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Relativistic and radiative corrections to the dynamic Stark shift:
Gauge invariance and transition currents in the velocity gauge
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We investigate the gauge invariance of the dynamic (ac) Stark shift under “hybrid” gauge transformations
from the “length” ( �E · �r) to the “velocity” ( �A · �p) gauge. By a “hybrid” gauge transformation, we understand a
transformation in which the scalar and vector potentials are modified, but the wave function remains unaltered. The
gauge invariance of the leading term is well known, while we here show that gauge invariance under perturbations
holds only if one takes into account an additional correction to the transition current, which persists only in the
velocity gauge. We find a general expression for this current, and apply the formalism to radiative and relativistic
corrections to the dynamic Stark effect, which is described by the sum of two polarizability matrix elements.
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I. INTRODUCTION

One might think that all conceivable questions regarding
the gauge invariance of physical processes in quantum electro-
dynamics (QED) have already been addressed in the literature.
That is not the case. The point is that strictly speaking, a
transformation from the “length” ( �E · �r) to the “velocity”
( �A · �p) gauge requires a gauge transformation of the wave
function, which is, however, inconvenient to implement in
practice, and whose necessity is almost always ignored in prac-
tical calculations [1]. Indeed, a particularly interesting gauge
transformation is the Power-Zienau transformation, which
transforms the QED Hamiltonian from the �A · �p (“velocity”)
to the �E · �r (“length”) form [2,3].

The question then is which gauge should be used in the
analysis, e.g., of spectroscopic experiments as one models the
excitation dynamics [1,4,5]. In a now famous remark on page
268 of Ref. [4], Lamb notices that the interpretation of the
wave function is only preserved in the length gauge, and that
this gauge should be used, therefore, in the description of
his experiments. Specifically, this is because the momentum
operator retains its physical interpretation only in the length
gauge, without being modified by the presence of a nonvan-
ishing vector potential, which otherwise makes it necessary to
distinguish kinetic and canonical momenta [1].

Here, we would like to refer to a gauge transformation which
ignores the phase of the wave function as a “hybrid” gauge
transformation. Recently, it has been shown in Ref. [6] that,
under “hybrid” gauge transformations, two-photon transition
matrix elements are manifestly gauge “dependent” (not gauge
invariant) off resonance (i.e., when one transforms from the
length to the velocity gauge and ignores the gauge trans-
formation of the wave function). Specifically, in two-photon
transitions, the gauge invariance of transition matrix elements
under the hybrid scheme holds only at exact resonance [6].

In contrast, it is well known [5,7–10] that a number of other
processes which involve laser-atom interactions, such as the ac
Stark shift, or radiative corrections to the real and imaginary
part of the polarizability [9,10], are in fact gauge invariant

under the “hybrid” transformations. The common picture here
is that one could, in principle, formulate these effects in terms
of an adiabatic switching of the interaction Hamiltonian with
a factor exp(−ε|t |), where ε is infinitesimal and t is the
time variable, invoke the Gell-Mann and Low theorem (Eq.
(21) of Ref. [11]), and carry out the gauge transformation
of the wave function at t = ±∞, where it amounts to the
identity transformation (because the perturbing fields vanish).
All processes which allow for such a description have been
found to be gauge invariant under “hybrid” transformations
[5,7–10].

We here investigate questions related to processes which are
gauge invariant under “hybrid” gauge transformations. Let us
suppose that the (Schrödinger) Hamiltonian H of the system is
being perturbed by an additional Hamiltonian δH . This pertur-
bation induces a change in the energy by δE = 〈φ|δH |φ〉, and
the wave function perturbation is |δφ〉 = [1/(E − H )′]δH |φ〉,
where [1/(E − H )′] is the reduced Green’s function. The
question we pose is as follows: Which perturbation to the
interaction Hamiltonian (i.e., to the transition current) needs
to be added in the velocity gauge, for general δH , in order to
ensure gauge invariance of energy shifts, when we consider the
transformation from the velocity to the length gauge?

We shall investigate this question, using the ac Stark shift as
an example. Indeed, quite recently, the ac Stark shift has been
investigated in strong laser fields [12,13], with an emphasis on
the dressed-state formalism, and on the nontrivial additional
QED corrections which influence the Mollow spectrum of the
emitted radiation, beyond the trivial shift of the unperturbed
atomic levels, due to QED effects. The relativistic and radiative
corrections to the incoherent radiation spectrum emitted by the
dressed states have been analyzed. By contrast, in a weak laser
field, the atom-laser interaction can be treated perturbatively.
The perturbative effect of a time-varying electric field is
commonly referred to as the dynamic or ac (“alternating
current”) Stark shift [11,14].

We organize this paper as follows. After recalling funda-
mental aspects of a gauge transformations in Sec. II A, we
present in Sec. II B a short orientation on the leading-order
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dynamic (ac) Stark shift. In Secs. III A and III B, we examine
the question of how a perturbative potential modifies the
dynamic polarizability and, hence, the ac Stark shift in the
length and in the velocity gauges, respectively. A proof of the
gauge invariance of the dynamic polarizability induced by a
perturbative potential is presented in Sec. IV A. Two special
cases of perturbative potentials are of phenomenological rel-
evance (see Sec. IV B), namely, (i) an effective Lamb-shift
potential which describes the leading radiative correction to the
ac Stark shift, and (ii) the Hamiltonian describing the leading
relativistic correction.

II. FOUNDATIONS

A. Gauge transformation

We recall that under an electromagnetic U(1) gauge trans-
formation, a wave function φ(�r,t) transforms as follows,

φ(�r,t) → φ′(�r,t) = exp

(
ie�(�r,t)

h̄

)
φ(�r,t), (1a)

and the scalar and vector potentials transform as

�A(�r,t) → �A′(�r,t) = �A(�r,t) + ���(�r,t), (1b)

�(�r,t) → �′(�r,t) = �(�r,t) − ∂

∂t
�(�r,t), (1c)

where �(�r,t) is an arbitrary function of �r and t , while �A(�r,t)
and �(�r,t) are, respectively, the vector and the scalar poten-
tials. Under a full gauge transformation of the wave function
and the potentials, transition matrix elements and energy
shifts are invariant. However, it is sometimes computationally
cumbersome to implement a gauge transformation of both the
wave function and potentials, and one often resorts to a hybrid
gauge transformation [1,6,15,16], where the wave function is
left invariant, and only the (vector) potentials are transformed.

B. Leading (nonrelativistic) dynamic Stark shift

We assume an atom to be irradiated by a laser with
polarization vector ε̂L. To good approximation, one may ignore
the magnetic field which leads to a small perturbation of
the interaction. We implicitly assume that the atom is in a
standing-wave laser field at a point of maximum electric field
intensity, where the magnetic field completely vanishes. This
approximation was also made in Ref. [14]. Field-configuration
dependent corrections are discussed in Sec. IV of Ref. [5] and
in Sec. III of Ref. [17].

The dynamic Stark shift �Eac is given by

�Eac = − e2ILQ

2cε0ω2
, (2a)

Q = ω2

(
〈φ|(�εL · �x)

1

H − E + ω
(�εL · �x)|φ〉

+ 〈φ|(�εL · �x)
1

H − E − ω
(�εL · �x)|φ〉

)
. (2b)

Here ω is the angular laser frequency, and IL is the laser
intensity. Here and in the following, we will assume, without

loss of generality, that the laser field is oriented along the z

axis, i.e., �εL = ẑ. The corresponding canonically conjugate
momentum will be denoted by pz = −i∂/(∂z). We can restrict
the discussion to a z-polarized laser field with frequency ω

because the only atomic states under investigation here are S

states which are isotropic. In contrast, the dynamic Stark shift
would depend on the magnetic quantum number of P states
and states with higher orbital angular momenta.

III. PERTURBATIONS

A. Length-gauge perturbation

In the following, we use natural units with ε0 = h̄ = c = 1,
as is customary in the treatment of relativistic corrections in
atomic physics. Thus, for example, in our unit system, the
Rydberg constant R∞ is equal to α2m/2. Our unit of length
is the reduced electron Compton wavelength. We consider a
perturbation to the dynamic Stark shift (2) due to some per-
turbation δH which is added to the Schrödinger Hamiltonian.
Because both relativistic as well as the leading logarithmic
radiative corrections can be expressed in terms of perturbative
potentials, the formalism developed here allows for a unified
treatment of the relativistic and radiative corrections to the
dynamic polarizability, as discussed below in Sec. IV B.

In the length gauge, the dynamic Stark shift is proportional
to the quantity Q [see Eq. (2)] which may be expressed as

Q = ω2ρ, ρ = ρ1 + ρ2, (3)

where in turn (the reference state is |φ〉),

ρ1 = 〈φ|z m

H − E + ω
z|φ〉, (4a)

ρ2 = 〈φ|z m

H − E − ω
z|φ〉. (4b)

We now consider the first-order perturbation received by the
quantity ρ via the action of a perturbative Hamiltonian δH

which modifies the Schrödinger Hamiltonian H according to
H → H + δH . The perturbation δH leads to a perturbation
of the energy of the bound state, of the wave function and, of
course, δH also constitutes a correction to the Hamiltonian
H in the propagator denominator. In general, we have the
following first-order perturbations:

H → H + δH, (5a)

E → E + δE, δE = 〈φ|δH |φ〉, (5b)

|φ〉 → |φ〉 +
(

1

E − H

)′
δH |φ〉. (5c)

Here, the prime in the operator 1/(E − H )′ indicates that the
reference state is excluded from the spectral decomposition
of the operator (“reduced Green’s function”). The correction
received by Q via the action of δH is then

δQ = ω2δρ, (6)

where δρ is the sum of six terms,

δρ =
6∑

j=1

δρj . (7)
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Here, δρ1 and δρ2 are perturbations to the Hamiltonian,

δρ1 = −〈φ|z m

H − E + ω
δH

1

H − E + ω
z|φ〉, (8a)

δρ2 = −〈φ|z m

H − E − ω
δH

1

H − E − ω
z|φ〉. (8b)

The quantities δρ3 and δρ4 are energy perturbations,

δρ3 = 〈φ|z
(

m

H − E + ω

)2

z|φ〉 〈φ|δH |φ〉
m

, (8c)

δρ4 = 〈φ|z
(

m

H − E − ω

)2

z|φ〉 〈φ|δH |φ〉
m

. (8d)

Finally, the terms δρ5,6 are perturbations to the wave function,

δρ5 = 2〈φ|z m

H − E + ω
z

(
1

E − H

)′
δH |φ〉, (8e)

δρ6 = 2〈φ|z m

H − E − ω
z

(
1

E − H

)′
δH |φ〉. (8f)

B. Velocity-gauge perturbation

The dynamic Stark shift, in the velocity gauge, is propor-
tional to the quantity Q′ which may be expressed as

Q′ = χ, χ = χ1 + χ2 + χ3, (9)

where

χ1 = 〈φ|p
z

m

m

H − E + ω

pz

m
|φ〉, (10a)

χ2 = 〈φ|p
z

m

m

H − E − ω

pz

m
|φ〉, (10b)

χ3 = −〈φ|φ〉 = −1. (10c)

The seagull term is responsible for χ3. The prime in Q′ denotes
the velocity-gauge form of the correction. It is instructive to
observe that the large-ω asymptotic of Q′ reads as follows,

Q′ = −1 − 2
m

ω2
〈φ|p

z

m
(H − E)

pz

m
|φ〉

= −1 − m

ω2
〈φ|1

3
�∇2(V )|φ〉

= −1 − m

ω2
〈φ|4

3

π (Zα)

m2
δ(3)(�r)|φ〉

= −1 − 4

3

(Zα)4

n3

m2

ω2
δ�0, (11)

where we assume a hydrogenic state with principal quantum
number n that is nonvanishing at the origin only for S

symmetry,

〈φ|δ(3)(�r)|φ〉 = (Zαm)3

πn3
δ�0. (12)

The first-order correction to the dynamic polarizability, in the
velocity gauge, is

δQ′ = δχ, (13)

where again the prime denotes the velocity-gauge form of
the correction. Eventually, we desire to show that δQ = δQ′.

Just like its length-gauge counterpart δρ, the velocity-gauge
correction δχ is the sum of various terms,

δχ =
8∑

j=1

δχj . (14)

Here, δχ1 and δχ2 are perturbations of the Hamiltonian,

δχ1 = −〈φ|p
z

m

m

H − E + ω
δH

1

H − E + ω

pz

m
|φ〉, (15a)

δχ2 = −〈φ|p
z

m

m

H − E − ω
δH

1

H − E − ω

pz

m
|φ〉. (15b)

The quantities δχ3 and δχ4 are energy perturbations,

δχ3 = 〈φ|p
z

m

(
m

H − E + ω

)2
pz

m
|φ〉 〈φ|δH |φ〉

m
, (15c)

δχ4 = 〈φ|p
z

m

(
m

H − E − ω

)2
pz

m
|φ〉 〈φ|δH |φ〉

m
. (15d)

The terms δχ5,6 are perturbations to the wave function,

δχ5 = 2〈φ|p
z

m

m

H − E + ω

pz

m

(
1

E − H

)′
δH |φ〉, (15e)

δχ6 = 2〈φ|p
z

m

m

H − E − ω

pz

m

(
1

E − H

)′
δH |φ〉. (15f)

Quite surprisingly, in the velocity gauge, there are two more
terms,

δχ7 = 2i〈φ|p
z

m

m

H − E + ω
[δH,z]|φ〉, (15g)

δχ8 = 2i〈φ|p
z

m

m

H − E − ω
[δH,z]|φ〉. (15h)

These corrections are due to a modification of the transition
current in the velocity gauge,

pi

m
→ pi

m
+ δj i, δj i = i[δH,xi], (16)

with the correction δj i perturbing both transition currents in
the polarizability matrix element.

For clarification, we should add that the correction to the
wave function (5c) is orthogonal to the first-order wave func-
tion (conservation of the norm), and hence, the seagull-term
contribution χ3 receives no correction due to the perturbative
potential [see Eq. (10c)].

IV. GAUGE INVARIANCE

A. Proof of gauge invariance

First, let us point out that the gauge invariance of the
leading-order dynamic polarizability [Eq. (3) vs (9)] requires
the relation

Q′ = χ = ω2ρ = Q. (17)

We will skip the details of the derivation of this identity which
may be found in [7] and on pages 357–359 of Ref. [18]. Indeed,
the verification of the identity Q′ = Q is a rather easy, albeit
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somewhat tedious exercise involving the repeated application
of the commutator relation

pz

m
= i[H,z] = i[H − E ± ω,z]. (18)

The gauge invariance Q = Q′ of the leading-order dynamic
Stark shift (17) raises pertinent questions concerning a poten-
tially similar relation δQ = δQ′ for the first-order correction
to this quantity. In detail, for the nonrelativistic case, the
gauge-invariance relation is

Q = Q′ ⇔ ω2

(
2∑

i=1

ρi

)
=

3∑
i=1

χi, (19)

with two terms in the length gauge, but three terms in the
velocity gauge. For the correction, the appropriate form is

δQ = δQ′ ⇔ ω2

(
6∑

i=1

δρi

)
=

8∑
i=1

δχi. (20)

We now present the derivation of the formula (20) (gauge
invariance of the correction to the dynamic polarizability me-
diated by a perturbative potential δH ), by first investigating the
velocity-gauge form of the correction, and then transforming
into the length gauge. For δχ1 as defined in (15a), we have

δχ1 = −〈φ|p
z

m

m

H − E + ω
δH

1

H − E + ω

pz

m
|φ〉

= −ω2〈φ|z m

H − E + ω
δH

1

H − E + ω
z|φ〉

+ 2ω〈φ|z m

H − E + ω
δHz|φ〉 + 〈φ|zmδHz|φ〉

= ω2δρ1 + 2ω〈φ|z m

H − E + ω
δHz|φ〉

+ 〈φ|zmδHz|φ〉. (21a)

An analogous relation, valid for δχ2, can be obtained by
the replacement ω → −ω in Eq. (21a). We transform δχ3 as
defined in (15c) according to

δχ3 = 〈φ|p
z

m

(
m

H − E + ω

)2
pz

m
|φ〉 〈φ|δH |φ〉

m

= ω2δρ3 − 2ω〈φ|z m

H − E + ω
z|φ〉〈φ|δH |φ〉

+ 〈φ|z2|φ〉〈φ|mδH |φ〉. (21b)

Again, an analogous relation, valid for δχ4, can be obtained by
the replacement ω → −ω in Eq. (21b). For δχ5, the following
relation is useful,

δχ5 = 2〈φ|p
z

m

m

H − E + ω

pz

m

(
1

E − H

)′
δH |φ〉

= ω2δρ5 − 2ω〈φ|z m

H − E + ω
zδH |φ〉

+ 2ω〈φ|z m

H − E + ω
z|φ〉〈φ|δH |φ〉

+ 〈φ|z2mδH |φ〉 − 〈φ|z2|φ〉〈φ|mδH |φ〉

+ 2ω〈φ|z2

(
1

E − H

)′
mδH |φ〉. (21c)

Replacement of ω by −ω in Eq. (21c) yields δχ6. Using
Eqs. (21a)–(21c), we finally obtain the simple and compact
relation

ω2
6∑

i=1

δρi =
6∑

i=1

δχi − 2ω〈φ|z m

H − E + ω
[δH,z]|φ〉

+ 2ω〈φ|z m

H − E − ω
[δH,z]|φ〉

− 2〈φ|zm[δH,z]|φ〉. (22)

We recall that the expression
∑6

i=1 δχi represents the sum
of the wave-function correction, the correction to the Hamil-
tonian, and the correction due to the energy perturbation
mediated by a perturbative potential δH .

What remains to be shown is that the sum of the additional
terms δχ7 and δχ8, as defined in Eqs. (15g) and (15h),
reproduces the remaining terms on the right-hand side of
Eq. (22). This can be accomplished as follows,

8∑
i=7

δχi = 2i

{
〈φ|p

z

m

m

H − E + ω
[δH,z]|φ〉

+ 〈φ|p
z

m

m

H − E − ω
[δH,z]|φ〉

}

= − 2

{
〈φ|[H − E + ω,z]

m

H − E + ω
[δH,z]|φ〉

+ (ω → −ω)

}

= − 2ω〈φ|z m

H − E + ω
[δH,z]|φ〉

+ 2ω〈φ|z m

H − E − ω
[δH,z]|φ〉

− 2〈φ|zm[δH,z]|φ〉. (23)

We recognize, in the last line, the terms on the right-hand side
of Eq. (22). This concludes the proof of Eq. (20).

B. Relativistic and radiative effects

1. Leading relativistic correction

A Foldy-Wouthuysen transformation of the Dirac-Coulomb
Hamiltonian [19] gives us the following relativistic correction,
(see, e.g., [20, page 19]):

δH = − �p 4

8m3
+ π (Zα)

2m2
δ(3)(�r) + Zα

4m2r3
�L · �S. (24)

For the relativistic correction to the current, we need the
commutator

[δH,z] = − 1

8m3
[ �p 4

,z] = i

2m3
pz �p 2

. (25)

The two additional terms, in this case [see Eqs. (15g) and
(15h)], are

δχδH,7 = 2〈φ|p
z

m

m

H − E + ω

(
− 1

2m3
pz �p 2

)
|φ〉, (26)

δχδH,8 = 2〈φ|p
z

m

m

H − E − ω

(
− 1

2m3
pz �p 2

)
|φ〉. (27)
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ωL ωL ωL ωL

ωL ωL ωL ωL

FIG. 1. Feynman diagrams for the self-energy radiative correction
to the dynamic Stark shift. Interactions with the external laser field
are labeled with ωL.

We observe that these terms are exactly equal to the terms on
the right-hand side of Eq. (22), which leads us immediately to
the gauge-invariance relation

ω2
6∑

i=1

δρi(δH ) =
8∑

j=1

δχj (δH ). (28)

The two additional terms δχ7 and δχ8 in the velocity gauge are
definitely necessary in order to ensure gauge invariance; they
are due to correction to the current which prevails only in the
velocity, but not in the length gauge (see page 21 of Ref. [20]).

2. Leading radiative correction

Inspired by effective field theory, or nonrelativistic quantum
electrodynamics [21], we here pursue an effective treatment in
which the leading logarithmic QED correction due to radiative
photons is described by an effective Lamb-shift potential (see
also Fig. 1)

δH = δVLamb = 4

3
α(Zα) ln[(Zα)−2]

δ(3)(�r)

m2
. (29)

It is sometimes useful to consider a “standard” perturbative
potential [22]

δV = π (Zα)

m2
δ(3)(�r), (30)

which is related to δVLamb by a simple prefactor,

δVLamb = 4α

3π
[π (Zα)] ln[(Zα)−2]

δ(3)(�r)

m2

= 4α

3π
ln[(Zα)−2]δV . (31)

The standard potential (30) leads to a “normalized” energy
shift with unit prefactors,

δE(φ�j ) = (Zα)4m

n3
δ�0, (32)

for hydrogenic states with the principal quantum number
n, orbital quantum number �, and total angular momentum
quantum number j . If a numerical evaluation is desired, then

FIG. 2. Ratio of the first-order radiative correction of the dynamic
polarizability to the unperturbed dynamic polarizability as a function
of the laser photon energy ω (we set h̄ = 1), divided by the Hartree
energy Eh. The data are obtained for the ground state of hydrogen.
The quantity �Q is defined in Eq. (34).

the radiative corrections δQ can be read off from the sum of the
various terms listed in Eq. (8). A generalization to the leading
effect of vacuum polarization, replacing δV by the Uehling
potential [23], is immediate.

In general, for a perturbative potential δV that fulfills
[δV,z] = 0, the additional terms δχ7 and δχ8 are not necessary.
In this case, the gauge-invariance statement can be summarized
as follows,

[δV,z] = 0 ⇒ ω2
6∑

i=1

δρi(δV ) =
6∑

j=1

δχj (δV ), (33)

leaving out δχ7 = δχ8 = 0.

FIG. 3. Same as Fig. 2, but in a frequency range which covers
the intermediate 2P state, where the laser frequency can excite the
1S-2P transition resonantly. The plot is included for reference. Of
course, near resonance, the second-order perturbation treatment of the
atom-laser interaction, which is the basis for Eq. (2), breaks down,
and the dressed-state formalism has to be used (see Ref. [13]). The 2P

resonance is responsible for the first peak in the radiative correction
at ω = 3

8 Eh, and the second pole is due to the zero of the unperturbed
matrix element Q at ω = 0.429538Eh. All calculations are performed
in the nonrecoil approximation. The figure illustrates the dramatic
increase of the radiative correction as the resonance is approached.
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In Figs. 2 and 3, we present numerical data for the
frequency-dependent radiative correction (the “logarithmic
coefficient”)

�Q

Q
=

(
4α3

3π
ln(α−2)

)−1
δQ

Q
, (34)

where δQ is the leading logarithmic radiative correction
due to the effective potential (31), evaluated for the ground
state of hydrogen. The numerical calculations use tech-
niques originally developed in self-energy calculations [24].
Large coefficients are obtained for the leading logarithmic
correction.

V. CONCLUSIONS

We have investigated the gauge invariance of the dynamic
(ac) Stark shift under the “hybrid” gauge transformation
from the length to the velocity gauge. The length-gauge
perturbations due to a perturbative Hamiltonian δH have been
discussed in Sec. III A, while the velocity-gauge formulation
is given in Sec. III B.

In the velocity gauge, six perturbations, two each to the
Hamiltonian, to the energy, and to the wave function, have
been given in Eq. (8), while the eight terms in the velocity
gauge can be found in Eq. (15). Gauge invariance amounts to
showing the identity (20). This is accomplished in Sec. IV A,
where we also give a general form of the additional correction
to the current, which is necessary to include in the velocity
gauge [see Eq. (16)]. Indeed, the general form of the correction
to the current, induced by the perturbative Hamiltonian δH ,

δj i = i[δH,xi], (35)

constitutes a main result of our investigations.
While all derivations discussed in the current paper have

been given for one-electron atoms, the generalization to many-
electron systems is straightforward: One simply sums over the
electron coordinates. One should add that the derivation here
is related to the one recently presented in Appendix A of [8] in
the context of the gauge invariance of radiative corrections to
the two-photon decay width, and to Refs. [9,10] for the gauge
invariance of the imaginary part of the atomic polarizability.

In general, the length gauge is favorable for the formulation
of relativistic corrections because the number of terms is
smaller in this gauge, and the interactions are formulated in
terms of gauge-invariant field strengths ( �E and �B) instead of
gauge-dependent scalar and vector potentials (� and �A); see
Refs. [1,6] for further discussions on this point.

A specific picture is emerging from the recent investigations
on gauge invariance: For resonant processes which involve
eigenstates of the same energy, of the combined atom +
radiation field system, the “hybrid” gauge invariance holds.
This is, e.g., the case for the two-photon decay width [8],
where the initial 2S state has the same energy as the final state
(atom is in the 1S state, and two photons are in the radiation
field). This is also the case for two-photon transition matrix
elements, provided the final state has the same energy as the
initial state, plus the energy of the two absorbed photons (i.e.,
at resonance; see Refs. [6,8]). For the dynamic polarizability
studied in the current article, the resonance condition is always
met because relevant matrix elements describe the absorption
of a laser photon and the concomitant emission of that same
photon. So, the initial state considered in our investigations
here has the same energy as the final atomic state, which is in
fact identical to the initial state (it has the same number of laser
photons, and the same atomic state).

The deeper reason for the “hybrid” gauge invariance of
resonant processes lies in the possibility of formulating such
energy perturbations in terms of adiabatically switched fields
and potentials; the gauge transformation of the initial and
final states of the wave function at t → ±∞ amounts to
the identity transformation because the adiabatically switched
fields and potentials vanish in that same limit. Hence, the
gauge transformation of the wave function can be omitted. This
general picture is confirmed by the investigations presented
here, and augmented by the general form of the transition
current which has to be added in the velocity gauge.
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