
PHYSICAL REVIEW A 97, 062115 (2018)

Experimental retrodiction of trajectories of single photons in double interferometers
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When a photon passes through an interferometer, quantum mechanics does not provide a clear answer as to
its past. Quantum retrodiction is a quantitative theory, which endeavors to make statements about the past of a
system based on present knowledge. Quantum retrodiction may be used to analyze the past of a photon, that is,
its trajectory. Here we experimentally retrodict the trajectories of single photons in double interferometers by
measuring the final state of the photon. A sequence of measurements is made on a photon to determine which path
the photon followed, so a series of retrodiction of measurement results can be regarded as a photon trajectory. We
obtain information about the partial trajectory and the entire trajectory of the photon. Furthermore, we also observe
the effect of different measurements in the extraction of trajectory information. Our experiment highlights the
application of retrodiction theory to the study of the photon’s past, and provides potential application in quantum
communications.
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I. INTRODUCTION

Prediction is concerned with future events, whereas retrod-
iction is concerned with past events, that is, making statements
about a system’s past based on the present knowledge [1].
The concepts of prediction and retrodiction are particularly
relevant to basic processes involved in quantum commu-
nications [2]. With the rapid development and interest in
quantum communications and quantum cryptography, quan-
tum retrodiction theory is being studied increasingly [2–11].
Quantum retrodiction, as a quantitative theory, is applied to
analyze the transmission of signals through an attenuating
or amplifying channel in a quantum optical communications
network [2,3] and to interpret some experimental phenomena
in quantum optics, such as beam splitters [1], photon anti-
bunching [5], and quantum scissors [7], as well as to analyze
closed and open system [8,9]. It is also employed in image
reconstruction from sparse photocount data [12,13], which
not only focuses on a reconstructed image but also provides
the full probability distribution function for the intensity
at each pixel. Recently, researchers used a weak probe to
continuously monitor a superconducting qubit in a microwave
cavity, and with that data before and after t to retrodict the
outcome of weak and strong qubit measurement performed at
time t [14].

Here we are interested in retrodiction of the past of a
photon in double interferometers. Quantum mechanics does
not provide a clear answer to the past of a photon when it
passes through an interferometer. Previous theoretical work
and which-way experiments presented the past of a photon
as a trajectory [15–19]. Subsequently, the study of analyzing
the past of a quantum particle according to the weak trace it
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leaves based on the two-state vector formalism of quantum
theory was proposed [20–23]. Especially, two experiments
obtained anomalous trajectories of photons not always fol-
lowing continuous trajectories [21,22]. The experiments were
performed using an asymmetric Mach-Zehnder interferometer
(MZI) with a symmetric MZI inserted into one arm, and
used weak interactions to mark the path that photons take
through the interferometer, where the experimental results are
explained in the framework of the two-state vector formalism
of quantum theory [24–26]. Afterwards the analysis of the
experiment in [21] using standard quantum optical methods
and an amendment version were proposed [27,28]. Here we
focus on the past of the photon in the double interferome-
ters based on the quantum retrodiction method, and obtain
trajectory information by measuring the final state of the
photon.

Suppose a quantum system is prepared in an initial
state |�〉 and then subjected to a series of measurements
{M1,M2, . . . ,MN}, but do not read the results [see Fig. 1(a)].
Once a measurement is performed on a quantum system, the
state of the system can be changed. Different measurement
results correspond to different final states |�〉 of the sys-
tem. We can retrodict the information about measurement
results just from the final state of the system. A series of
measurement results can be regarded as a trajectory of the
quantum system. In this paper, we experimentally retrodict
the trajectories of single photons in double interferometers. A
sequence of measurements is made on a photon to determine
which path the photon followed, so a series of retrodiction
of measurement results can be regarded as the trajectory of
the photon. We are concerned with that part of or all of the
measurement results, i.e., a segment of or the entirety of the
photon’s trajectory. Furthermore, we also observe the effect
different measurements have on the extraction of the trajectory
information.
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FIG. 1. (a) Concept of retrodiction from measurement results.
A quantum system is prepared in an initial state |�〉 at time t = 0
and then subjected to a series of measurements {M1,M2, . . . ,MN }.
Different measurement results correspond to different final states |�〉
of the system. We can retrodict the information of measurement results
just from the final state of the system. (b) Sketch of our experimental
setup. A qubit passes a Hadamard gate (H ); a positive-operator-valued
measure (POVM) is then performed to obtain information about which
path (+ or −) the qubit has passed through. We denote the outcomes of
the measurement by {+,−}. Next, the qubit passes through a second
Hadamard gate, and we perform a second POVM. Finally, it passes
through the last Hadamard gate. In regard to the pair of two-outcome
measurements, the output state of the qubit is in four possible states
|�++

out 〉,|�+−
out 〉,|�−+

out 〉,|�−−
out 〉. We measure the final state of the qubit

to retrodict the trajectory of the qubit.

II. THEORY

Consider a qubit going through an interferometer; one
generally obtains information about which path the qubit
takes through that interferometer by introducing a detector
(auxiliary system) in each path that discriminates detector
states [29–33]. Detector states can be expressed as |η(θ )〉 =
cos θ |0〉 + sin θ |1〉 and |η(−θ )〉 = cos θ |0〉 − sin θ |1〉 with θ

ranging from 0 to π/4. The parameter θ controls how much
path information is extracted from measurements. With θ =
0, no path information is extracted, whereas with θ = π/4
maximum path information is extracted. Detector states are
identified through an optimal minimum error measurement
|±〉〈±| with |±〉 = (|0〉 ± |1〉)/√2. If the measurement result
is −, the detector state is found to be |η(−θ )〉, corresponding
to a qubit passing through path −; otherwise, the qubit has
passed through path +. If a measurement of the extraction
path information is performed only on the qubit instead of the

detector, then the operator corresponding to the above process
is expressed as Eq. (1) [10]. The corresponding positive-
operator-valued measure (POVM) operators are �+ = A

†
+A+

and �− = A
†
−A−:

A+ = 1√
2

(
cos θ − sin θ 0

0 cos θ + sin θ

)
,

A− = 1√
2

(
cos θ + sin θ 0

0 cos θ − sin θ

)
. (1)

The POVM is performed on the qubit, and the path information
is described by the measurement results, so the detector
(auxiliary system) is no longer introduced in our case. Here,
we analyze a model of a qubit going through a double
interferometer [10]. As illustrated in Fig. 1(b), a qubit is in the
initial state |0〉 and then passes through a Hadamard gate (H ),
which changes the qubit in state |0〉 to state |+〉 = H |0〉 and
changes state |1〉 to state |−〉 = H |1〉. Then we measure which
path the qubit passed through (i.e., whether the qubit is in state
|0〉 or |1〉) with the POVM operators. Subsequently, the qubit
passes through a second Hadamard gate, and we again measure
the which-path information of the qubit with POVM operators.
Finally, the qubit passes through the last Hadamard gate. There
are two possible measurement results for the POVM, which we
denote by + and −. Different measurement results correspond
to different final states of the qubit. If both measurements
yield +, the final state of the qubit is proportional to |�++

out 〉 ∝
HA+HA+H |0〉; if the first measurement result is + and
the second measurement result is −, the final state of the
qubit is proportional to |�±

out〉 ∝ HA−HA+H |0〉; similarly,
the other two possible final states of the qubit are represented
as |�∓

out〉 ∝ HA+HA−H |0〉 and |�−−
out 〉 ∝ HA−HA−H |0〉.

The joint probabilities for the two measurements are ex-
pressed as P (+,+) = P (−,+) = [1 − sin(2θ ) cos(2θ )]/4 and
P (+,−) = P (−,−) = [1 + sin(2θ ) cos(2θ )]/4. The measure-
ment results can be viewed as the “qubit trajectory” through
the double interferometers. We experimentally determine what
information we can obtain about the trajectory of the qubit by
measuring the final state of the qubit.

III. SCHEME OF THE EXPERIMENT

We realize the above model with a linear optics system,
where the qubit is encoded as {|0〉 ≡ |H 〉,|1〉 ≡ |V 〉}, and
|H 〉(|V 〉) denotes the horizontal (vertical) polarized state of
the single photon. The experimental setup, illustrated in Fig. 2,
consists of three modules, including the single-photon source
module (see Appendix A for details), the POVM module,
and the state discrimination module. The blue half-wave
plates (HWPs) with an angle of 22.5◦ realize Hadamard gate
operation. The photon starts with initial state |0〉 and then
passes through HWP1, generating state (|0〉 + |1〉)/√2. In the
POVM modules, we use a series of birefringent calcite beam
displacers (BDs) and HWPs to design POVM [34–37]. The BD
causes the vertical polarized photons to be transmitted directly
and the horizontal polarized photons to undergo a 4-mm lateral
displacement, and hence it can split and combine the photons
depending on their polarizations. So the POVM operators are
realized by the setup of the BD interferometric network, which
is formed by the BDs and HWPs with certain angular settings.
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FIG. 2. Experimental setup. In the single-photon source module, the single-photon source is generated by spontaneous parametric down-
conversion in a type-II beta-barium-borate (BBO) crystal used under beamlike phase-matching conditions. The blue half-wave plates (HWPs)
with an angle of 22.5◦ perform the Hadamard gate operation. In the POVM modules, the red HWPs with an angle of 45◦ and beam displacers
(BDs) comprise the interferometric network to perform the POVM operations; the yellow HWPs with an angle of 0◦ are inserted into the middle
path to compensate the optical path difference between the up path and the down path; the POVM operation is changed by rotating the black
HWPs. The state discrimination module is used to retrodict the POVM results. The state discrimination setups for determining the first POVM
result, the second POVM result, and both are shown in Figs. 2(a)– 2(c), respectively.

The optical elements and the angle of the HWPs in the POVM
I module are the same as those of the POVM II module, as they
are implementing the same operator. Different POVM results
correspond to the different final states of the photon. In the
state discrimination module, we retrodict the partial or entire
results of the POVMs made on the photon by discriminating the
final states of the photon. The state discrimination setups for
determining the first POVM result, the second POVM result,
and both are shown in Figs. 2(a)–2(c), respectively.

IV. RESULTS OF INDIVIDUAL MEASUREMENTS

First, we would like to determine the second measure-
ment result. The density matrix corresponding to the second
measurement result + is denoted as ρ2+, which appears
with a probability P (ρ2+) = P (+,+) + P (−,+). Similarly,
the density matrix corresponding to the second measurement
result − is denoted as ρ2− and appears with probability
P (ρ2−) = P (+,−) + P (−,−). The problem of determining
the second measurement result reduces to discriminating ρ2+
and ρ2− (see Appendix B for the specific form). We use
the optimal minimum-error state discrimination method to
discriminate them, and find the optimal POVM elements are
�2+ = |−〉〈−| and �2− = |+〉〈+| [38,39]. The measurement
setup for realizing the POVM elements is shown in Fig. 2(b),
and the rotation angle of HWP is 22.5◦. The probability of

success for state discrimination is given by

Ps = 1
2 [1 + sin(2θ )]. (2)

Different values of θ correspond to different POVM operators,
which are realized by rotating HWP2(3), HWP10(11), and
HWP18(19) in Fig. 2. The probability of success for state
discrimination is plotted in Fig. 3(a). For θ = 0◦, the output
states are identical, so the probability of success is 1/2 by
simple guess. For θ = 45◦, ρ2+ and ρ2− are orthogonal and
equally probable, and therefore can be discriminated perfectly.
Therefore, we obtain trajectory information of the photon with
certainty. Using Bayes’s theorem, we define P (ρ2j |Mout = k)
as the probability of ρ2j occurring if the result of the measure-
ment on the output state is Mout = k, where j,k = ±. With
P (ρ2j |Mout = k)P (Mout = k) = P (Mout = k|ρ2j )P (ρ2j ), we
find the probabilities of the occurrence of ρ2+ and ρ2− con-
ditioned on the measurement result of the output state. Taking
the result of Mout = + as an example, before the measurement,
the probability of the state ρ2+ was P (ρ2+), whereas after the
measurement it was P (ρ2+|Mout = +). Figure 3(b) presents
a comparison of P (ρ2+) and P (ρ2+|Mout = +) showing that
P (ρ2+|Mout = +) � P (ρ2+), which indicates the measure-
ment extracts more information about the trajectory of the
photon. Specifically, in Fig. 3(b) some blue circles are not on
the theoretical curve because these measurement results are
sensitive to change of the phase caused by the rotation of the six
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FIG. 3. (a) Experimental results for the relationship between dif-
ferent POVMs and retrodiction of the second measurement results; the
blue line is the theoretical expectation, and the red dots are values from
experimental data. (b) Comparison of P (ρ2+) and P (ρ2+|Mout = +).
The blue line and blue circles represent P (ρ2+|Mout = +) obtained
using Bayes’s theorem. The dash-dotted green line and green dots
represent P (ρ2+); the dashed pink line and pink stars represent
P (ρ2−).

HWPs (2, 3, 10, 11, 18, and 19) inside the BD interferometric
network.

Next, we determine the first measurement result. The den-
sity matrices corresponding to the first measurement results +
and − are denoted as ρ1+ and ρ1−. They appear with probability
P (ρ1+) = P (ρ1−) = 1/2. The optimal POVM elements for
discriminating ρ1+ and ρ1− are �1+ = |1〉〈1|, �1− = |0〉〈0|.
A polarizing beam splitter (PBS) is used to realize the POVM
elements in Fig. 2(a). The probability of success for discrimi-
nating the states is given by

Ps = 1
2 + 1

4 sin(4θ ). (3)

The experimental result of the state discrimination is illustrated
in Fig. 4(a). For θ = 0◦, Ps is the same as the probability
of success for determining the second measurement result.
However, for other values of θ , a different phenomenon arises
compared with determining the second measurement result.
After Ps increases to a maximum value of 3/4 at θ = π/8, it
decreases back to 1/2 at θ = π/4. This is because the second
measurement becomes closer to a projection measurement as
θ tends to π/4, which eliminates the correlation between the
first measurement and the final state. Furthermore, the second

FIG. 4. (a) Experimental results for the relationship between
different POVMs and retrodiction of the first measurement results.
The blue line is the theoretical expectation; the red dots are values from
experimental data. (b) A comparison of P (ρ1+) and P (ρ1+|Mout =
+). The blue line and blue circles represent P (ρ1+|Mout = +) ob-
tained using Bayes’s theorem. The dashed pink line is the theoretical
expectation of P (ρ1+) and P (ρ1−). The pink stars and green dots are
the experimental values of P (ρ1+) and P (ρ1−), respectively.

measurement makes the ρ1+ and ρ1− become less distinguish-
able as θ approaches π/4. As before, using Bayes’s theorem,
we present a comparison of P (ρ1+) and P (ρ1+|Mout = +) in
Fig. 4(b).

V. RETRODICTION OF THE TRAJECTORY

Finally, we determine the results of both measurements, so
the four output states should be discriminated (see Appendix
B for the specific form of the states). We use a strong
method, the square-root measurement (see Appendix C
for details), to discriminate the output states [10,39]. The
POVM elements for square-root measurement are given
by �jk = 1

4 |�̃jk〉〈�̃jk|, where j,k = ±, and the states
|�̃++〉 = (cos θ − sin θ )|+〉 − (sin θ + cos θ )|−〉, |�̃+−〉 =
(cos θ + sin θ )|+〉 + (sin θ − cos θ )|−〉, |�̃−+〉 =
(cos θ − sin θ )|+〉 + (sin θ + cos θ )|−〉, |�̃−−〉 = (cos θ +
sin θ )|+〉 − (sin θ − cos θ )|−〉. The measurement setup for
realizing the POVM elements is shown in Fig. 2(c). The
probability of success for identifying the states is expressed as

Ps = 1
4 [1 + sin(2θ ) + sin2(2θ ) − sin3(2θ )]. (4)
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FIG. 5. Experimental results for the relationship between differ-
ent POVMs and retrodiction of both the first and second measure-
ments. The blue line is the theoretical expectations; the red dots are
values from experimental data.

From the experimental results for state discrimination (Fig. 5),
at θ = 0◦, the four output states become |+〉. There is therefore
no correlation between measurement results and the final
states, and we cannot extract trajectory information of the pho-
ton by discriminating the final states. At θ = 45◦, the first and
second measurements both become projection measurements,
so the probability of success is maximum; moreover, from
Figs. 3(a) and 4(a), we see that the trajectory of the photon
passing through the second interferometer is determined with
certainty, but all trajectory information from passing through
the first interferometer is lost.

VI. CONCLUSIONS

To summarize, in a set with double interferometers, we
experimentally retrodicted the trajectories of single photons
by measuring the final state of the photon. We obtained the
probability of success for determining the partial trajectories
and the entire trajectories by discriminating the final states of
the photon. Moreover, we also observed the effect of different
measurements on the extraction of trajectory information.
If the second measurement is a projection measurement, it
erases the trajectory information of the photon passing through
the first interferometer. If both measurements are projection
measurements, we obtain maximum trajectory information
of the photon passing through the double interferometers.
Because the photon carries information about the history of
measurements on it and this information can be extracted by
measuring the final state of the photon, this could be useful
in quantum communication schemes. Indeed, our experiment
highlights the application of retrodiction theory to the study of
a photon’s past, and provides potential application in the field
of quantum communications.
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APPENDIX A: DETAILS FOR THE SINGLE-PHOTON
SOURCE MODULE OF THE EXPERIMENTAL SETUP

In the single-photon source module, a 80-mW cw laser
with a 404-nm wavelength (linewidth=5 MHz) pumps a
type-II beamlike phase-matching beta-barium-borate (BBO,
6.0×6.0×2.0 mm3, θ = 40.98◦) crystal to produce a pair of
photons with wavelength λ = 808 nm. After being redirected
by mirrors and passed through the interference filters (�λ =
3 nm, λ = 808 nm), the photon pairs generated in spontaneous
parametric down-conversion are coupled into single-mode
fibers separately. One photon is detected by a single-photon
detector acting as a trigger. The total coincidence counts are
approximately 4 × 103 per second. According to measure-
ment method for the g2(τ ) of heralded single-photon sources
[40–42], we obtain the time-averaged conditional coherence
functions g2

c(0) as 0.0025 ± 0.0051.

APPENDIX B: SPECIFIC FORM OF STATE

Different measurement results correspond to the different
final states of the photon. After the second measurement, the
final output states of the photon for the different measurement
results are given by

|�++
out 〉 = 1

[1 − sin(2θ ) cos(2θ )]1/2
[cos θ (cos θ − sin θ )|+〉

− sin θ (sin θ + cos θ )|−〉],
|�+−

out 〉 = 1

[1 + sin(2θ ) cos(2θ )]1/2
[cos θ (cos θ + sin θ )|+〉

+ sin θ (sin θ − cos θ )|−〉],
|�−+

out 〉 = 1

[1 − sin(2θ ) cos(2θ )]1/2
[cos θ (cos θ − sin θ )|+〉

+ sin θ (sin θ + cos θ )|−〉],
|�−−

out 〉 = 1

[1 + sin(2θ ) cos(2θ )]1/2
[cos θ (cos θ + sin θ )|+〉

− sin θ (sin θ − cos θ )|−〉]. (B1)

The joint probabilities for the two measurements are ex-
pressed as P (+,+) = Tr(A+HA+|+〉〈+|A†

+HA
†
+) = [1 −

sin(2θ ) cos(2θ )]/4. Similarly, we find P (−,+) = P (+,+) and
P (+,−) = P (−,−) = [1 + sin(2θ ) cos(2θ )]/4.

If the first measurement result is ignored, the density
matrix corresponding to the second measurement result +
is ρ2+, which appears with probability P (ρ2+) = P (+,+) +
P (−,+) = [1 − sin(2θ ) cos(2θ )]/2; the density matrix corre-
sponding to the second measurement result − is ρ2−, which
appears with a probability of P (ρ2−) = P (+,−) + P (−,−) =
[1 + sin(2θ ) cos(2θ )]/2. ρ2+ and ρ2− are expressed as

ρ2+ = [P (+,+)|�++
out 〉〈�++

out |
+P (−,+)|�−+

out 〉〈�−+
out |]/P (ρ2+),

ρ2− = [P (+,−)|�+−
out 〉〈�+−

out |
+P (−,−)|�−−

out 〉〈�−−
out |]/P (ρ2−). (B2)

If the second measurement result is ignored, the density
matrices corresponding to the first measurement results + and
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− are denoted as ρ1+ and ρ1−, which are expressed as

ρ1+ = [P (+,+)|�++
out 〉〈�++

out |
+P (+,−)|�+−

out 〉〈�+−
out |]/P (ρ1+),

ρ1− = [P (−,+)|�−+
out 〉〈�−+

out |
+P (−,−)|�−−

out 〉〈�−−
out |]/P (ρ1−). (B3)

These two density matrices appear with a probability of
P (ρ1+) = P (ρ1−) = 1/2.

APPENDIX C: SQUARE-ROOT MEASUREMENT

The square-root measurement is a pretty good state dis-
crimination measurement [39]. For a given set of states
{|�jk

out〉|j,k = ±} we can construct an associated measurement,
the square-root measurement, to discriminate them. The
POVM elements for the square-root measurement are given

by

�jk = P (j,k)ρ−1/2|�jk
out〉〈�jk

out|ρ−1/2, (C1)

where P (j,k) is a probability that the state |�jk
out〉 appeared,

and ρ = P (+,+)|�++
out 〉〈�++

out | + P (+,−)|�+−
out 〉〈�+−

out | +
P (−,+)|�−+

out 〉〈�−+
out | + P (−,−)|�−−

out 〉〈�−−
out |. According

to Eq. (B1) and the expression of P (j,k), we
obtain ρ = cos2 θ |+〉〈+| + sin2 θ |−〉〈−| and ρ−1/2 =
(1/ cos θ )|+〉〈+| + (1/ sin θ )|−〉〈−|. Hence �jk =
1
4 |�̃jk〉〈�̃jk| with the states

|�̃++〉 = (cos θ − sin θ )|+〉 − (sin θ + cos θ )|−〉,
|�̃+−〉 = (cos θ + sin θ )|+〉 + (sin θ − cos θ )|−〉,
|�̃−+〉 = (cos θ − sin θ )|+〉 + (sin θ + cos θ )|−〉,
|�̃−−〉 = (cos θ + sin θ )|+〉 − (sin θ − cos θ )|−〉. (C2)
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