Fig. 2(c), by studying
Eq. (48) and the stability criteria (51). These results show
that the regions of instability appear in the form of pulses,
signifying a type of resonant behavior. The interesting aspect
of these results is that it allows one to devise the necessary
amount of dissipation required to create a stable cycle.

V. CONCLUSION

We have shown how Lindblad-Floquet theory can be used
to provide a unified description of finite-time quantum heat
engines, answering both the question of convergence to a limit
cycle and giving the state of the system once the limit cycle
has been reached. As an example, we applied it to an open
harmonic oscillator, which is the most widely used working
fluid used in quantum heat engines. As this example has shown,
casting the problem in this framework allows for a deeper
understanding of the dynamical features involved in the cycle’s
operation. Of course, finding the Floquet Liouvillian in practice
may be a difficult task. The example we have given is one for
which this task can be done analytically, something which is

in principle true whenever the algebra of the superoperators is
closed. Otherwise, it must be found perturbatively.

We believe that the results presented here could serve as
a platform for advancing our understanding of quantum heat
engines. In particular, two immediate applications stand out.
First, this theory provides the ideal framework for designing
a shortcut to adiabaticity protocols operating in the finite-time
scenario. Second, it encompasses naturally the use of time-
dependent squeezing modulations, which could be used to
reach higher efficiency at maximum power. Other physical
implementations, such as qubit systems or multiple bosonic
modes, can also be studied using the same methods.
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APPENDIX A: RELATION BETWEEN THE BOSONIC AND
MECHANICAL PICTURES

Let us assume that the parameter λt appearing in the
Hamiltonian (9) is real and let us rewrite H in terms of position
and momentum. To do so for time-dependent Hamiltonians
requires some care since naive transformations would lead
to time-dependent quadrature operators. In order to keep on
having time-independent operators, one must then introduce a
transformation of the form

q = 1√
2η

(a† + a), p = i

√
η

2
(a† − a), (A1)

where η is an arbitrary frequency scale setting the units of q and
p. In terms of these new variables, the bosonic Hamiltonian
(9) becomes

H = (ωt − λt )

2η
p2 + η

2
(ωt + λt )q

2. (A2)

Thus, we see that in general the Hamiltonian (9) corresponds
to a mechanical oscillator where both the frequency and the
mass are time dependent.

We also see that the more usual problem of a time-
independent mass occurs when ωt − λt is time independent.
In this case one may choose, without loss of generality, η =
ωt − λt , leading to

H = p2

2
+ �2

t

2
q2, (A3)

where

�2
t = ω2

t − λ2
t = η(ωt + λt ). (A4)

In this case one therefore recovers precisely the setup of the
Ermakov-Lewis theory.

APPENDIX B: UNITARY PART

In this appendix we consider the problem of tackling the
full time-dependent Liouvillian (15). Using the transformation
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(25) in Eq. (2) leads to

L̃ = dV

dt
V −1 + V

{
dU

dt
U−1 + ULtU

−1

}
V −1. (B1)

We will begin by dealing with the terms inside curly brackets,
corresponding to the unitary evolution.

Carrying out the Baker-Campbell-Hausdorff (BCH) expan-
sions, as in Sec. III A, we find

dU

dt
U−1+ULtU

−1 = B0(t)H0+B1(t)H1+B2(t)H2 + D̃t ,

(B2)

where D̃t = UDtU
−1 (to be dealt with in Appendix C) and

B2(t) = e−2ir0

[
ṙ2 + 2iωt r2 − 2λtr

2
2 + λ∗

t

2

]
, (B3)

B1(t) = −4r2
1 B2(t) + e2ir0

[
ṙ1 − 2iωt r1 + 4λtr1r2 + λt

2

]
,

(B4)

B0(t) = −4ir1e
2ir0B2(t) + ṙ0 + ωt + 2iλt r2. (B5)

Next we adjust the functions r0, r1, and r2 so as to make the
unitary part of Eq. (B2) time independent. To accomplish this,
we choose r1(t) and r2(t) to be the time-periodic solutions of

ṙ2 + 2iωr2 − 2λtr
2
2 + λ∗

t

2
= 0, (B6)

ṙ1 − 2iωr1 + 4λtr1r2 + λt

2
= 0, (B7)

which then makes B1 = B2 = 0. Next let

�(t) = ωt + 2iλt r2(t). (B8)

Then, to make B0(t) in Eq. (B5) time independent we choose

r0(t) =
∫ t

0
dt ′[�̄ − �(t ′)], (B9)

where, recall, the time average is defined in Eq. (39). With
these choices Eq. (B2) becomes

dU

dt
U−1 + ULtU

−1 = �̄H0 + D̃t . (B10)

Consequently, Eq. (B1) reduces to

L̃ = dV

dt
V −1 + V {�̄H0 + D̃t }V −1. (B11)

The next step is to now turn to the dissipative part and adjust
V (t) in order to make Eq. (B11) time independent.

However, before doing so it is useful to anticipate certain
facts about r1 and r2. Equation (B6) admits two types of
solutions, representing unitarily stable (US) and unitarily
unstable (UU) dynamics (by unitarily we refer to stability in
the absence of dissipation). Let us define the variable

σ =
{

1 for US dynamics

i for UU dynamics.
(B12)

Then the properties of the two phases are most readily distin-
guished by means of the auxiliary variables

J = 1 + 8r1r2, (B13)

z = 1 + 4r1r2 = 1 + J

2
, (B14)

r ′
1 = r2(1 + 4r1r2) = r2z, (B15)

which are introduced to make the results that follow more self-
contained. As will be discussed in Appendix E, it turns out that

r ′
1 = σ 2r∗

1 (B16)

and

J = σj, j ∈ R. (B17)

Using also that J 2 = 1 + 16r1r
′
1 = 1 + 16σ 2|r1|2, we find that

j 2 = 16|r1|2 + σ 2. (B18)

Moreover, combining these results we find

4|r1|2 = σ 2

(
J 2 − 1

4

)
= σ 2z(z − 1). (B19)

Finally, it is worth mentioning that

z∗ =
{
z, σ = 1

1 − z, σ = −i.
(B20)

We can also use the above results to express r2 in terms of
r1, z, and j in various ways:

r2 = σ 2r∗
1

z
= σj − 1

8r1
= 2σ 2r∗

1

σj + 1
. (B21)

In particular, it then follows that in the UU phase (σ = −i)

4|r2|2 = 1. (B22)

so r2(t) evolves in time as a pure phase.

APPENDIX C: DISSIPATIVE PART

We now return to Eq. (B11) and adjust the functions gi

in order to eliminate the remaining time dependence. To do
so we first need to compute D̃t = UDtU

−1. Using again the
BCH expansions, we find that D̃t has the same structure as Dt

in Eq. (17) but with modified parameters

D̃t = γt (Ñt + 1)D1 + γt ÑtD2 − γtM̃tD3 − γtM̃
′
tD4, (C1)

where

Ñt + 1
2 = J

(
Nt + 1

2

) + 2iMtr1 − 2iM∗
t r ′

1, (C2)

M̃t = [
Mt − 4ir2

(
Nt + 1

2

) − 4M∗
t r2

2

]
e−2ir0 , (C3)

M̃ ′
t = [

M∗
t z2 + 4ir1z

(
Nt + 1

2

) − 4Mtr
2
1

]
e2ir0 . (C4)

In these formulas, we assume that we have already solved
for the ri , so these correspond simply to new time-periodic
parameters. In general, however, M̃ ′

t �= M̃∗
t and Nt may now

be complex. Below in this appendix we will show how that can
be amended.
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We now see from this result that Eq. (B11) falls under the
same category of the problem treated in Sec. III A. Carrying
out all expansions we find

L̃ = �̄H0 + C1(t)D1 + C2(t)D2 + C3(t)D3 + C4(t)D4,

(C5)

where now

C2(t) = e−g1 [ġ2 − γt + γte
g2 (Ñt + 1)], (C6)

C1(t) = ġ1 − ġ2 + γt + C2, (C7)

C3(t) = eg2−g1 [ġ3 + (γt + 2i�̄)g3 − γtM̃t ], (C8)

C4(t) = eg2−g1 [ġ4 + (γt − 2i�̄)g4 − γtM̃
′
t ]. (C9)

The only difference with respect to Eqs. (31)–(34) is the
appearance of �̄ and the fact that the physical parameters
(Nt,Mt ,M

∗
t ) are now replaced by (Ñt ,M̃t ,M̃

′
t ). Proceeding as

before, we then obtain a time-independent L̃ by setting

ġ2 − γt + γte
g2 (Ñt + 1) = 0, (C10)

ġ3 + (γt + 2i�̄)g3 = γtM̃t , (C11)

ġ4 + (γt − 2i�̄)g4 = γtM̃
′
t , (C12)

and

g1(t) = g2(t) +
∫ t

0
dt ′[γ̄ − γ (t ′)]. (C13)

We also define G2(t) exactly as in Eq. (41), which then gives

Ġ2 + γtG2 = γt

(
Ñt + 1

2

)
. (C14)

After setting all these functions, we then finally obtain

L̃ = �̄H0 + γ̄D1, (C15)

which is Eq. (47).
In the above formulation we generally have g4 �= g∗

3 and
G2 complex. It is therefore convenient to use a new set of
variables in which the physical meaning of these variables can
be made clearer. The variable G2 can be left as is. However, it
is convenient to use Eqs. (B12)–(B20) to rewrite Eq. (C2) as

Ñt + 1
2 = σ

{
j
(
Nt + 1

2

) + 2iMtr1σ
∗ − 2iM∗

t r∗
1 σ

}
. (C16)

The quantity in curly brackets in Eq. (C16) is now real by
construction, so Ñt + 1

2 ∝ σ . Consequently, the same will be
true for G2. As will be seen below, G2 always appears in
products of the form JG2 ∝ σ 2, which will therefore be real.

Next we turn to g3 and g4. First we eliminate the dependence
on r0 by defining g̃3 = e2ir0g3 and g̃4 = e−2ir0g4. Because of
Eq. (B9) it then follows that Eqs. (C11) and (C12) are simply
replaced by

˙̃g3 + (γt + 2i�t )g̃3 = γt

[
Mt − 4ir2

(
Nt + 1

2

) − 4M∗
t r2

2

]
,

(C17)

˙̃g4 + (γt − 2i�t )g̃4 = γt

[
M∗

t z2 + 4ir1z
(
Nt + 1

2

) − 4Mtr
2
1

]
.

(C18)

That is, compared to Eqs. (C11) and (C12), �̄ is replaced by
� and the factors of e±2ir0 are eliminated from Eqs. (C3) and
(C4).

Next we change variables to

G3 = zg̃3, G4 = g̃4

z
, (C19)

where, recall, z = 1 + 4r1r2 [Eq. (B14)]. We then get

Ġ3 + (γt + 2iωt − νt )G3

= γt

[
Mtz − 4iσ 2r∗

1

(
Nt + 1

2

)
− 4M∗

t (r∗
1 )2

z

]
, (C20)

Ġ4 + (γt − 2iωt + νt )G4

= γt

[
M∗

t z + 4ir1

(
Nt + 1

2

)
− 4Mt (r1)2

z

]
, (C21)

where

νt = 4λtr2 + ż

z
(C22)

= 2λtr2 − 2λ∗r1

z
(C23)

= 2λtσ
2r∗

1 − 2λ∗r1

z
. (C24)

In the US phase σ = 1 and z∗ = z, so ν∗ = −ν. Consequently,
we see that in this case G∗

3 = G4. In the UU phase, on the
other hand, this is no longer true. However, in the UU phase a
new symmetry appears, namely, ir1G3 and ir∗

1 G4 become real.
This can be seen by verifying that ir1G3 satisfies a linear real
equation, so the solution must also be real. To summarize, in
the unitarily stable case (σ = 1) we have G3 = G∗

4 and G2 ∈ R
and in the unitarily unstable case (σ = i) we have (r1G3)∗ =
−(r1G3), (r∗

1 G4)∗ = −r∗
1 G4, and iG2 ∈ R.

APPENDIX D: FLOQUET LIOUVILLIAN

The final step is to apply Eq. (4) to find the Floquet
Liouvillian. The result is Eq. (49) with

ωF = �̄J, (D1)

λF = 4i�̄r1, (D2)

λ′
F = −4i�̄r ′

1, (D3)

NF + 1

2
= JG2 − 2i

γ̄

[
r1z(γ̄ + 2i�̄)g̃3 − r2(γ̄ − 2i�̄)g̃4

]
,

(D4)

MF = 4ir ′
1G2 + 1

γ̄

[
z2(γ̄ + 2i�̄)g̃3 − 4r2

2 (γ̄ − 2i�̄)g̃4
]
,

(D5)

M ′
F = −4ir1G2 + 1

γ̄

[ − 4r2
1 (γ̄ + 2i�̄)g̃3 + (γ̄ − 2i�̄)g̃4

]
.

(D6)
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In these expressions, all quantities are to be evaluated at time t , which has been omitted for clarity.
The steady state of the Floquet Liouvillian (4) is unique and corresponds to a squeezed thermal state, which is completely

characterized by the second moments

〈a†a〉 + 1

2
=

(
NF + 1

2

)(
γ̄ 2 + 4ω2

F

) + MF λF (2ωF + iγ̄ ) + M ′
F λ′

F (2ωF − iγ̄ )

γ̄ 2 + 4ω2
F − 4λF λ′

F

, (D7)

〈aa〉 = MF (γ̄ 2 − 2iγ̄ ωF − 2λF λ′
F ) − 2M ′

F λ′2
F − λ′

F (2NF + 1)(2ωF + iγ̄ )

γ̄ 2 + 4ω2
F − 4λF λ′

F

, (D8)

〈a†a†〉 = M ′
F (γ̄ 2 + 2iγ̄ ωF − 2λF λ′

F ) − 2MF λ2
F − λF (2NF + 1)(2ωF − iγ̄ )

γ̄ 2 + 4ω2
F − 4λF λ′

F

. (D9)

Substituting the Floquet parameters (D1)–(D6) into Eqs. (D7)–
(D9), we get

〈a†a〉 + 1
2 = JG2 − 2ir1zg̃3 + 2ir2g̃4, (D10)

〈aa〉 = 4ir ′
1G2 + z2g̃3 − 4r2

2 g̃4, (D11)

〈a†a†〉 = −4ir1G2 − 4r2
1 g̃3 + g̃4. (D12)

In terms of the variables G3 and G4, defined in Eq. (C19), these
simplify even further to

〈a†a〉 + 1
2 = JG2 − 2i(r1G3 − r ′

1G4), (D13)

〈aa〉 = 4ir ′
1G2 + zG3 − 4r ′2

1

z
G4, (D14)

〈a†a†〉 = −4ir1G2 − 4r2
1

z
G3 + zG4. (D15)

It follows from this result, together with our previous discus-
sion about G2, G3, and G4, that in both the US and UU cases we
will have 〈a†a〉 real and 〈aa〉 = 〈a†a†〉∗, as expected on physi-
cal grounds. This is a bit cumbersome to verify but can be done
as follows. In the US phase r1G3 − r ′

1G4 = r1G3 − r∗
1 G∗

3,
which is purely imaginary, hence making (C13) real. In the UU
phase, on the other hand, r1G3 and r∗

1 G4 will independently
be purely imaginary, hence leading to the same conclusion.
One may proceed similarly when comparing (C14) and (C15).
For instance, in the US phase (zG3 − 4r∗2

1 G4/z)∗ = zG4 −
4r2

1 G3/z, hence making 〈aa〉∗ = 〈a†a†〉. In the UU phase, on
the other hand, one has to make use of Eq. (B19), which in this
case is written as 4|r1|2 = zz∗. Then, since G∗

3 = −r1G3/r∗
1

it follows that (zG3)∗ = −z∗r1G3/r∗
1 = −4r2

1 G3/z. A similar
calculation will hold for 4r1∗2

z
G4, so once again we will have

〈aa〉∗ = 〈a†a†〉.

APPENDIX E: STABILITY OF THE ERMAKOV-
LEWIS THEORY

Let us analyze the connection between our results and the
Ermakov-Lewis theory describing the unitary dynamics of a
harmonic oscillator subject to a time-dependent frequency. As
discussed in Sec. A, this connection is established when η =
ωt − λt is time independent, in which case we work instead

with �t defined in Eq. (A4). If we now let

r1(t) = ξ ξ̇

4η
− i

8

[
1

ξ 2
− ξ 2 + ξ̇ 2

η2

]
, (E1)

r2(t) = i

2
+ ξ 2

i(1 + ξ 2) + ξ ξ̇/η
, (E2)

then one may verify that Eq. (B6) will be satisfied provided
ξ is a time-periodic solution of the Pinney equation (50) This
therefore serves to show that our calculations reproduce the
Ermakov-Lewis theory as a particular case.

Equation (50) always admits a time-periodic solution.
However, this solution may be either real or such that ξ 2 is
purely imaginary. The former corresponds to unitarily stable
solutions whereas the latter are unitarily unstable (that is, they
would be unstable in the absence of dissipation). This can now
be used to demonstrate the facts stated below Eqs. (B13) and
(B15). The quantities J and r ′

1 may be rewritten as

J = 1 + 8r1r2 = 1

2

(
1

ξ 2
+ ξ 2 + ξ̇ 2

η2

)
, (E3)

r ′
1 = r2(1 + 4r1r2) = ξ ξ̇

4η
+ i

8

[
1

ξ 2
− ξ 2 + ξ̇ 2

η2

]
. (E4)

From the properties of ξ in the two phases it then readily
follows that J ∗ = J in the US phase and J ∗ = −J in the UU
phase [Eq. (B17)]. Similarly, it follows that r ′

1 = r∗
1 in one case

and r ′
1 = −r∗

1 in the other [Eq. (B16)].

APPENDIX F: HEAT, WORK, AND EFFICIENCY IN THE
QUASISTATIC CASE

In this appendix we discuss the quasistatic properties of the
Carnot cycle. We take for the work rate the usual definition

dW
dt

=
〈
∂H

∂t

〉
= ω̇t

(
〈a†a〉t + 1

2

)
+ λ̇t

2
(〈aa〉t + 〈a†a†〉t ).

(F1)

In the isentropic strokes no heat flows to the environment, so
the total work performed becomes simply

Wbc = 〈H 〉c − 〈H 〉b (F2)

= �c

2
coth

(
�c

2TC

)
− �b

2
coth

(
�b

2TH

)
, (F3)

Wda = 〈H 〉a − 〈H 〉d (F4)
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= �a

2
coth

(
�a

2TH

)
− �d

2
coth

(
�d

2TC

)
. (F5)

As for the isothermal strokes, we have

〈a†a〉t + 1

2
= Nt + 1

2
= ωt

2�t

coth

(
�t

2T

)
, (F6)

〈aa〉t = Mt = − λt

2�t

coth

(
�t

2T

)
, (F7)

where T means either TH or TC . The work rate then becomes

dW
dt

= ω̇tωt − λ̇tλt

2�t

coth

(
�t

2T

)
; (F8)

however, this may be written as

dW
dt

= T
d

dt
ln

[
sinh

(
�

2T

)]
. (F9)

Integrating over the initial and final times of the stroke then
yields the total work performed

Wiso = T ln

[
sinh(�f /2T )

sinh(�i/2T )

]
. (F10)

In the classical limit T 	 �i,f we get

Wiso 
 T ln

(
�f

�i

)
. (F11)

The total work performed in each stroke will therefore be

Wab = TH ln

[
sinh(�b/2TH )

sinh(�a/2TH )

]
, (F12)

Wbc = 〈H 〉c − 〈H 〉b (F13)

= �c

2
coth

(
�c

2TC

)
− �b

2
coth

(
�b

2TH

)
, (F14)

Wcd = TC ln

[
sinh(�d/2TC)

sinh(�c/2TC)

]
, (F15)

Wda = 〈H 〉a − 〈H 〉d (F16)

= �a

2
coth

(
�a

2TH

)
− �d

2
coth

(
�d

2TC

)
. (F17)

Moreover, the heat exchanged in ab and cd will be

QH = 〈H 〉b − 〈H 〉a − Wab, (F18)

QC = 〈H 〉d − 〈H 〉c − Wcd . (F19)

From this one may now compute the efficiency of the qua-
sistatic cycle

η = −Wab + Wbc + Wcd + Wda

QH

= 1 + QC

QH

. (F20)

However, due to Eq. (57) it follows that

QC

QH

= − TC

TH

, (F21)

therefore leading us to the Carnot efficiency

ηC = 1 − TC

TH

. (F22)

We emphasize that this result is only obtained if the constraint
(57) is applied.
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