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Elephant quantum walk
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We introduce an analytically treatable discrete time quantum walk in a one-dimensional lattice which combines
non-Markovianity and hyperballistic diffusion associated with a Gaussian whose variance σ 2

t grows cubicly with
time σ ∝ t3. These properties have have been numerically found in several systems, namely, tight-binding lattice
models. For its rules, our model can be understood as the quantum version of the classical non-Markovian
“elephant random walk” process for which the quantum coin operator only changes the value of the diffusion
constant although, contrarily, to the classical coin.
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I. INTRODUCTION

The random walk problem has been a cornerstone in the
classical description of systems for which a deterministic
approach is either impossible or too complex to be carried out
in an efficient way. Equilibrium and nonequilibrium problems,
such as the Hamiltonian Monte Carlo, belief propagation,
genetic and search algorithms, or pricing financial derivatives
[1–5] are systematically understood as a random walk in the
phase space of the respective system. The first fundamental
property of a random walk process X = {Xt } concerns the
time dependence of the variance σ 2

t ∝ t . Second, because it
derives from a Bernoulli process, the random walk abides by
the ubiquitous Markovian property [6], according to which a
memoryless random process is defined as an orderly succession
of events where the conditional probability distribution of the
future state Xt (discrete time t > t0) does only depend on its
present state P (Xt |Xt−1, . . . ,Xt0 ) = P (Xt |Xt−1).

Whereas, in the classical treatment of a physical system,
probability is above all a tool for getting quantitative an-
swers, in quantum theory, probability is intrinsic [7], and thus
quantum walks emerged as the formal quantum equivalent
to random walks [8,9]. Physically, quantum walks describe
situations where a quantum particle is moving on a discrete
grid, which allows simulating a wide range of transport
phenomena [10–14] including the description of some types
of topological insulators and yields an important approach
in quantum computing processes [15–17]. In other words,
the particle dynamically explores a large Hilbert space HP ,
spanned by its positions on a lattice corresponding to basis
states {|l〉}, (l ∈ Z), that is augmented by a Hilbert space
HC , spanned by the particle’s internal states—e.g., a two-
dimensional basis {|↑〉,|↓〉}. The evolution of a quantum walk
on the full Hilbert space H ≡ HC ⊗ HP is ruled by the
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combined application of two unitary operators,

Û = Ŝ[Ĉ ⊗ Î], (1)

where Î is the identity operator on theHP subspace. Bearing in
mind the analogy of quantum walks with the classical random
walk, the operator Ĉ acts on subspace HC and plays the same
role as the coin. For that reason, it is named the quantum coin
and the internal states related to the subspace HC are named
the coin states. On the other hand, the shift operator Ŝ is state
dependent and following Ref. [8] reads:

Ŝ =
∑

l

|l + 1〉〈l| ⊗ |↑〉〈↑| +
∑

l

|l − 1〉〈l| ⊗ |↓〉〈↓|. (2)

Assuming the quantum coin as

Ĉ =
(

cos θ i sin θ

i sin θ cos θ

)
, (3)

the successive application of the time-evolution operator Û ,t

times to the initial state,

|�〉0 = |l0〉 ⊗ |s〉 ≡
(

ψ
↑
0 (l)

ψ
↓
0 (l)

)
, (4)

where the internal state is defined as

|s〉 ≡ cos
(γ

2

)
|↑〉 + e−iφ sin

(γ

2

)
|↓〉 =

(
cos γ

2

e−iφ sin γ

2

)
(5)

allows us to obtain the normalized probability at time t, Pt (l) =
Trs〈�|�〉t . A straightforward computation (see, e.g., Ref. [8])
shows that σt ∝ t2; in other words, the standard quantum walks
diffuse ballistically in opposition to the classical random walk.

Although systematically ignored due to the matching of a
plethora of theoretical predictions with experimental results,
there are many processes for which the Markovian property
does not hold, and therefore they depend on their past. Classi-
cally, history-dependent—i.e., non-Markovian—processes are
often related to anomalous diffusion where the variance of
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the stochastic process grows as tα with the diffusion exponent
α, different from unity. Instances of physical and biological
systems exhibiting subdiffusion (0 < α < 1) or superdiffusion
(1 < α < 2) are galore [18–21]. Moreover, in several cases,
such as random search strategies—namely, foraging—non-
Markovian processes have been shown to outperform Marko-
vian proposals [22].

The follow-up of the analogy between random walks and
quantum walks has to do with the Markovian nature of the
processes. Despite not having a consensual definition [23],
non-Markovianity in quantum walks has been extensively
studied because memory effects can be taken as an indicator
for the presence of canonical quantum properties. Mainstream
examples thereof are XX-Heisenberg spin chains in a trans-
verse magnetic-field h [24], Bose-Einstein condensate systems
with impurities [25], and transport properties of particles
in quenched random media showing Anderson localization,
which can be interpreted as a memory feature; in other words,
when the particle is coupled to a disordered system, it can
“remember” and localizes near its initial position. Different
regimes, ranging from canonical ballistic to subdiffusion (delo-
calization), have been already studied [26,27] for several kinds
of randomness and memory. Moreover, non-Markovianity can
be explored by means of the history dependence of the paths
[28,29] Alternatively, in Ref. [30], the possibility of measuring
hyperballistic diffusion in one-dimensional (quasi-) lattices,
a phenomenon later verified on tight-binding lattice models
[31,32], XXZ spin chains [33], phononic heat transport [34],
and quantum kicked rotors [35], where α > 2 with α = 3
playing a leading role and the remaining cases with 2 < α <

3 obtained by assuming internal sublattices with standard
features (for details please consult Refs. [36,37]) was first
introduced.

There exists a series of systems exhibiting either non-
Markovianity or numerically found hyperballistic behavior.
Here we present a model that shows both the former and the
latter features, namely, in an analytical way. If we continue
resorting to the analogy between quantum and random walks,
it is not odd to reckon that quantum hyperballistic diffusion
would play a similar qualitative role to classical superdiffusion,
a fact that emphasizes the relevance of introducing a model
with such traits. In this paper, we consider a gap by considering
a quantum walk version of the so-called elephant random walk
[38], one of the few (simple) classical cases where microscopic
dynamical rules are translated into non-Markovian statistical
properties of the walker.

II. THE CLASSICAL ELEPHANT

According to Shütz and Trimper [38], the elephant random
walk describes displacements on the infinite discrete lattice
Xt ∈ Z assuming discrete time as well. The elephant starts its
walk at some specific point X0 at time t = 0, and for t > t0 the
stochastic evolution Xt = Xt−1 + 	t occurs as follows:

(A) For t = 1, the elephant moves to the right (	1 =
1) with probability q and to the left (	1 = −1) with
probability 1 − q.

(B) For t > 1, an instant in the past t ′ < t is first randomly
and independently chosen abiding by a uniform probabil-
ity, and then 	j is determined by the rule: 	j = 	j ′ with

probability p and 	j = −	j ′ with probability 1 − p. It is
after this rule that the particle in this process is dubbed the
elephant: It will remember all its previous states. Accordingly,
the conditioned probability distribution of the classical walker
displacement at time t was calculated in Ref. [38] and reads

P (	t+1 = 
|	t, . . . ,	1) =
t∑

j=1

1 − (1 − 2p)
	j

2t
, (6)

wherefrom the conditioned moments of the displacement
can be computed. Thus, it was demonstrated that the mem-
ory parameter p governs the long-term behavior of such a
process: For p < 1/2, the elephant is a Brownian walker
μt ≡ 〈Xt 〉 ∼ X0 and σ 2

t ∝ t ; for 1/2 < p < 3/4 it becomes a
biased Brownian walker with μt ∝ t2p−1, whereas for p > 3/4
besides the bias behavior, the motion becomes superdiffusive
with σ 2

t ∝ t4p−2. Yet, it can be shown that the distribution is
Gaussian and the continuous time limit yields a Fokker-Planck
equation equivalent to that of a Brownian walker subjected to
a time-dependent drift force ft (X) = (2p − 1)(Xt − X0)/t .

III. THE QUANTUM ELEPHANT

To formalize the quantum analog of the elephant random
walk, we extend the definition of the quantum walk to a time-
dependent shift in position,

ŜE
t+1 = 1

t

t∑
j=1

{∑
l

|l + 	j 〉t+1〈l|t ⊗ |↑〉〈↑|

+
∑

l

|l − 	j 〉t+1〈l|t ⊗ |↓〉〈↓|
}

(t � 1). (7)

As the quantum version of rule (A), we consider a set of
random variables 	j , uniformly distributed at each time step
of the quantum walk evolution. The quantum equivalent to
rule (B) is to consider that, at time t + 1, the amplitude
ψ

↑
t+1(l + 	j ) encodes the probability to move towards the right

by a step of size 	j and the amplitude ψ
↓
t+1(l − 	j ) encodes

the probability to move towards the left by a step of size 	j .
Having said that, the dynamical evolution defined by Eq. (1)

for the elephant random walk is replaced by

Ût = ŜE
t [Ĉ ⊗ Î]. (8)

Therefore, a significant difference immediately emerges: The
evolution operator ceases being the simple iteration of the one-
step operator, i.e., Ût �= [Û1]t , a property that hints at the non-
Markovian nature of the elephant quantum walk, which we
will prove shortly. Actually, the equality Ût = [Û1]t can be
understood as the quantum analog of the classical condition
that the transition matrix T of a Markov chain after t steps
yields Tt = Tt

1. Moreover, a direct calculation allows us to
introduce the conditioned probability density functions for the
jumps in the elephant quantum walk similar to Eq. (6). For
t = 2 that reads

P (	2|	1) =
[

cos

(
1 − 	2

4
π − θ

)]2

{1+	1[cos(γ ) cos(2θ )

+ sin(γ ) sin(2θ ) sin(φ)]}, (9)
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FIG. 1. The panels on the left are for the elephant quantum walk,
and the panel on the right is for the quantum walk for θ = π

4 .
(Top) Time evolution of the probability distribution, whose cones
are superlinear and linear, respectively. The initial state is localized
at the origin with a coin state |s〉 = 1√

2
(1,1)T . (Bottom) Probability

distribution at different time steps.

and for t � 2,

P (	t+1 = 	|	t,	t−1, . . . ,	1)

= (t − 1)!

t!

t∑
j=1

t∏
k=2

[
cos

(
	k+1 − 	k

4
π − θ

)]2

×P (	2|	1)δ	,	j
+ 1

t!

t∑
j=1

[A(t,{	t })[cos θ ]2(t−2)

+B(t,{	t })[sin θ ]2(t−2)]P (	2|	1)δ	,−	j
,

where the coefficients A(t,{	t }) and B(t,{	t }) represent
the number of sequences yielding an even(odd) number of
contrarian steps composing the sequence so that the condition
A(t,{	t }) + B(t,{	t }) = (t − 1)! is verified. Note that, for
t � 2, and due to the quantum nature of this process, we
cannot have the conditioned probability abiding by a simple
superposition of contributions involving the gauging value of
	t+1 = 
 and a past chosen step. Each term involves all the
values of the chain. This contains a signature of a long-range
(non-Markovian) memory effect on the walker dynamics,
giving rise to a completely different behavior from the usual
quantum walks as we can see in Fig. 1.

Regardless of the different definitions of Markovianity in
quantum walks [39,40], we assess the non-Markovianity of
the elephant quantum walk following Refs. [41,42] where it
is shown that if the discrete analogous of the trace distance
velocity vt ≡ Dt+1 − Dt [43] is positive at least once, then the
process is non-Markovian.

In Fig. 2, we present the computation of the trace distance
and its velocity for two initial pure states representing opposite
poles on the Bloch sphere (north and south) with γA = 0
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FIG. 2. Left: The squares (blue) represent the trace distance D(t)
vs the number of time steps between two initial states with γA = 0 and
γB = π, φ = 0 for an initial Gaussian packet of width δ = 0.001. In
case of noise, the trace distance decreases rapidly after the second time
step (circles, red). The inset shows the velocity of the trace distance.
Right: Diffusion coefficient—and in the inset the exponent η = α/2—
vs θ for the same initial condition.

and γB = π, φ = 0 for an initial Gaussian packet of width
δ = 0.001 that is compared with the standard quantum walk
employing the Hadamard coin. The difference between both
is notorious [44], and the trace distance of the reduced density
operator ρ̂c

t displays typically a nonmonotonic behavior in free-
decoherence cases. In the presence of decoherence, the trace
distance goes asymptotically to zero, and the process becomes
fully Markovian. In our case, surprisingly, the trace distance
velocity vt is positive more than once, and the trace distance
is nonzero for a long period of the elephant quantum walk’s
life, viz., displaying non-Markovianity, still in the presence of
dynamical noise.

After shedding light on the non-Markovianity of the ele-
phant quantum walk, we focus on the probability distribution
and diffusion properties; following the same techniques intro-
duced by Refs. [45,46], we were able to analytically prove that
our process is associated with a Gaussian distribution,

Pt (l) = exp
[ − l2/

(
2σ 2

t

)]
/

√
2πσ 2

t , (10)

where the variance reads

〈
2〉 =
∫ 
=∞


=−∞

2〈r(t)〉d
 = 2

√
2π (C1 + 2C2)t3, (11)

with C1,C2 being real coefficients depending on the coin
parameter θ . The analytical details are fully presented in
Appendix A. Explicitly, the elephant quantum walk is both
Gaussian and robustly hyperballistic, features that have been
numerically found in other models as previously cited. These
results have been confirmed by the dynamical implementation
of the walk as depicted in Fig. 2 (right panel).

IV. CONCLUDING REMARKS

In this paper, we have established an analytically treat-
able model exhibiting both hyperballistic diffusion and non-
Markovianity, which can be interpreted as the quantum version
of the so-called elephant random walk. Our model yields
an exact diffusion exponent equal to 3, a value that has
been numerically found in a variety of systems ranging from
quantum diffusion on tight-binding lattice models to phononic
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heat transport among other systems we previously cited. At
the same time, non-Markovianity in quantum walks has been
intensively studied and found in systems as well, but the
computation of analytical properties is seldom. In this case,
we have been able compute that the quantum elephant has its
motion associated with a Gaussian as numerically shown for
the model in Ref. [28].

That said, and bearing in mind its plainness, our elephant
quantum walk can be regarded as a dynamical representation of
hyperballistic non-Markovian such systems so that they can be
studied in a more direct way with a direct connection between
Hamiltonian and quantum coin parameters as happens with
Hamiltonian regular maps in nonlinear dynamics [47]. Ac-
cordingly, the mapping of the parameters of systems yielding
α = 3 and ours are clearly worth carrying out.

From a quantum implementation perspective, apparatuses
equivalent to those considering cold atoms in optical lat-
tices [48–50], which manage to yield superballistic diffusion,
are straightforward options for performing elephant quantum
walks. Alternatively, we can understand the introduction of
such a memory as the storage process on the state of the system
that is cyclically isolated and put in contact with a surrounding
environment which acts as the tossing of the coin. In practical
terms, this can be carried out considering an apparatus close
to that present in Ref. [51] that accommodates that long-time
storage.

Since the systems studied in Refs. [30,31] can also show
superballistic diffusion with an exponent less than 3, in future
work we will lose the form of the memory by assuming a
kernel similar to Ref. [52] that is able to represent all the cases
spanning from white noise to uniform dependence passing
through exponentials and power laws.

Last, taking into account that classical superdiffusive search
approaches are robustly more efficient than Brownian searches,
we consider it is worth looking at the elephant quantum walk
within the context of search algorithms as an (improved)
extension of the random walk search algorithm [53,54], which
fits in the Grover class.
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APPENDIX A: ILLUSTRATION OF THE RANDOM
AND QUANTUM MODELS

In Fig. 3, we present an illustration of the random and quan-
tum elephant approaches. At time t = 1, the elephant moves
either to the right or to the left with probabilities q and 1 − q,
respectively, Then, at t = 2, the elephant will take the previous
set of displacements—which is only the t = 1 case—and
decide whether it will repeat that displacement with probability
p or do the opposite with probability 1 − p. Generically, at
time t = T + 1, the elephant selects (uniformly) one of the

FIG. 3. Top: Depiction of the elephant random walk model.
Bottom: Depiction of the elephant quantum walk model.

previous instants—t = Q in the case of the illustration—and
determines to do the same or not afterwards.

For the quantum case, the rules are basically the same, i.e., at
each time step T + 1, we have a collection of T displacements
that are the outcome of the interaction between the coin and
the spin. At time t = 1, the evolution operator has taken into
account a possible motion to the left and a possible motion
to the right. For t = 2—which defines the state at t = 3—the
operator has to take into account the two states of the spin that
can be assumed at t = 1 and the fact that at t = 2 one can have
the previous state repeated or flipped so that at a given time
T + 1 the evolution operator corresponds to a equally weighted
superposition—and then the uniform distribution—of each of
theT previous operators plus the opposite situation, conjugated
with the operator at that time as indicated by Eq. (7) in the main
text.
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APPENDIX B: GAUSSIANITY AND
DIFFUSION EXPONENT

Regarding the statistical properties of this process, fol-
lowing the techniques introduced by Refs. [45,46], we can
transform the density matrix into a four-dimensional column
vector in order to use the affine map approach yielding

ρ̂c
t ≡ 1

2

[
r

(0)
t Î + r

(1)
t σ̂ 1 + r

(2)
t σ̂ 2 + r

(3)
t σ̂ 3

]
, (B1)

where σ̂ i’s with i = {1–3} are the Pauli matrices and r
(i)
t =

Tr{ρ̂c
t σ̂ i} from which we define the vector rt = (r (i)

t )T with
r

(0)
t = 1. The evolution of this vector reads

rt =
∫ π

−π

dk

2π
Lt

k,t r(0), (B2)

where Lk,t is a matrix evolution operator, namely, the Limbla-
dian,

Lk,t =

⎛⎜⎜⎜⎝
1 0 0 0

0 L22,t L23,t L24,t

0 L32,t L33,t L34,t

0 L42,t L43,t L44,t

⎞⎟⎟⎟⎠, (B3)

with matrix elements,

L22,k,t = cos(2k	t ),

L23,k,t = cos(2θ ) sin(2k	t ),

L24,k,t = sin(2k	t ) sin(2θ ),

L32,k,t = − sin(2k	t ),

L33,k,t = cos(2k	t ) cos(2θ ),

L34,k,t = cos(2k	t ) sin(2θ ),

L42,k,t = 0,

L43,k,t = −2 cos(θ ) sin(θ ),

L44,k,t = cos(2θ ).

In this case, 	t is chosen randomly at each time step with
a uniform probability distribution in the interval [1 − t,1 + t].
The evolution matrix Lk,t has to be averaged over the interval
[1 − t,1 + t] as

〈Lk,t 〉 = 1

2t

∫ 1+t

1−t

Lk,t ′dt ′. (B4)

Therefore, at each time step, the evolution is fully determined
by

〈rt 〉 =
∫ π

−π

dk

2π
〈Lk,t 〉〈Lk,t−1〉 · · · 〈Lk,1〉r0. (B5)

It can be demonstrated that, in the limit k → 0, the eigenvalues
of 〈Lk〉 are as follows:

λ1 = 1, (B6)

λ2 ∝ exp[B1(θ ) + iC1(θ )O(k2)t2], (B7)

λ3 ∝ exp[B2(θ ) + iC2(θ )O(k2)t2], (B8)
and

λ4 = λ∗
3, (B9)

where (B1,B2,C1,C2) are positive real depending on the
microscopic parameter θ .

Now, exploiting the stationary phase theorem, we can
neglect terms, such as eiωi t withωi = −i ln(λi), i = 1–3 when
time goes to infinity,

lim
t→∞〈Lk,t 〉〈Lk,t−1〉 · · · 〈Lk,1〉 =

⎛⎜⎜⎜⎜⎝
1

e−iC1(θ)t3k2

e−iC2(θ)t3k2

eiC∗
2 (θ)t3k2

⎞⎟⎟⎟⎟⎠, (B10)

and in physical space, the above vector finally reads

〈rt 〉 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2πδ


exp
(
− 
2

4C1 t3

)
√

2C1t3

exp
(
− 
2

4C2 t3

)
√

2C2t3

exp
(
− 
2

4C2 t3

)
√

2C2t3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B11)

whence we can immediately identify a Gaussian for each
row [55].

From the last result it is possible to compute all of the
cumulants of the elephant quantum walk. The first and second
moments are now given by

〈
t 〉 =
∫ ∞


=−∞

〈rt 〉d
 = 0, (B12)

and 〈

2

t

〉 =
∫ ∞


=−∞

2

t 〈rt 〉d
 = 2
√

2π (C1 + 2C2)t3, (B13)

which corroborates the hyperballistic diffusion behavior. Since
the distribution is Gaussian, all the other cumulants vanish.
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