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Random-matrix bases, ghost imaging, and x-ray phase contrast computational ghost imaging
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A theory of random-matrix bases is presented, including expressions for orthogonality, completeness, and the
random-matrix synthesis of arbitrary matrices. This is applied to ghost imaging as the realization of a random-basis
reconstruction, including an expression for the resulting signal-to-noise ratio. Analysis of conventional direct
imaging and ghost imaging leads to a criterion which, when satisfied, implies a reduced dose for computational
ghost imaging. We also propose an experiment for x-ray phase contrast computational ghost imaging, which
enables differential phase contrast to be achieved in an x-ray ghost-imaging context. We give a numerically
robust solution to the associated inverse problem of decoding differential phase contrast x-ray ghost images, to
yield a quantitative map of the projected thickness of the sample.
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I. INTRODUCTION

Conventional direct imaging is typically realized using
position-sensitive detectors such as those that are currently
used in digital photography, x-ray radiography, neutron imag-
ing, electron microscopy, etc. Ghost imaging [1,2] is an
emerging alternative in which the conventional direct-imaging
methodology is replaced with an indirect-imaging process
which synthesizes an image given a series of known illumi-
nations and associated position-insensitive “bucket” detector
measurements.

In its simplest form, ghost imaging synthesizes an image
from a set of temporally acquired single-pixel detector (bucket
reading) outputs which are each correlated with a random
intensity pattern. Explicitly,

I(i,j ) = 1

N

N∑
k=1

(Bk − E[B])Ik(i,j ), (1)

where I(i,j ) denotes the synthesized image, N is the number
of spatially random intensity patterns Ik(i,j ) which is indexed
by k, and E[B] is the expectation value of the bucket reading

Bk =
n∑

i=1

m∑
j=1

f (i,j )Ik(i,j ) = 〈f,Ik〉. (2)

Here 〈·〉 = ∑n
i=1

∑m
j=1, f (i,j ) is the sample intensity pattern,

and (i,j ) denote the pixel coordinates [3].
Ghost imaging originated in visible-light studies [4–11].

The field has been advanced by incorporating compressive
sensing ideas [12–15] and studies of turbulent environmental
robustness such as lidar systems [16], atmospheric turbulence
in thermal imaging [17], and underwater fluctuations in optical
imaging [18]. Visible-light ghost imaging has been augmented
to achieve absorption-contrast ghost imaging using x rays
[19–23] and atoms [24]. The potential for reduced dose
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[22], increased resolution, compressive sensing capabilities
[12], and turbulence robustness [25] are all under ongoing
investigation.

The underlying concept of ghost imaging has been pointedly
distilled to “a vector projection of the [sample] transmission
function over [N ] different random vectors” [12] or “a form
of orthogonal [random] function expansion” [23]. We build on
these ideas to develop a mathematical theory of random-matrix
bases, with particular focus on the inherent noise associated
with such a reconstruction. We develop an inequality which,
if satisfied, implies that computational ghost imaging exhibits
reduced dose when compared to its direct imaging counterpart.
If this inequality is not satisfied, this implies that alternative
reconstruction strategies, including but not limited to those
based on the concept of compressive sensing, are necessary for
ghost imaging to reduce dose in comparison to direct imaging.

Owing to the potential for reduced dose [22], a promising
application of ghost imaging is in x-ray medical imaging.
As previously mentioned, already realized are experimental
setups for x-ray-absorption contrast ghost imaging. Outstand-
ing, however, is a means to realize x-ray phase contrast
ghost imaging. In seeking a means to achieve this, we are
motivated by the significant advances in x-ray direct imaging
that have been enabled through the use of phase contrast
[26]. There exist means for phase contrast ghost imaging in
the optical regime [27], although the experimental setups are
not readily transferable to the x-ray regime. We propose an
experimental setup to achieve x-ray differential phase contrast
computational ghost imaging. We also consider the associated
inverse problem, of inverting the differential phase contrast
x-ray ghost image to obtain a quantitative map of the projected
thickness of the sample which led to such an image.

We close this introduction with an outline of the remainder
of the paper. Section II develops the formalism of using a
set of real random n×m matrices as a basis over which
arbitrary n×m matrices may be decomposed. While we view
such decompositions in the context of imaging, where the
matrix to be decomposed is a pixelated image, the formalism
may be applied to a broader range of discretized fields.
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Loosely, the procedure may be viewed as synthesizing signals
by superposing noise. The statistical orthogonality of the
random matrices is treated, together with completeness and
an error metric for the statistical errors in the random-matrix
decomposition. A comparison is also drawn between directly
decomposing a given pixelated image using a random-matrix
basis and decomposition using a basis that has been orthonor-
malized using the Gram-Schmidt process. Section III gives a
comparison between direct and computational ghost imaging
with respect to fluence or dose. An inequality is developed
which, if satisfied, implies a particular ghost-imaging scenario
to have reduced dose relative to its direct imaging counterpart.
Section IV proposes a means for x-ray phase contrast computa-
tional ghost imaging, namely, a means for x-ray computational
ghost imaging that is sensitive to the phase of the coherent
x-ray field that impinges on the specified x-ray ghost-imaging
system. This gives a technique for x-ray ghost imaging that is
sensitive to the refractive properties of a sample. A solution
is developed to the associated inverse problem of quantitative
phase-amplitude reconstruction of the projected thickness of
a single-material sample, using x-ray phase contrast ghost
imaging. Section V discusses the broader significance of some
of our results, together with some future avenues for research.
We conclude with Sec. VI.

II. RANDOM-MATRIX BASES

The infinite monkey theorem [28] states that an infinite
random sequence almost surely, i.e., with a probability that
is infinitesimally close to unity, contains every possible finite
subsequence. In principle, this permits synthesis of an arbitrary
sequence via one realization of a random sequence. To say
that such a process is extremely inefficient would be an
understatement, owing to the impracticably large mean times
one needs to wait for a given desired sequence to occur. In an
alternative, practical approach, a given discrete random output
can be cut into pieces of the size of the desired sequence to
form a random basis. Each random basis member can then be
superposed in a weighted sum to synthesize a desired signal
(or some approximation of it). Given that the present paper
works in an imaging context, with particular emphasis on
computational imaging and ghost imaging, we will discuss the
topic of random bases in the context of a matrix basis. Here
each element of the matrix may be associated with a pixel in a
Cartesian lattice.

Consider the standard matrix basis set {eij } that spans Mnm

(i.e., nm distinct matrices of size n×m, each of which has
a single element equaling unity, with all other elements being
zero). We will define a random basis member as corresponding
to the randomly weighted sum of the standard set

Rk = R(1,1)e11 + · · · + R(n,m)enm. (3)

Here k ∈ [1,N ], i ∈ [1,n], j ∈ [1,m], and R(i,j ) is the re-
alization of a zero-centered random variable R drawn from
the probability density function Pr(R). We reserve defining
an explicit probability density function for R (e.g., uniform,
Gaussian, Poissonian, etc.) and instead leave our results in
terms of parameters of that distribution (i.e., expectation value
E[R] and variance Var[R]).

Alternatively, we can work in reverse from the random bases
via the definitions

E[R] = lim
n,m→∞

1

nm

n∑
i=1

m∑
j=1

Rk(i,j )

= lim
N→∞

1

N

N∑
k=1

Rk(i,j ) (4)

and

Var[R] = lim
n,m→∞

1

nm

n∑
i=1

m∑
j=1

{Rk(i,j ) − E[R]}2

= lim
N→∞

1

N

N∑
k=1

{Rk(i,j ) − E[R]}2, (5)

where these equalities do not necessarily hold for any finite
choice of n,m,N but are increasingly well approximated with
increasing n,m,N . Random bases defined in this way will
display ergodic behavior in expectation. Ergodicity is usually
defined as the equality of ensemble and time averages [29].
The related but different concept of ergodicity in expectation
refers to the expectation value over a matrix set being equal
to the expectation value over the spatial distribution, where
the statistics of each will be governed by Pr(R). That does not
mean, however, that the spatial average of each realized basis
member will be the same, nor will each set average for a given
coordinate (i,j ) be the same. In each case these are finite sums
that are ultimately subject to variance.

We consider two related cases: (i) synthesis of a desired ma-
trix f (i,j ) using a nonorthogonal discrete random-matrix basis
and (ii) synthesis using an orthonormal discrete random basis.
The first case is relevant, e.g., to ghost imaging using spatially
random shot-noise fields, with the latter case being relevant,
e.g., for computational imaging using specifically designed
pseudorandom masks. Owing to the generation of a particular
N -member random-matrix basis being a stochastic process,
a probabilistic approach is employed. For the nonorthogonal
discrete random-basis case, the exact function is retrieved
in expectation and noise is quantified in the variance. The
orthonormal random basis is achieved via applying the Gram-
Schmidt process [30,31] to a given nonorthogonal set of ran-
dom matrices and forms a more efficient reconstruction method
when compared to the first case listed above. It is important to
note regarding a particular realized set of N random matrices,
each real element of which is by assumption generated by
the same specified probability distribution, that subsequent
Gram-Schmidt orthogonalization yields a sequence of random
matrices whose statistics in general change with position in the
matrix sequence. This implies a slightly different approach for
the two cases.

A. Orthogonality

We assess orthogonality of two different random matrices
by considering their Frobenius inner product [32], namely, the
discrete version of the inner product between two real functions
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of two real variables

〈Rk,Rk′ 〉 =
n∑

i=1

m∑
j=1

Rk(i,j )Rk′(i,j ). (6)

We restrict ourselves to the case E[R] = 0 (i.e., the distribution
has been zero centered, which can be obtained from an
arbitrary random variable via R ≡ X − E[X]). Being a random
process, the probability of these basis members being strictly
orthogonal is typically of zero measure. Despite not being able
to make deterministic statements regarding orthogonality, we
can make probabilistic statements regarding expectation value
and variance of orthogonality. To calculate the expected value,
consider

E[〈Rk,Rk′ 〉] = nmE[Rk(i,j )Rk′(i,j )]

= nm Var[R]δkk′, (7)

where δkk′ is an ensemble Kronecker delta (1 for k = k′ and 0
for k 	= k′). From this result, we can see that regardless of the
particular distribution of R, so long as R is zero centered, two
random basis members will be orthogonal in expectation. We
emphasize the difference between orthogonal and orthogonal
in expectation: The former label refers to two random matrices
having zero Frobenius product, with the latter stating that the
Frobenius product is a random variable with zero expectation
value.

We turn to the deviations from orthogonality that we can
expect as quantified by the variance. The variance of the
Frobenius product expressed in Eq. (6) is

Var[〈Rk,Rk′ 〉] = nm Var[RkRk′]

=
{
nm Var[R]2 for k 	= k′

nm Var[R2] for k = k′, (8)

where we have used the independence of each random number
realization to set the covariance to zero. Note also that although
Rk and Rk′ are different random numbers, their expectation
value and variance will be the same since they are drawn from
the same distribution. The larger the matrix size n×m, the
larger the variance from orthogonality. Although, if we were to
normalize the inner product with 1/nm Var[R], the right-hand
side of Eq. (8) would decrease with increasing matrix size. We
note, in this context, that our normalization differs from that
which is typically used in the theory of random matrices [33].

B. Completeness relation

We turn attention to the completeness relation

lim
N→∞

1

N Var[R]

N∑
k=1

Rk(i,j )Rk(i ′,j ′)

= δ(i − i ′,j − j ′), (9)

where δ(i − i ′,j − j ′) is a spatial Kronecker delta and all
other symbols are as previously defined. We are particularly
interested in the finite-N version, namely,

1

N Var[R]

N∑
k=1

Rk(i,j )Rk(i ′,j ′) ≈ δ(i − i ′,j − j ′), (10)

where of interest is the rate at which the approximation will
converge to a Kronecker δ, as quantified by the variance of the
above sum. Confirming we indeed obtain the Kronecker δ as
claimed, consider the expectation

E

[
1

N Var[R]

N∑
k=1

Rk(i,j )Rk(i ′,j ′)

]

= 1

Var[R]
E[R(i,j )R(i ′,j ′)] = δ(i − i ′,j − j ′), (11)

where we have used the fact R is a zero-centered random
variable, which implies that E[R2] = Var[R]. So we indeed
obtain a spatial Kronecker δ as an expectation.

Moving onto the variance, this can be calculated via

Var

[
1

N Var[R]

N∑
k=1

Rk(i,j )Rk(i ′,j ′)

]

= 1

N2Var[R]2

N∑
k=1

Var[R(i,j )R(i ′,j ′)]

=
{

1
N

for (i,j ) 	= (i ′,j ′)
1
N

Var[R2]
Var[R]2 for (i,j ) = (i ′,j ′),

(12)

where we have again used the fact that each of the covariances
is zero since each Rk(i,j ) is independent. As the number N

of basis members is increased, the closer we converge to the
expectation value of the spatial Kronecker δ. As N → ∞, we
achieve a complete (indeed, overcomplete) set of nonorthogo-
nal basis members.

C. Synthesis of arbitrary matrices using a random-matrix basis

Suppose one wishes to express an n×m arbitrary discretized
function or matrixf (i,j ) as a linear combination of realizations
of random n×m matrices, each element of each random matrix
being an independent deviate drawn from the same arbitrary
real probability distribution. To synthesize f (i,j ), take the
completeness relation expressed in Eq. (9), multiply both sides
by f (i,j ), and then sum over all spatial points to obtain

f (i,j ) =
n∑

i ′=1

m∑
j ′=1

f (i ′,j ′)δ(i − i ′,j − j ′)

= lim
N→∞

1

N Var[R]

n∑
i ′=1

m∑
j ′=1

f (i ′,j ′)
N∑

k=1

Rk(i,j )Rk(i ′,j ′).

(13)

Interchanging the order of the sums and approximating the in-
finite sum with a finite sum, we see that f (i,j ) is approximated
with finitely many terms

f (i,j ) ≈ 1

N Var[R]

N∑
k=1

wkRk(i,j ) ≡ f(N)(i,j ), (14)

where wk ≡ 〈f,Rk〉 is the weighting coefficient of the random
matrix Rk(i,j ) and f(N)(i,j ) is the N th-order approximation
to the exact expression f (i,j ). This is a key expression, for it
demonstrates that a signal f (i,j ) can indeed be approximated
by a linear combination of noise maps. A decomposition of
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this nature is commonly employed in computational imaging
and ghost imaging [3,34], although the preceding analysis is
not tied to either particular context.

To quantify the noise in a reconstruction made with a finite
number of basis elements, we calculate the variance

Var[f(N)(i,j )] = 1

N

n∑
i ′( 	=i)=1

m∑
j ′( 	=j )=1

f 2(i ′,j ′)

+f 2(i,j )

N

(
Var[R2]

Var[R]2

)
, (15)

where we have twice used the facts that each Rk(i,j ) is
independent and the covariance of each term with respect to
the others is zero. For Var[R2] ≈ Var[R]2, or large N such
that the first term is sufficiently dominant, we can make the
simplifying approximation

Var[f(N)(i,j )] ≈ 1

N

n∑
i ′=1

m∑
j ′=1

f 2(i ′,j ′) = 〈f 2〉
N

. (16)

The variance in a finite reconstruction is independent of the
distribution of R, depending only on the spatial sum of the
square of the desired function f and the number of basis
members N .

The local signal-to-noise ratio (SNR) S is

S(i,j ) ≡ E[f(N)(i,j )]√
Var[f(N)(i,j )]

≈ f (i,j )√
〈f 2〉/N , (17)

with the corresponding global SNR being the root-mean-
square average of (17):

S ≈
√

N

nm
. (18)

This leads to a form of noise-resolution uncertainty principle

S2 × (nm) ≈ N, (19)

where nm is a measure of the resolution and N is the number
of basis members or, in a sense, the number of measurements
required. Hence there is a direct tradeoff between resolution
and SNR for a given number of basis members or measure-
ments. Note that this statement refers to the noise inherent
to the process of image reconstruction from a nonorthogonal
random basis as outlined above and in no way includes the
noise contributions and physical limitations of experimental
realization which will have an additional noise-resolution
uncertainty principle [35].

D. Random-matrix basis with Gram-Schmidt orthogonalization

A finite realized set of random-matrix basis members will
not be strictly orthogonal, as seen in Sec. II A. They can,
however, be made strictly orthonormal via the Gram-Schmidt
process [30]. Further, supposing we have a set of weighting
coefficients already generated for our original random basis
set, we can transform both objects to achieve a more efficient

representation via

w′
k = wk −

k−1∑
�=1

〈R�,Rk〉
〈R�,R�〉w�, w̃k = w′

k

〈R′
k,R

′
k〉

,

R′
k = Rk −

k−1∑
�=1

〈R�,Rk〉
〈R�,R�〉R�, R̃k = R′

k

〈R′
k,R

′
k〉

. (20)

Here the primed quantities are intermediate steps and the tildes
represent the orthonormalized basis quantities.

The implementation of the Gram-Schmidt algorithm can be
computationally expensive and even unstable. To improve the
stability and efficiency of the algorithm, it can be implemented
via QR decomposition and variants thereof [23,36]. We make
particular note of the use of the Householder transformation
in this context [31]. Irrespective of how orthonormalization is
achieved, the corresponding function reconstruction is

f (i,j ) =
nm∑
k=1

w̃kR̃k(i,j )

≈
N∑

k=1

w̃kR̃k(i,j ) ≡ f (N)(i,j ), (21)

where f (N) is the approximate version of f (i,j ) projected
onto the incomplete N -member basis set (N < nm). Note that
we have set N to be less than nm above since this directly
implies the basis to have insufficient members to be complete;
the set would be complete with N members and overcomplete
with greater than N members. Note also that the subscript
N in the nonorthogonal case is swapped for a superscript
in the orthonormal case, to distinguish the two. Finally, we
augment the basis via inclusion of one constant basis member
R1(i,j ) = 1/

√
nm ∀i,j , to improve convergence. That is,

R1(i,j ) will efficiently achieve the spatial average of the
desired matrix f (i,j ) and the random basis will then only be
required to capture deviations from this spatial average.

As expressed in Eq. (21), an exact reconstruction of f (i,j )
is achieved with nm basis members (i.e., a complete set).
Seeking a more explicit statement regarding the noise present
in a reconstruction using an incomplete random basis with
Gram-Schmidt utilization, consider the variance of the special
case consisting of a single constant value basis member

Var[f (N)(i,j )] = 1

nm
〈[f̄ − f (i,j )]2〉 ≡ Var[f ], (22)

where f̄ is the spatial average of f (i,j ). Now consider the case
with a complete basis set and hence an exact reconstruction.
In this latter case the variance per pixel vanishes. Finally,
consider an intermediate case using an incomplete basis set
with between two and nm − 1 basis members inclusive. Given
that the basis matrices are inherently random, each basis mem-
ber will on average contribute equally to the reconstruction.
This is similar in sentiment to the idea of equally likely
microstates in statistical mechanics [37]. Adding independent
deviations in quadrature implies the variance of an incomplete
basis set is given by linearly interpolating between the one
special-constant basis case and the nm basis-set case, hence

Var[f (N)(i,j )] = Var[f ]

(
1 − N

nm

)
. (23)
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It is emphasized that the dependence on f only arises due to
the inclusion of the initial privileged basis member R1(i,j ) =
1/

√
nm ∀i,j , to boost convergence. The expression (23) was

seen to be consistent with the results of numerical simulation,
for several different probability distributions (Gaussian, Pois-
sonian, and uniform).

We adopt the same global SNR definition as in Sec. II C.
Hence

S =
√

〈f 2〉
Var[f ]

(
1

nm − N

)
. (24)

Note the scaling of SNR here compared to the nonorthogonal
case. Previously we had S ≈ √

N/nm, whereas now we have
S ∝ √

1/(nm − N ). Note also that “noise” in this context
refers to spatially random errors in the synthesis of f (i,j ) that
is obtained by superposing random matrices in an idealized
setting devoid of experimental noise. Each will reach an infinite
SNR, the Gram-Schmidt case in N = nm orthonormal random
matrices, while the nonorthogonal case requires N → ∞
basis matrices. The above comparison is independent of the
particular random distribution employed to develop the random
basis. Further, in the case of an incomplete basis set for the
Gram-Schmidt case, the representation of the reconstruction
is not unique and depends on the order of the basis elements
being orthonormalized. Hence a further reduction in noise can
be achieved by averaging over different Gram-Schmidt-basis
reconstruction results [23].

III. COMPUTATIONAL GHOST-IMAGING
SHOT-NOISE ANALYSIS

To compare conventional direct imaging and computational
ghost imaging with respect to fluence or dose, we can make
a preliminary assessment by counting “balls” in “bins.” Here
the bins correspond to a pixel detector and the balls to the
photons. For the direct image, suppose we have n×m bins
with nmλ̃ balls to make the image. We will distribute λ̃ balls
into each bin and let f (i,j ) be the proportion of balls that will
go in at each (i,j ) bin [i.e., 0 � f (i,j ) � 1 is the transmission
value of the sample]. We describe the influence of noise by
the Poisson distribution given its relevance in describing shot
noise present in pixel photon measurements [29,38]. This gives
the normalized bin value U (i,j ) in the direct imaging case as

U (i,j ) = P (f (i,j )λ̃)

λ̃
, (25)

where P represents the Poisson distribution with a mean
value of f (i,j )λ̃. The expected value and variance of the
normalized bin value are representative of the noise-free value
and the expected noise, respectively. That is, we expect each
normalized bin value to converge to

E[U (i,j )] = E

[
P (f (i,j )λ̃)

λ̃

]
= f (i,j ), (26)

where we have used E[P (f (i,j )λ̃)] = f (i,j )λ̃. The expected
noise is given by

Var[U (i,j )] = Var

[
P (f (i,j )λ̃)

λ̃

]
= f (i,j )

λ̃
, (27)

where we have used Var[P (f (i,j )λ̃)] = f (i,j )λ̃. The total
expected noise in the entire direct image is the spatial sum
of these values:

Var[IDI] =
n∑

i=1

m∑
j=1

f (i,j )

λ̃
= 〈f 〉

λ̃
. (28)

Moving onto the ghost-imaging case, we now perform
this comparison for computational ghost imaging. We wish
to employ a scheme that will converge to the exact image
in a finite number of measurements. This precludes simply
using randomly generated, nonorthogonal masks which require
infinitely many basis members to reach an overcomplete basis
set. Nor will we consider taking nm nonorthogonal masks and
seek to orthonormalize them (via the Householder transfor-
mation or otherwise), whereby experimental uncertainties will
propagate in a relatively complex fashion. Instead, as a baseline
analysis, we will consider a computer-generated complete set
of nm orthonormal random matrices {R̃k(i,j )} of size n×m

which includes one constant member R̃1(i,j ) = 1/
√

nm ∀i,j .
In general, these can be mapped to non-negative ghost-imaging
masks {Ik(i,j )} via the transformation

Ik(i,j ) = 1

ξ
[R̃k(i,j ) − min], (29)

where {R̃k(i,j )} ∈ [min,max], ξ ≡ (max − min), and
{Ik(i,j )} ∈ [0,1]. Further, we will consider the order: mask,
then sample (which is the conventional setup for ghost
imaging but not necessarily a requirement; see Sec. VI below
for further information on this point). To conserve the dose
that the sample is exposed to, we will enforce that we have
λ̃ balls downstream of the mask (which is consistent with
nmλ̃ total balls reaching the sample). This gives the uniform
incident illumination x prior to the mask as

〈Ik〉 x

nm
= λ̃, ⇒ x = nm

〈Ik〉 λ̃. (30)

This construction has the associated image or normalized bin
value

U (i,j ) =
nm∑
k=1

(Bk + ηB1)R̃k(i,j ), (31)

where Bk is the kth bucket reading and ηB1 is min multiplied
by the spatially integrated sample transmission function 〈f 〉,
which can be determined from the constant basis member
via η ≡ min/(1/

√
nm − min). Explicitly, the measured bucket

reading Bk is given by

Bk = ξ
〈Ik〉
λ̃

P

(
λ̃

〈Ik〉 〈Ik,f 〉
)

. (32)

We now calculate the expectation and variance of the effect of
Poisson noise on the ghost-imaging case. The expectation is

E[U (i,j )] =
nm∑
k=1

(E[Bk] + ηE[B1])R̃k(i,j )

=
nm∑
k=1

(ξ 〈Ik,f 〉 + min〈f 〉)R̃k(i,j )

=
nm∑
k=1

〈R̃k,f 〉R̃k(i,j ) = f (i,j ). (33)

062119-5



DAVID CEDDIA AND DAVID M. PAGANIN PHYSICAL REVIEW A 97, 062119 (2018)

For the variance

Var[U (i,j )] =
(

R̃1(i,j ) + η

nm∑
k=1

R̃k(i,j )

)2

Var[B1]

+
nm∑
k=2

Var[Bk]R̃2
k (i,j ), (34)

where we have once again set the covariance in different bucket
readings to zero. The bucket reading variance is

Var[Bk] = ξ 2Var

[ 〈Ik〉
λ̃

P

(
λ̃

〈Ik〉 〈Ik,f 〉
)]

= ξ 2 〈Ik〉
λ̃

〈Ik,f 〉, (35)

which implies that the variance of a normalized bin filled with
balls via the ghost-imaging scheme is

Var[U (i,j )] =
(

R̃1(i,j ) + η

nm∑
k=1

R̃k(i,j )

)2

ξ 2 〈I1〉
λ̃

〈I1,f 〉

+
nm∑
k=2

ξ 2 〈Ik〉
λ̃

〈Ik,f 〉R̃2
k (i,j ). (36)

This in turn implies that the variance of the ghost image, being
the spatial sum of bins, is

Var[IGI] =
〈(

1√
nm

+ η

nm∑
k=1

R̃k(i,j )

)2〉
ξ 2 〈I1〉

λ̃
〈I1,f 〉

+
nm∑
k=2

ξ 2 〈Ik〉
λ̃

〈Ik,f 〉, (37)

where we have used R̃1(i,j ) = 1/
√

nm ∀i,j and 〈R2
k 〉 = 1.

This implies that computational ghost imaging may reduce
dose over direct imaging by boosting the SNR [22] if a basis
set exists such that for the same image, the variance of the
ghost image is less than that of the direct image. Such dose
reduction therefore requires the inequality

�ξ 2〈I1〉〈I1,f 〉 + ξ 2
nm∑
k=2

〈Ik〉〈Ik,f 〉 < 〈f 〉 (38)

to be satisfied, where � ≡ 〈[1/
√

nm + η
∑nm

k=1 R̃k(i,j )]2〉.
Conversely, if a basis set is such that the above inequality is
violated, the ghost-imaging case will be less dose efficient than
the corresponding direct-imaging case (cf. a similar inequality
obtained in a different context, recently reported by Gureyev
et al. [39]).

It is reasonable in some cases to make the approximation∑nm
k=1 R̃k ≈ 0 ∀i,j , which reduces Eq. (37) to

Var[IGI] ≈
nm∑
k=1

ξ 2 〈Ik〉
λ̃

〈Ik,f 〉. (39)

Ignoring ξ 2 and 〈Ik〉, which scale approximately as 1/nm and
nm, respectively, suggests that in order for ghost imaging to
reduce dose, the sum of bucket readings needs to be less than
the spatial sum of the transmission function. That is, we want
the mask-sample combination to be more absorbing than the

sample alone which corresponds to fewer balls being detected,
which when normalized, produces a lower uncertainty.

As an illustration of the logical possibility for dose reduction
on account of the above inequalities, consider the following
extreme limiting case. Suppose one wishes to perform compu-
tational ghost imaging on a sample whose two-dimensional in-
tensity transmission function is a pixelated grayscale image of
a given highly textured structure. Suppose too that a very small
number of pseudorandom illuminating masks is used, each of
which happen to have an unusually high degree of correlation
with the illuminated sample. The resulting computational ghost
image will then be obtainable with an unusually small number
of bucket measurements and a correspondingly reduced dose.
While this scenario is of course very highly improbable when
genuinely random masks are used, the possibility of such a
scenario becomes significantly more likely when one utilizes
feedback computational ghost imaging, a point which is very
briefly explored later in the present paper.

It is physically reasonable that the dose-reduction inequali-
ties should be both object and mask dependent. Notwithstand-
ing this fact, if one wishes to image a particular class of object, it
may be useful to average the above dose-reduction inequalities
over a statistical ensemble of possible objects.

The preceding analysis regarding dose is conservative as it
does not consider incorporation of compressive sensing ideas
[40]. That is, compressive sensing allows one to perform ghost
imaging in less than nm measurements, which is beneficial
regarding reduced dose. Moreover, in cases where the above
inequality is violated, the necessity for a more sophisticated
approach to ghost reconstruction, such as given by compres-
sive ghost-imaging methods [12–15], is made apparent as a
necessary condition for ghost imaging to reduce dose when
compared to its direct-imaging counterpart [39].

IV. X-RAY PHASE CONTRAST COMPUTATIONAL
GHOST IMAGING

A. Theory

Here we apply the random-matrix-basis concept to x-ray
phase contrast computational ghost imaging. In this context,
phase contrast may be defined as any imaging modality
yielding intensity maps that are a function of the phase of
the field that is input into the associated imaging system [41].
In an x-ray setting, phase contrast permits visualization of
x-ray-transparent structures. While many means for realizing
x-ray phase contrast exist in a direct-imaging setting [41], there
is a dearth of such methods for x-ray ghost imaging. Indeed,
there are only a few papers on x-ray ghost imaging [19–23], all
of which demonstrate absorption-contrast x-ray ghost imaging,
which is only sensitive to the magnitude of the field visualized
by the associated ghost-imaging system. While means exist for
realizing phase contrast in non-x-ray ghost-imaging settings
[27,42–44], these are not readily transferred to x-ray imaging.

The proposed experimental setup for computational x-ray
phase contrast ghost imaging utilizes a quasimonochromatic
[29] x-ray source, an analyzer crystal [45], an ensemble of
known speckle masks, and a bucket detector (see Fig. 1). The
x-ray phase information imparted by the refractive properties
of the sample will be encoded as transverse spatial intensity
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FIG. 1. Schematic of computational x-ray phase contrast ghost imaging.

variations via the Fourier-space filtration provided by reflection
from the analyzer crystal [41,45]. Indeed, the angle-dependent
reflectivity function (rocking curve) of the analyzer crystal is
key in this setup to achieving bucket signals which are sensitive
to the phase gradients of the impinging x-ray radiation. The
analyzer-crystal-filtered intensity field is then incident on a
known speckle mask and the combined effect on the intensity
is integrated up in the bucket detector. The process is repeated
for each speckle mask in the set of known masks. Note that in
an experiment one can obtain such a set of speckle masks by
transversely scanning a single larger mask [21]. Note also that
for each bucket-signal acquisition the beam fully illuminates
the sample. One may optionally include position-sensitive
beam monitors at either or both of the indicated positions,
to adapt to inherent temporal fluctuations of the source from
measurement to measurement.

Consider the intensity I (i,j ) and phase φ(i,j ) of a beam
measured in a plane perpendicular to the beam propagation
(z axis) on a pixel grid (i,j ). We consider the case that the
sample and mask are each made from a single and in general
different uniform material. This single-material assumption is
not particularly restrictive regarding the mask, since the sole
purpose of the mask is to generate a set of linearly independent
spatially random intensity patterns. Further, this assumption is
far less restrictive than it might appear, regarding the class
of objects that may be imaged, for two reasons: (i) The same
assumption has been successfully employed in several hundred
papers in a propagation-based phase contrast x-ray tomography
setting, since many samples of interest may be locally (i.e., in
three spatial dimensions) described as consisting of a single
material of interest [46–48], and (ii) for sufficiently high x-ray
energies, low-atomic-number materials such as those in soft
biological tissues behave approximately as a single material,
namely, electrons [49], with the atomic nuclei having only a
small effect on both the absorptive and refractive properties of
the stated soft-tissue materials in this regime [50].

Under both the single-material assumption and the projec-
tion approximation, the phase shift due to the sample is [41]

φsample(i,j ) = −kδT (i,j ), (40)

where k = 2π/λ is the wave number, λ is the wavelength,
δ ≡ 1 − Re{n} (with Re{n} the real part of the refractive index
of the sample material), and T (i,j ) is the projected thickness
of the sample. The angular deviation from the z axis, which is
taken to be the optic axis, post the sample is


θ (i,j ) = −1

k

∂

∂x
[φsample(i,j )] = δ

∂T

∂x
. (41)

From here we can calculate the intensity of the beam post the
analyzer crystal interaction. We use the Beer-Lambert law of
absorption [41] to model the sample interaction (and mask
interaction). The reflectivity of the crystal as a function of
deflection angle, namely, the rocking curve [45], is taken to
be known. Assuming a linear approximation to the rocking
curve [51] gives

Isample(i,j ) = I0 exp[−μT (i,j )][α + β
θ (i,j )]

= I0 exp[−μT (i,j )]

(
α + βδ

∂T

∂x

)
, (42)

where I0 is the uniform intensity input, μ is the linear
attenuation coefficient of the sample, α is the zero-angle
deflection reflectivity, and β is a linear approximation to the
rocking-curve slope. We then subject the intensity field to
absorption from the speckle mask, to give the bucket detector
reading Bk as

Bk =
〈
I0 exp[−μT (i,j )−μ0Rk(i,j )]

(
α+βδ

∂T

∂x

)〉
, (43)

where μ0 and Rk(i,j ) are the absorption coefficient and
projected thickness of the mask respectively. Note, in this
context and for the remainder of the paper, that Rk(i,j ) is
a random value greater than zero which is slightly different
than in the previous two sections where it was a zero-centered
random value.

We can compute the x-ray phase contrast computational
ghost imageP using the standard ghost-imaging formula (1) or
via the Gram-Schmidt process. For the standard ghost-imaging
case, we will require a normalization of Var[I0 exp(−μ0R)] to
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obtain the expected image

E[P(i,j )] = α

(
1 − βδ

μα

∂

∂x

)
exp[−μT ]. (44)

The expected noise in the image will be given by the variance

Var[P(N)(i,j )] ≈
〈[
α
(
1 − βδ

μα
∂
∂x

)
exp(−μT )

]2〉
N

(45)

or with Gram-Schmidt utilization

Var[P (N)(i,j )]

≈ Var

[
α

(
1 − βδ

μα

∂

∂x

)
exp(−μT )

](
1 − N

nm

)
, (46)

where the variance of α(1 − βδ

μα
∂
∂x

) exp(−μT ) is relative to the
spatial average.

The expected value of the phase contrast ghost image has
the form

P = C

(
1 − G

∂

∂x

)
exp[−μT (x,y)], (47)

where C = α and G = βδ/μα are known real constants. This
x-ray phase contrast ghost image can be viewed as encoding
quantitative information regarding the projected thickness T

of the sample, thereby inviting solution to the associated
inverse problem [52] of obtaining T from P . The situation is
somewhat analogous to Gabor’s original conception of (inline
holographic) imaging as a two-step process, namely, recording
followed by reconstruction [53]. To this end, Fourier transform
the above differential equation with respect tox, use the Fourier
derivative theorem, and then solve the resulting algebraic
equation for the Fourier transform of exp(−μT ). Inverse
Fourier transformation gives an expression mathematically
identical to that previously obtained by Paganin et al. in a
direct-imaging x-ray phase-contrast context unrelated to ghost
imaging [54–56]:

T (x,y) = − 1

μ
ln

{
F−1

x

[
Fx(P)

C(1 − iGkx)

]}
. (48)

Here Fx and F−1
x denote the Fourier transform and inverse

Fourier transform in the x direction, respectively, and kx de-
notes the Fourier-space coordinate dual to x. We use a Fourier-
transform convention in which the Fourier derivative theo-
rem takes the form ∂/∂x = F−1

x (ikx)Fx [41]. For G 	= 0, the
Fourier-space filter 1/(1 − iGkx) has modulus (1 + G2k2

x)−1/2

that never vanishes, never has division-by-zero instability, and
never exceeds unity. This class of inverse-problem solution
belongs to the category of SNR-boosting algorithms recently
investigated by Gureyev et al. [57]. A related member of this
algorithm class [46] has been shown to boost the SNR by
factors F on the order of hundreds (or, equivalently, enable
dose and data acquisition time to be reduced by factors F 2 on
the order of tens of thousands) in the process of reconstruction
[47,48,58–60].

TABLE I. Material parameters for E ≈ 40 keV.

Element Z MA (g/mol) μ/ρ (cm2/g) ρ (g/cm3) f1

carbon 6 12.011 0.2076 1.700 6.00115
aluminium 13 26.982 0.5685 2.699 13.0206
copper 29 63.546 4.862 8.960 29.2497
gold 79 196.966 12.98 19.32 79.1108

B. Simulations

1. Parameters and rocking-curve model

In our simulations, the analyzer-crystal rocking curve is
approximated by the Pearson VII distribution [61]

R(θ ) = R0

(
1 + θ2

Ma2

)−M

. (49)

Here R is reflectivity, R/R0 is relative reflectivity, and the
independent variable θ is the deviation from the Bragg angle
associated with the operative analyzer-crystal reflection; R0,
M, and a are parameters of the crystal and the x-ray energy.
Note that the same symbol is used for both reflectivity and
a random variable; it will always be clear from the context
which meaning is intended. Taking a Taylor series about
θ0, corresponding to a single chosen angular detuning of
the analyzer crystal from the Bragg condition for which the
entirety of the images is taken, we obtain an expression for the
linearization parameters that approximate the rocking curve (α
and β) in terms of R0, θ0, M, and a:

α = R(θ0) = R0

(
1 + θ2

0

Ma2

)−M

, (50)

β = dR

dθ

∣∣∣∣
θ0

= −2θ0R0

a2

(
1 + θ2

0

Ma2

)−M−1

. (51)

The numerical parameters for the Pearson VII curve corre-
spond to a Si(333) analyzer crystal at illuminating energy E =
40 keV and were taken from Majidi et al. [62] as a = 0.7146,
M = 2.3737, and R0 = 1. The uniform initial intensity was
assumed to be normalized so that I0 = 1. Material values were
obtained from the NIST database [63] and are listed in Table I.

Note that form factor f1 values were obtained at E =
39.195 43 keV. We hence computed the refractive index decre-
ment δ via [64]

δ = nar0λ
2

2π
f1, (52)

where r0 is the classical electron radius, λ is the x-ray
wavelength, na is

na ≈ ρNA

MA

, (53)

ρ is the material density, NA is Avogadro’s number, and MA is
the molar mass.

2. Idealized x-ray phase contrast computational
ghost-imaging simulations

In the present section we make two natural simplifying
assumptions, both of which will be dropped in the next section.
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FIG. 2. Idealized x-ray phase contrast computational ghost-imaging (PCCGI) simulation of a carbon ellipsoid on a 64×64 mm2 pixel array.
(a) Reconstruction performed with standard ghost-imaging formula with N = 16nm. (b) Pixel variation from the expected value in (a) as a
probability distribution, overlaid with the predicted distribution using the predicted variance and assumed Gaussian statistics. (c) Reconstruction
performed with Gram-Schmidt (GS) utilization for N = 0.5nm.

(i) The idealized ghost-imaging case we consider here has a
1:1 pixel-to-speckle correspondence, giving a unique random
illuminating intensity at each pixel. This amounts to seeking a
ghost reconstruction with resolution equal to the mask speckle
size, a natural restriction that is consistent with the fact that
the point-spread function of the reconstruction is equal to the
autocovariance of the ensemble of speckle masks [23,39,65].
Indeed, the 1:1 pixel-to-speckle correspondence investigated
here is optimal, since sampling the speckles any more finely
does not improve spatial resolution (in the ghost reconstruc-
tion) beyond the maximum resolution given by the speckle
size. (ii) The effects of detector noise are not considered in the
present section. Any deleterious effect of detector noise in the
present context is typically rather mild, since bucket signals
are rather insensitive to noise on account of the fact that they
integrate over the entire transverse extent of the beam.

The simulated sample being imaged is an amorphous carbon
ellipsoid with projected thickness

T (x,y) = 2 Re[
√

(r/ℵ)2 − (y/ℵ)2 − (x/ℵ)2], (54)

where ℵ = 8, r = 16 mm, and Re denotes the real part. For this
simulated object, R/R0 was approximately within the range
(0.3,0.65), consistent with the linear approximation to the
rocking curve that has been adopted. Each pixel is 1×1 mm2

in size, corresponding to an overall field of view on the order of
several centimeters, as is often used, e.g., in medical-imaging
x-ray synchrotron beamlines [66] and laboratory-source x-ray
imaging [56].

We will compare image reconstructions of the projected
thickness performed with the standard ghost-imaging formula
(1) and with Gram-Schmidt utilization (21). The Pearson
VII rocking-curve linearization is performed about the 50%
relative reflectivity point to obtain a maximum range of the
approximately linear region, which was taken to span from 0.2
to 0.8. The linear-approximation parameters were calculated
to be α = 0.5011 and β = 9.3875×105 μrad−1.

The results of this first simulation are given in Fig. 2.
Figure 2(a) exhibits x-ray ghost differential phase contrast,
as the white edge bounding the left side of the ellipsoid and
the corresponding dark edge on the right side of the ellipsoid.
This corresponds to the derivative term in Eq. (47), which in
turn arises from the refractive properties of the sample. Note

that, while these images [e.g., Fig. 2(a)] closely resemble
those obtained using analyzer-crystal x-ray phase contrast
imaging [45], we emphasize that Fig. 2(a) is an x-ray ghost
phase contrast image whose phase contrast is never directly
measured with a position-sensitive detector. Note also that,
while the eye typically perceives some absorption within the
boundaries of the ellipsoid in Fig. 2(a), this is an optical illusion
related to the physiology of the human eye [67,68]. Thus
the dominant contrast mechanism in Fig. 2(a) is differential
phase contrast, with absorption contrast being negligible. The
histogram of noise present in Fig. 2(a) is shown in Fig. 2(b)
with the numerically obtained distribution (blue bars) overlaid
with a red curve based on the theory developed above.
Finally, Fig. 2(c) shows the differential x-ray phase contrast
ghost image obtained when the Gram-Schmidt process is
used to orthogonalize the speckle fields prior to the ghost
reconstruction. The significant improvement in efficiency of
the reconstruction with Gram-Schmidt utilization is consistent
with previous studies on absorptive x-ray ghost imaging [23].

3. Comparison of computational x-ray absorption and phase
contrast ghost-imaging simulations

To perform a more realistic x-ray ghost-imaging simulation,
for the case of both absorption contrast and phase contrast, we
drop both of the simplifying assumptions listed at the beginning
of the preceding section. We thus expand considerations to
include spatially smoothed speckles with Poisson shot noise
[29,38] in the bucket reading acquisition. For the Poisson noise
associated with the bucket detector as a single-pixel detector,
we use the model

B ′′
k = P (Bkλ̃

′)
λ̃′ , (55)

where B ′′
k and Bk are the measured and ideal bucket readings,

respectively, λ̃′ = λ̃〈Ik〉, λ̃ is the number of balls or imaging
quanta in the uniform beam, P is the Poisson distribution, and
Ik(i,j ) = I0 exp[−μ0Rk(i,j )] is a speckle intensity pattern.
The speckle mask in this case is generated by taking a single
large array of uniformly and independently distributed random
numbers (0 and 250 μm) and filtering it with a normalized
two-dimensional rotationally symmetric Gaussian kernel hav-
ing a standard deviation of 2/3 of a pixel. Each speckle
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FIG. 3. Comparison of x-ray phase contrast and absorption contrast computational ghost-imaging simulation made on a 64×64 mm2 pixel
array with smoothed speckle intensity patterns and shot-noise inclusion, performed with N = 64nm and λ̃ = 108. (a) Typical speckle intensity
pattern. (b) Expected phase contrast image, with Tx ≡ ∂T /∂x. (c) Expected absorption contrast image. (d) Obtained phase contrast image.
(e) Reconstructed absorption image from phase contrast. (f) Obtained absorption contrast computational ghost image (ACCGI). Note the boost
in SNR in passing from (f) to (e).

intensity pattern is then taken to correspond to a random
transverse translation of this single larger pattern. A typical
speckle intensity pattern created via this method is given in
Fig. 3(a). The sample being imaged here is a collection of ten
carbon ellipsoids, each described by Eq. (54), with ℵ = 4 and
r = {4,4,4,5,5,7,8,8,9,10} mm.

For the case that we have more pixels than speckles, the
resolution and reconstruction noise of the ghost image will not
be determined by the number of pixels but rather the number
of speckles. Note that this limitation, which is always the
case for the means of ghost imaging that has been considered
here, may be removed or reduced if, e.g., additional a priori
knowledge such as sparsity constraints are able to be employed
through compressive sensing methods. Note also that the noise
mentioned here is that inherent to the reconstruction process
utilizing spatially random masks, which is distinct from noise
obtained from experimental measurement.

The results of this more realistic simulation are in Fig. 3. A
typical illuminating speckle field is given [Fig. 3(a)], with the
expected phase-contrast ghost image [see Eq. (47)] [Fig. 3(b)]
and the expected absorption-contrast image [Fig. 3(c)]. The
simulated x-ray differential phase contrast ghost image shows
that, for weakly absorbing samples, the phase contrast image
can still consist of quite prominent features dominated by
the edge contrast associated with the spatial derivative in
Eq. (47) [Fig. 3(d)]. This x-ray ghost phase contrast leads to
better visibility through the noise in Fig. 3(d) and ultimately
retrieves [using Eq. (48)] a better absorption image [Fig. 3(e)
compared to Fig. 3(f)].

While the simulation results required a large number N

of speckle intensity patterns, recall that this is a base case

employing the standard ghost-imaging formula (1). Such a
reconstruction only improves in SNR proportional to

√
N .

More sophisticated reconstruction algorithms, such as those
that utilize compressive sensing, machine learning, basis or-
thogonalization, etc., may achieve much better efficiency. Such
improvements are beyond the scope of the simulated x-ray
study given in the present paper, whose core focus is on estab-
lishing proof of concept for x-ray phase contrast ghost imaging.

V. DISCUSSION

By considering a random-matrix reconstruction of a desired
two-dimensional discretized function, we have obtained S ≈√

N/nm, which is consistent with the findings of ghost-
imaging studies [3,69,70]. This suggests ghost imaging to be
the experimental realization of the mathematical concept of a
random basis reconstruction and is not inherently reliant on
any underlying physical phenomena.

A key theme of this paper is employing a set of random
matrices as a mathematical basis that can be used to expand
discretized functions of interest. While the focus has been on
expanding discretized two-dimensional functions using two-
dimensional random matrices, the idea can be implemented
in any integer number of dimensions. Indeed, the concept
of a random-matrix basis can be considered in a purely
mathematical setting, if desired, to sit alongside the Fourier
series, Taylor series, and other classic series as a useful tool
that allows one to approximate signals as a superposition of
simpler functions.

A peculiarity of the random basis, when compared
to deterministic bases, is that the spatially random basis
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synthesizes signals by superposing noise. This fact facilitates
applications where the requisite random matrices are spon-
taneously realized through (i) classical processes (e.g., via
transmission of plane waves through spatially random screens
in conventional x-ray ghost imaging [19,21–23] or atmospheric
shifts in the case of ground-based telescopes which would build
on the atmospheric turbulence ghost-imaging work of [17]) and
(ii) quantum processes (e.g., via photon shot noise obtained via
synchrotron radiation from individual electron bunches [20]).
Another peculiarity of random bases is that every basis member
is in some sense statistically equivalent, implying that the
basis elements cannot be ordered in a manner analogous to the
ordering of deterministic bases in terms of increasing spatial
frequency, rapidity of oscillation, etc. The latter point invites
the previously suggested parallel between random-matrix basis
members, and the thermodynamic concept of a microstate.
Indeed, averaging over microstates in thermodynamic ensem-
bles is conceptually rather close to the concept of ensemble
averaging over a random-matrix basis. Further exploration,
of the connection between thermodynamic concepts and the
concept of random-matrix bases, would form an interesting
avenue for further investigation.

We do not claim that the particular random-matrix synthesis
and decomposition methods in the present paper are the most
efficient. For example, as previously stated, the efficiency
and robustness of our proof-of-concept x-ray phase con-
trast computational ghost-imaging procedure could certainly
be improved via the use of concepts and techniques from
compressed sensing [40]. Another avenue for improvement,
inspired by some recent works on inverse imaging problems,
is the utilization of machine learning and artificial neural
networks (see, e.g., [71]) to realize more robust and efficient
ghost-imaging algorithms that are able to make fuller use of
all available a priori knowledge. Indeed, the improvement
afforded by such extensions could be quantified by comparison
with the analytical base case results developed in the present
paper.

With respect to phase contrast or holographic x-ray ghost
imaging, there exists the additional hurdle of potentially
unwanted phase information being imparted by the mask.
Recall the setup for x-ray phase contrast computational ghost
imaging (Sec. IV A); the reordering of the mask and sample,
with respect to the usual sequence in which the mask occurs
upstream of the sample, was enacted for this reason. Supposing
we had the reverse order for mask and sample, the bucket
reading would be

Bk =
n∑

i=1

m∑
j=1

I0 exp[−μT (i,j ) − μ0Rk(i,j )]

×
[
α + βδ

∂T (i,j )

∂x
+ βδ0

∂Rk(i,j )

∂x

]
, (56)

where symbols with subscript 0 are mask parameters. The
spatial gradient of the mask in this case presents an un-
wanted contribution that corrupts the bucket reading and ghost-
imaging process in a manner problematic to remedy. Hence
we recommend that for x-ray phase contrast and holographic
ghost-imaging investigations in general, moving the mask or

spatial light modulator (SLM) to downstream of the sample
may produce a more practical implementation.

In a similar fashion, consider now environmental or turbu-
lence robustness [17,25,72–74]. The spatial distribution of the
mask intensity pattern must be approximately unchanged when
illuminating the sample (or vice versa) to avoid corruption
of the ghost-imaging process, but need not necessarily be
preserved for the entire path from sample to detector (as
is consistent with the findings of [18]). That is, from the
perspective of a series expansion, the weighting coefficient or
bucket reading must be of the form of a known basis, multiplied
by the sample’s transmission function, and spatially integrated.
This permits arbitrary scrambling of the information post the
mask-sample interaction.

In the case of direct imaging, the minimum resolvable area
is limited by the pixel size. In the case of ghost imaging,
the limiting factor is the mask speckles, which presents a
potentially easier manufacturing obstacle to overcome. That is,
a potential avenue of future work could be to nanomanufacture
the mask, allowing ghost imaging to be performed on the
submicrometer scale. This may yield a means to produce
geometrical superresolution [75] images (cf. [76]).

Finally, we consider the concept of feedback computational
ghost imaging. This utilizes information gained from each
speckle-field interaction with the sample to inform future
intensity field inputs [77,78]. Thus the nth illuminating speckle
field is adaptively chosen based on all preceding n − 1 speckle
fields and their associated bucket signals, in a manner that seeks
maximal new information in each subsequent measurement.
The aim of this method is to produce a rapidly converging
imaging system that seeks to reduce dose by reducing the
number of measurements required; this is on-the-fly compres-
sive acquisition, as suggested by Aßmann and Bayer [77]. For
example, we could use the gained information to essentially
inform a guess of what the exact image is. Alternatively, since
SNR can have a spatial distribution, we might choose to focus
future intensity patterns based on real-time SNR distribution
results. Regarding implementation of this concept, and further
to the recent results of Sun et al. [78], suppose one wanted
to converge to the exact image via a global optimization
algorithm. A goal could be to meet the condition that the SLM
and the sample provide the same attenuation

B ′
k〈

I 2
k

〉 = 1, (57)

where B ′
k = 〈Ik,f 〉 subject to appropriate normalization. This

condition could be augmented into something suitable for
improvement via simulated annealing [79]. Further, we might
hope to utilize deep learning algorithms and artificial intel-
ligence (AI) to improve convergence. Work in the area of
AI imaging has dramatically progressed in recent times [71],
including in the ghost-imaging area [80].

VI. CONCLUSION

Synthesis of functions sampled on a discrete Cartesian lat-
tice, via a linear combination of random-matrix basis elements,
was considered. This may be viewed as superposing discrete
noise maps in order to approximate arbitrary discrete signals.
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While this concept has broad applicability in physics, focus
was given to functions of two spatial variables. In this context,
statements were made regarding orthogonality, completeness,
arbitrary function reconstruction, and SNR.

Particular focus was given to applications in ghost imaging
and computational imaging. This aligns with the idea that ghost
imaging is the experimental realization of the mathematical
process of expressing an image as a weighted sum of known
intensity patterns (random or otherwise). We constructed an
inequality that must be satisfied if the conventional noncom-
pressive form of ghost imaging, which may be directly derived
from the random-matrix-basis concept, is to yield reduced dose
as compared to direct imaging. This inequality stems from
comparing the expected noise or variance of each imaging
process for a given dose. That is, e.g., if a ghost image yields
a lower expected noise for a given dose than the direct image,
that implies the ghost image could have achieved the same
noise as the direct image with a lower dose. Cases in which
this inequality is not satisfied may be viewed as motivating
the need for compressive sensing or related concepts, as a
necessary condition for dose reduction in a ghost-imaging or
computational-imaging context.

We proposed an experimental setup to achieve computa-
tional x-ray phase contrast ghost imaging. This was motivated
by the dearth of x-ray ghost-imaging experiments able to
yield phase contrast, the infancy of the field of x-ray ghost
imaging, and the renaissance in coherent direct x-ray imaging
that is currently under way due to phase contrast. Both the
forward and inverse problems were considered. The former
demonstrated the feasibility of x-ray differential phase contrast
ghost imaging. The latter gave a solution to the inverse prob-
lem of obtaining quantitative projected-thickness information
regarding a sample, using a single x-ray differential phase
contrast ghost image of that sample.

ACKNOWLEDGMENTS

We acknowledge useful discussions with Mario Beltran,
Carsten Detlefs, Jean-Pierre Guigay, Timur Gureyev, Andrew
Kingston, Alex Kozlov, Kieran Larkin, Anthony Mays, Kavan
Modi, Glenn Myers, Margie Olbinado, Timothy Petersen,
Daniele Pelliccia, Alexander Rack, Tapio Simula, and Imants
Svalbe. D.M.P. acknowledges financial support from the Eu-
ropean Synchrotron Radiation Facility.

[1] B. I. Erkmen and J. H. Shapiro, Ghost imaging: From quan-
tum to classical to computational, Adv. Opt. Photon. 2, 405
(2010).

[2] M. J. Padgett and R. W. Boyd, An introduction to ghost imaging:
Quantum and classical, Philos. Trans. R. Soc. A 375, 20160233
(2017).

[3] Y. Bromberg, O. Katz, and Y. Silberberg, Ghost imaging with a
single detector, Phys. Rev. A 79, 053840 (2009).

[4] D. N. Klyshko, Effect of focusing on photon correlation in
parametric light scattering, J. Exp. Theor. Phys. 67, 1131 (1988).

[5] A. V. Belinskiı̆ and D. N. Klyshko, Two-photon optics: diffrac-
tion, holography, and transformation of two-dimensional sig-
nals, J. Exp. Theor. Phys. 78, 259 (1994).

[6] D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H.
Shih, Observation of Two-Photon “Ghost” Interference and
Diffraction, Phys. Rev. Lett. 74, 3600 (1995).

[7] T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko,
Optical imaging by means of two-photon quantum entangle-
ment, Phys. Rev. A 52, R3429 (1995).

[8] R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-Photon”
Coincidence Imaging with a Classical Source, Phys. Rev. Lett.
89, 113601 (2002).

[9] G. Scarcelli, V. Berardi, and Y. Shih, Can Two-Photon Correla-
tion of Chaotic Light be Considered as Correlation of Intensity
Fluctuations? Phys. Rev. Lett. 96, 063602 (2006).

[10] M. I. Kolobov, Quantum Imaging (Springer Science + Business
Media, New York, 2007).

[11] Y. Shih, in Classical, Semi-classical and Quantum Noise
(Springer, Berlin, 2012), pp. 169–222.

[12] O. Katz, Y. Bromberg, and Y. Silberberg, Compressive ghost
imaging, Appl. Phys. Lett. 95, 131110 (2009).

[13] P. Zerom, K. W. C. Chan, J. C. Howell, and R. W. Boyd,
Entangled-photon compressive ghost imaging, Phys. Rev. A 84,
061804 (2011).

[14] V. Katkovnik and J. Astola, Compressive sensing computational
ghost imaging, J. Opt. Soc. Am. A 29, 1556 (2012).

[15] W.-K. Yu, M.-F. Li, X.-R. Yao, X.-F. Liu, L.-A. Wu, and G.-J.
Zhai, Adaptive compressive ghost imaging based on wavelet
trees and sparse representation, Opt. Express 22, 7133 (2014).

[16] C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han,
Ghost imaging lidar via sparsity constraints, Appl. Phys. Lett.
101, 141123 (2012).

[17] D. Shi, C. Fan, P. Zhang, J. Zhang, H. Shen, C. Qiao, and
Y. Wang, Adaptive optical ghost imaging through atmospheric
turbulence, Opt. Express 20, 27992 (2012).

[18] M. Le, G. Wang, H. Zheng, J. Liu, Y. Zhou, and Z. Xu,
Underwater computational ghost imaging, Opt. Express 25,
22859 (2017).

[19] H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu,
Fourier-Transform Ghost Imaging with Hard X-Rays, Phys. Rev.
Lett. 117, 113901 (2016).

[20] D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin,
Experimental X-Ray Ghost Imaging, Phys. Rev. Lett. 117,
113902 (2016).

[21] A. Schori and S. Schwartz, X-ray ghost imaging with a labora-
tory source, Opt. Express 25, 14822 (2017).

[22] A.-X. Zhang, Y.-H. He, L.-A. Wu, L.-M. Chen, and B.-B. Wang,
Tabletop x-ray ghost imaging with ultra-low radiation, Optica 5,
374 (2018).

[23] D. Pelliccia, M. P. Olbinado, A. Rack, and D. M.
Paganin, Practical x-ray ghost imaging with synchrotron light,
arXiv:1710.00727 [IUCrJ (to be published)].

[24] R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman,
R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, Ghost imaging
with atoms, Nature (London) 540, 100 (2016).

[25] R. Meyers, K. Deacon, and Y. Shih, A new two-photon ghost
imaging experiment with distortion study, J. Mod. Opt. 54, 2381
(2007).

062119-12

https://doi.org/10.1364/AOP.2.000405
https://doi.org/10.1364/AOP.2.000405
https://doi.org/10.1364/AOP.2.000405
https://doi.org/10.1364/AOP.2.000405
https://doi.org/10.1098/rsta.2016.0233
https://doi.org/10.1098/rsta.2016.0233
https://doi.org/10.1098/rsta.2016.0233
https://doi.org/10.1098/rsta.2016.0233
https://doi.org/10.1103/PhysRevA.79.053840
https://doi.org/10.1103/PhysRevA.79.053840
https://doi.org/10.1103/PhysRevA.79.053840
https://doi.org/10.1103/PhysRevA.79.053840
https://doi.org/10.1103/PhysRevLett.74.3600
https://doi.org/10.1103/PhysRevLett.74.3600
https://doi.org/10.1103/PhysRevLett.74.3600
https://doi.org/10.1103/PhysRevLett.74.3600
https://doi.org/10.1103/PhysRevA.52.R3429
https://doi.org/10.1103/PhysRevA.52.R3429
https://doi.org/10.1103/PhysRevA.52.R3429
https://doi.org/10.1103/PhysRevA.52.R3429
https://doi.org/10.1103/PhysRevLett.89.113601
https://doi.org/10.1103/PhysRevLett.89.113601
https://doi.org/10.1103/PhysRevLett.89.113601
https://doi.org/10.1103/PhysRevLett.89.113601
https://doi.org/10.1103/PhysRevLett.96.063602
https://doi.org/10.1103/PhysRevLett.96.063602
https://doi.org/10.1103/PhysRevLett.96.063602
https://doi.org/10.1103/PhysRevLett.96.063602
https://doi.org/10.1063/1.3238296
https://doi.org/10.1063/1.3238296
https://doi.org/10.1063/1.3238296
https://doi.org/10.1063/1.3238296
https://doi.org/10.1103/PhysRevA.84.061804
https://doi.org/10.1103/PhysRevA.84.061804
https://doi.org/10.1103/PhysRevA.84.061804
https://doi.org/10.1103/PhysRevA.84.061804
https://doi.org/10.1364/JOSAA.29.001556
https://doi.org/10.1364/JOSAA.29.001556
https://doi.org/10.1364/JOSAA.29.001556
https://doi.org/10.1364/JOSAA.29.001556
https://doi.org/10.1364/OE.22.007133
https://doi.org/10.1364/OE.22.007133
https://doi.org/10.1364/OE.22.007133
https://doi.org/10.1364/OE.22.007133
https://doi.org/10.1063/1.4757874
https://doi.org/10.1063/1.4757874
https://doi.org/10.1063/1.4757874
https://doi.org/10.1063/1.4757874
https://doi.org/10.1364/OE.20.027992
https://doi.org/10.1364/OE.20.027992
https://doi.org/10.1364/OE.20.027992
https://doi.org/10.1364/OE.20.027992
https://doi.org/10.1364/OE.25.022859
https://doi.org/10.1364/OE.25.022859
https://doi.org/10.1364/OE.25.022859
https://doi.org/10.1364/OE.25.022859
https://doi.org/10.1103/PhysRevLett.117.113901
https://doi.org/10.1103/PhysRevLett.117.113901
https://doi.org/10.1103/PhysRevLett.117.113901
https://doi.org/10.1103/PhysRevLett.117.113901
https://doi.org/10.1103/PhysRevLett.117.113902
https://doi.org/10.1103/PhysRevLett.117.113902
https://doi.org/10.1103/PhysRevLett.117.113902
https://doi.org/10.1103/PhysRevLett.117.113902
https://doi.org/10.1364/OE.25.014822
https://doi.org/10.1364/OE.25.014822
https://doi.org/10.1364/OE.25.014822
https://doi.org/10.1364/OE.25.014822
https://doi.org/10.1364/OPTICA.5.000374
https://doi.org/10.1364/OPTICA.5.000374
https://doi.org/10.1364/OPTICA.5.000374
https://doi.org/10.1364/OPTICA.5.000374
http://arxiv.org/abs/arXiv:1710.00727
https://doi.org/10.1038/nature20154
https://doi.org/10.1038/nature20154
https://doi.org/10.1038/nature20154
https://doi.org/10.1038/nature20154
https://doi.org/10.1080/09500340701400117
https://doi.org/10.1080/09500340701400117
https://doi.org/10.1080/09500340701400117
https://doi.org/10.1080/09500340701400117


RANDOM-MATRIX BASES, GHOST IMAGING, AND X-RAY … PHYSICAL REVIEW A 97, 062119 (2018)

[26] S. W. Wilkins, Y. I. Nesterets, T. E. Gureyev, S. C. Mayo,
A. Pogany, and A. W. Stevenson, On the evolution and rel-
ative merits of hard x-ray phase-contrast imaging methods,
Philos. Trans. R. Soc. A 372, 20130021 (2014).

[27] T. Shirai, T. Setälä, and A. T. Friberg, Ghost imaging of phase
objects with classical incoherent light, Phys. Rev. A 84, 041801
(2011).

[28] A. Eddington, The Nature of the Physical World: The Gifford
Lectures (Macmillan, New York, 1928).

[29] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics
(Cambridge University Press, Cambridge, 1995).

[30] H. Anton and C. Rorres, Elementary Linear Algebra with
Applications (Wiley, New York, 1987).

[31] P. Diaconis, What is... a random matrix? Not. Am. Math. Soc.
52, 1348 (2005).

[32] R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge
University Press, Cambridge, 1990).

[33] G. W. Anderson, A. Guionnet, and O. Zeitouni, An Introduction
to Random Matrices (Cambridge University Press, Cambridge,
2010).

[34] J. H. Shapiro, Computational ghost imaging, Phys. Rev. A 78,
061802 (2008).

[35] T. Gureyev, Y. Nesterets, and F. de Hoog, Spatial resolution,
signal-to-noise and information capacity of linear imaging sys-
tems, Opt. Express 24, 17168 (2016).

[36] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart,
Reorthogonalization and stable algorithms for updating the
Gram-Schmidt QR factorization, Math. Comput. 30, 772
(1976).

[37] F. W. Sears and G. L. Salinger, Thermodynamics, Kinetic The-
ory, and Statistical Thermodynamics, 3rd ed. (Addison-Wesley,
Reading, 1975).

[38] Y. M. Blanter and M. Büttiker, Shot noise in mesoscopic
conductors, Phys. Rep. 336, 1 (2000).

[39] T. E. Gureyev, D. M. Paganin, A. Kozlov, Y. I. Nesterets, and
H. M. Quiney, Complementary aspects of spatial resolution and
signal-to-noise ratio in computational imaging, Phys. Rev. A 97,
053819 (2018).

[40] S. Qaisar, R. M. Bilal, W. Iqbal, M. Naureen, and S. Lee,
Compressive sensing: From theory to applications, A survey,
J. Commun. Netw. 15, 443 (2013).

[41] D. M. Paganin, Coherent X-Ray Optics (Oxford University Press,
Oxford, 2006).

[42] B. Jack, N. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-
Marte, S. M. Barnett, and M. J. Padgett, Holographic Ghost
Imaging and the Violation of a Bell Inequality, Phys. Rev. Lett.
103, 083602 (2009).

[43] W. Gong and S. Han, Phase-retrieval ghost imaging of complex-
valued objects, Phys. Rev. A 82, 023828 (2010).

[44] L. Martínez-León, P. Clemente, Y. Mori, V. Climent, J. Lancis,
and E. Tajahuerce, Single-pixel digital holography with phase-
encoded illumination, Opt. Express 25, 4975 (2017).

[45] E. Förster, K. Goetz, and P. Zaumseil, Double crystal diffrac-
tometry for the characterization of targets for laser fusion
experiments, Krist. Tech. 15, 937 (1980).

[46] D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W.
Wilkins, Simultaneous phase and amplitude extraction from a
single defocused image of a homogeneous object, J. Microsc.
206, 33 (2002).

[47] M. A. Beltran, D. M. Paganin, K. Uesugi, and M. J. Kitchen, 2D
and 3D x-ray phase retrieval of multi-material objects using a
single defocus distance, Opt. Express 18, 6423 (2010).

[48] M. A. Beltran, D. M. Paganin, K. K. W. Siu, A. Fouras, S. B.
Hooper, D. H. Reser, and M. J. Kitchen, Interface-specific x-
ray phase retrieval tomography of complex biological organs,
Phys. Med. Biol. 56, 7353 (2011).

[49] P. Cloetens (private communication).
[50] X. Wu, H. Liu, and A. Yan, X-ray phase-attenuation duality and

phase retrieval, Opt. Lett. 30, 379 (2005).
[51] D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E.

Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers,
Diffraction enhanced x-ray imaging, Phys. Med. Biol. 42, 2015
(1997).

[52] P. C. Sabatier, Past and future of inverse problems, J. Math. Phys.
41, 4082 (2000).

[53] D. Gabor, A new microscopic principle, Nature (London) 161,
777 (1948).

[54] D. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, and M.
Kitchen, Phase retrieval using coherent imaging systems with
linear transfer functions, Opt. Commun. 234, 87 (2004).

[55] D. Briedis, K. K. W. Siu, D. M. Paganin, K. M. Pavlov, and
R. A. Lewis, Analyser-based mammography using single-image
reconstruction, Phys. Med. Biol. 50, 3599 (2005).

[56] D. J. Vine, D. M. Paganin, K. M. Pavlov, J. Kräußlich, O.
Wehrhan, I. Uschmann, and E. Förster, Analyzer-based phase
contrast imaging and phase retrieval using a rotating anode x-ray
source, Appl. Phys. Lett. 91, 254110 (2007).

[57] T. E. Gureyev, Y. I. Nesterets, A. Kozlov, D. M Paganin, and
H. M. Quiney, On the “unreasonable” effectiveness of transport
of intensity imaging and optical deconvolution, J. Opt. Soc. Am.
A 34, 2251 (2017).

[58] Y. I. Nesterets and T. E. Gureyev, Noise propagation in x-ray
phase-contrast imaging and computed tomography, J. Phys. D
47, 105402 (2014).

[59] T. E. Gureyev, S. C. Mayo, Y. I. Nesterets, S. Mohammadi, D.
Lockie, R. H. Menk, F. Arfelli, K. M. Pavlov, M. J. Kitchen, F.
Zanconati, C. Dullin, and G. Tromba, Investigation of the imag-
ing quality of synchrotron-based phase-contrast mammographic
tomography, J. Phys. D 47, 365401 (2014).

[60] M. J. Kitchen, G. A. Buckley, T. E. Gureyev, M. J. Wallace, N.
Andres-Thio, K. Uesugi, N. Yagi, and S. B. Hooper, CT dose
reduction factors in the thousands using x-ray phase contrast,
Sci. Rep. 7, 15953 (2017).

[61] K. Pearson, IX. Mathematical contributions to the theory of
evolution. XIX. Second supplement to a memoir on skew
variation, Philos. Trans. R. Soc. A 216, 429 (1916).

[62] K. Majidi, J. Li, C. Muehleman, and J. G. Brankov, Noise and
analyzer-crystal angular position analysis for analyzer-based
phase-contrast imaging, Phys. Med. Biol. 59, 1877 (2014).

[63] Attenuation coefficients were taken from https://physics.nist.
gov/PhysRefData/XrayMassCoef/tab3.html; the form factor
f1 was taken from https://physics.nist.gov/PhysRefData/FFast/
html/form.html; and molar mass and density values were taken
from https://physics.nist.gov/PhysRefData/XrayMassCoef/
tab1.html

[64] D. Attwood and A. Sakdinawat, X-Rays and Extreme Ultraviolet
Radiation: Principles and Applications (Cambridge University
Press, Cambridge, 2017).

062119-13

https://doi.org/10.1098/rsta.2013.0021
https://doi.org/10.1098/rsta.2013.0021
https://doi.org/10.1098/rsta.2013.0021
https://doi.org/10.1098/rsta.2013.0021
https://doi.org/10.1103/PhysRevA.84.041801
https://doi.org/10.1103/PhysRevA.84.041801
https://doi.org/10.1103/PhysRevA.84.041801
https://doi.org/10.1103/PhysRevA.84.041801
https://doi.org/10.1103/PhysRevA.78.061802
https://doi.org/10.1103/PhysRevA.78.061802
https://doi.org/10.1103/PhysRevA.78.061802
https://doi.org/10.1103/PhysRevA.78.061802
https://doi.org/10.1364/OE.24.017168
https://doi.org/10.1364/OE.24.017168
https://doi.org/10.1364/OE.24.017168
https://doi.org/10.1364/OE.24.017168
https://doi.org/10.1090/S0025-5718-1976-0431641-8
https://doi.org/10.1090/S0025-5718-1976-0431641-8
https://doi.org/10.1090/S0025-5718-1976-0431641-8
https://doi.org/10.1090/S0025-5718-1976-0431641-8
https://doi.org/10.1016/S0370-1573(99)00123-4
https://doi.org/10.1016/S0370-1573(99)00123-4
https://doi.org/10.1016/S0370-1573(99)00123-4
https://doi.org/10.1016/S0370-1573(99)00123-4
https://doi.org/10.1103/PhysRevA.97.053819
https://doi.org/10.1103/PhysRevA.97.053819
https://doi.org/10.1103/PhysRevA.97.053819
https://doi.org/10.1103/PhysRevA.97.053819
https://doi.org/10.1109/JCN.2013.000083
https://doi.org/10.1109/JCN.2013.000083
https://doi.org/10.1109/JCN.2013.000083
https://doi.org/10.1109/JCN.2013.000083
https://doi.org/10.1103/PhysRevLett.103.083602
https://doi.org/10.1103/PhysRevLett.103.083602
https://doi.org/10.1103/PhysRevLett.103.083602
https://doi.org/10.1103/PhysRevLett.103.083602
https://doi.org/10.1103/PhysRevA.82.023828
https://doi.org/10.1103/PhysRevA.82.023828
https://doi.org/10.1103/PhysRevA.82.023828
https://doi.org/10.1103/PhysRevA.82.023828
https://doi.org/10.1364/OE.25.004975
https://doi.org/10.1364/OE.25.004975
https://doi.org/10.1364/OE.25.004975
https://doi.org/10.1364/OE.25.004975
https://doi.org/10.1002/crat.19800150812
https://doi.org/10.1002/crat.19800150812
https://doi.org/10.1002/crat.19800150812
https://doi.org/10.1002/crat.19800150812
https://doi.org/10.1046/j.1365-2818.2002.01010.x
https://doi.org/10.1046/j.1365-2818.2002.01010.x
https://doi.org/10.1046/j.1365-2818.2002.01010.x
https://doi.org/10.1046/j.1365-2818.2002.01010.x
https://doi.org/10.1364/OE.18.006423
https://doi.org/10.1364/OE.18.006423
https://doi.org/10.1364/OE.18.006423
https://doi.org/10.1364/OE.18.006423
https://doi.org/10.1088/0031-9155/56/23/002
https://doi.org/10.1088/0031-9155/56/23/002
https://doi.org/10.1088/0031-9155/56/23/002
https://doi.org/10.1088/0031-9155/56/23/002
https://doi.org/10.1364/OL.30.000379
https://doi.org/10.1364/OL.30.000379
https://doi.org/10.1364/OL.30.000379
https://doi.org/10.1364/OL.30.000379
https://doi.org/10.1088/0031-9155/42/11/001
https://doi.org/10.1088/0031-9155/42/11/001
https://doi.org/10.1088/0031-9155/42/11/001
https://doi.org/10.1088/0031-9155/42/11/001
https://doi.org/10.1063/1.533336
https://doi.org/10.1063/1.533336
https://doi.org/10.1063/1.533336
https://doi.org/10.1063/1.533336
https://doi.org/10.1038/161777a0
https://doi.org/10.1038/161777a0
https://doi.org/10.1038/161777a0
https://doi.org/10.1038/161777a0
https://doi.org/10.1016/j.optcom.2004.02.015
https://doi.org/10.1016/j.optcom.2004.02.015
https://doi.org/10.1016/j.optcom.2004.02.015
https://doi.org/10.1016/j.optcom.2004.02.015
https://doi.org/10.1088/0031-9155/50/15/008
https://doi.org/10.1088/0031-9155/50/15/008
https://doi.org/10.1088/0031-9155/50/15/008
https://doi.org/10.1088/0031-9155/50/15/008
https://doi.org/10.1063/1.2825426
https://doi.org/10.1063/1.2825426
https://doi.org/10.1063/1.2825426
https://doi.org/10.1063/1.2825426
https://doi.org/10.1364/JOSAA.34.002251
https://doi.org/10.1364/JOSAA.34.002251
https://doi.org/10.1364/JOSAA.34.002251
https://doi.org/10.1364/JOSAA.34.002251
https://doi.org/10.1088/0022-3727/47/10/105402
https://doi.org/10.1088/0022-3727/47/10/105402
https://doi.org/10.1088/0022-3727/47/10/105402
https://doi.org/10.1088/0022-3727/47/10/105402
https://doi.org/10.1088/0022-3727/47/36/365401
https://doi.org/10.1088/0022-3727/47/36/365401
https://doi.org/10.1088/0022-3727/47/36/365401
https://doi.org/10.1088/0022-3727/47/36/365401
https://doi.org/10.1038/s41598-017-16264-x
https://doi.org/10.1038/s41598-017-16264-x
https://doi.org/10.1038/s41598-017-16264-x
https://doi.org/10.1038/s41598-017-16264-x
https://doi.org/10.1098/rsta.1916.0009
https://doi.org/10.1098/rsta.1916.0009
https://doi.org/10.1098/rsta.1916.0009
https://doi.org/10.1098/rsta.1916.0009
https://doi.org/10.1088/0031-9155/59/8/1877
https://doi.org/10.1088/0031-9155/59/8/1877
https://doi.org/10.1088/0031-9155/59/8/1877
https://doi.org/10.1088/0031-9155/59/8/1877
https://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html
https://physics.nist.gov/PhysRefData/FFast/html/form.html
https://physics.nist.gov/PhysRefData/XrayMassCoef/tab1.html


DAVID CEDDIA AND DAVID M. PAGANIN PHYSICAL REVIEW A 97, 062119 (2018)

[65] F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, Differential
Ghost Imaging, Phys. Rev. Lett. 104, 253603 (2010).

[66] A. W. Stevenson, S. C. Mayo, D. Häusermann, A. Maksimenko,
R. F. Garrett, C. J. Hall, S. W. Wilkins, R. A Lewis, and D. E.
Myers, First experiments on the Australian synchrotron imaging
and medical beamline, including investigations of the effective
source size in respect of x-ray imaging, J. Synchrotron Radiat.
17, 75 (2010).

[67] D. M. Eagleman, Visual illusions and neurobiology, Nat. Rev.
Neurosci. 2, 920 (2001).

[68] S. A. Wallis and M. A. Georgeson, Mach bands and multiscale
models of spatial vision: The role of first, second, and third
derivative operators in encoding bars and edges, J. Vision 12,
18 (2012).

[69] B. I. Erkmen and J. H. Shapiro, Signal-to-noise ratio of Gaussian-
state ghost imaging, Phys. Rev. A 79, 023833 (2009).

[70] P. Clemente, V. Durán, E. Tajahuerce, V. Torres-Company, and
J. Lancis, Single-pixel digital ghost holography, Phys. Rev. A
86, 041803(R) (2012).

[71] Z. D. C. Kemp, Propagation based phase retrieval of simulated
intensity measurements using artificial neural networks, J. Opt.
20, 045606 (2018).

[72] R. E. Meyers, K. S. Deacon, and Y. Shih, in Quantum Com-
munications and Quantum Imaging VI, edited by R. E. Meyers,

Y. Shih, and K. A. Deacon, SPIE Proc. Vol. 7092 art. 7092-15
(SPIE, Bellingham, 2008).

[73] R. E. Meyers, K. S. Deacon, and Y. Shih, Turbulence-free ghost
imaging, Appl. Phys. Lett. 98, 111115 (2011).

[74] R. E. Meyers, K. S. Deacon, and Y. Shih, Positive-negative
turbulence-free ghost imaging, Appl. Phys. Lett. 100, 131114
(2012).

[75] P. Milanfar, Super-Resolution Imaging (CRC Press, Boca Raton,
2010).

[76] F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A.
Lugiato, High-Resolution Ghost Image and Ghost Diffraction
Experiments with Thermal Light, Phys. Rev. Lett. 94, 183602
(2005).

[77] M. Aßmann and M. Bayer, Compressive adaptive computational
ghost imaging, Sci. Rep. 3, 1545 (2013).

[78] S. Sun, W.-T. Liu, H.-Z. Lin, E.-F. Zhang, J.-Y. Liu, Q. Li, and
P.-X. Chen, Multi-scale adaptive computational ghost imaging,
Sci. Rep. 6, 37013 (2016).

[79] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by
simulated annealing, Science 220, 671 (1983).

[80] T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y.
Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A.
Shiraki, and T. Ito, Computational ghost imaging using deep
learning, Opt. Commun. 413, 147 (2018).

062119-14

https://doi.org/10.1103/PhysRevLett.104.253603
https://doi.org/10.1103/PhysRevLett.104.253603
https://doi.org/10.1103/PhysRevLett.104.253603
https://doi.org/10.1103/PhysRevLett.104.253603
https://doi.org/10.1107/S0909049509041788
https://doi.org/10.1107/S0909049509041788
https://doi.org/10.1107/S0909049509041788
https://doi.org/10.1107/S0909049509041788
https://doi.org/10.1038/35104092
https://doi.org/10.1038/35104092
https://doi.org/10.1038/35104092
https://doi.org/10.1038/35104092
https://doi.org/10.1167/12.13.18
https://doi.org/10.1167/12.13.18
https://doi.org/10.1167/12.13.18
https://doi.org/10.1167/12.13.18
https://doi.org/10.1103/PhysRevA.79.023833
https://doi.org/10.1103/PhysRevA.79.023833
https://doi.org/10.1103/PhysRevA.79.023833
https://doi.org/10.1103/PhysRevA.79.023833
https://doi.org/10.1103/PhysRevA.86.041803
https://doi.org/10.1103/PhysRevA.86.041803
https://doi.org/10.1103/PhysRevA.86.041803
https://doi.org/10.1103/PhysRevA.86.041803
https://doi.org/10.1088/2040-8986/aab02f
https://doi.org/10.1088/2040-8986/aab02f
https://doi.org/10.1088/2040-8986/aab02f
https://doi.org/10.1088/2040-8986/aab02f
https://doi.org/10.1063/1.3567931
https://doi.org/10.1063/1.3567931
https://doi.org/10.1063/1.3567931
https://doi.org/10.1063/1.3567931
https://doi.org/10.1063/1.3698158
https://doi.org/10.1063/1.3698158
https://doi.org/10.1063/1.3698158
https://doi.org/10.1063/1.3698158
https://doi.org/10.1103/PhysRevLett.94.183602
https://doi.org/10.1103/PhysRevLett.94.183602
https://doi.org/10.1103/PhysRevLett.94.183602
https://doi.org/10.1103/PhysRevLett.94.183602
https://doi.org/10.1038/srep01545
https://doi.org/10.1038/srep01545
https://doi.org/10.1038/srep01545
https://doi.org/10.1038/srep01545
https://doi.org/10.1038/srep37013
https://doi.org/10.1038/srep37013
https://doi.org/10.1038/srep37013
https://doi.org/10.1038/srep37013
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1016/j.optcom.2017.12.041
https://doi.org/10.1016/j.optcom.2017.12.041
https://doi.org/10.1016/j.optcom.2017.12.041
https://doi.org/10.1016/j.optcom.2017.12.041



