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Dirac equation as a quantum walk over the honeycomb and triangular lattices

Pablo Arrighi*

Aix-Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France and IXXI, Lyon, France

Giuseppe Di Molfetta† and Iván Márquez-Martín‡

Aix-Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
and Departamento de Física Teórica and IFIC, Universidad de Valencia-CSIC, Dr. Moliner 50, 46100-Burjassot, Spain

Armando Pérez§

Departamento de Física Teórica and IFIC, Universidad de Valencia-CSIC, Dr. Moliner 50, 46100-Burjassot, Spain

(Received 3 March 2018; published 13 June 2018)

A discrete-time quantum walk (QW) is essentially an operator driving the evolution of a single particle on
the lattice, through local unitaries. Some QWs admit a continuum limit, leading to well-known physics partial
differential equations, such as the Dirac equation. We show that these simulation results need not rely on the
grid: the Dirac equation in (2 + 1) dimensions can also be simulated, through local unitaries, on the honeycomb
or the triangular lattice, both of interest in the study of quantum propagation on the nonrectangular grids, as
in graphene-like materials. The latter, in particular, we argue, opens the door for a generalization of the Dirac
equation to arbitrary discrete surfaces.
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I. INTRODUCTION

We will describe two discrete-time quantum walks (QWs),
one the honeycomb lattice, and the other the triangular lat-
tice, whose continuum limit is the Dirac equation in (2 + 1)
dimensions. Let us put this result in context.

Quantum walks. QWs are dynamics having the following
characteristics: (i) the state space is restricted to the one particle
sector (also called one “walker”); (ii) space-time is discrete;
(iii) the evolution is unitary; (iv) the evolution is homoge-
neous, that is, translation invariant and time independent; and
(v) causal (or “nonsignaling”), meaning that information prop-
agates at a strictly bounded speed. Their study is blossoming,
for two parallel reasons.

One reason is that a whole series of novel quantum com-
puting algorithms, for the future quantum computers, have
been discovered via QWs, e.g., [1,2], and are better expressed
using QWs. The Grover search has also been reformulated
in this manner. In these QW-based algorithms, the walker
usually explores a graph, which is encoding the instance of
the problem. No continuum limit is taken.

The other reason is that a whole series of novel quantum
simulation schemes, for the near-future quantum simulation
devices, have been discovered via QWs, and are better ex-
pressed as QWs [3,4]. Recall that quantum simulation is
what motivated Feynman to introduce the concept of quantum
computing in the first place [5]. While a universal quantum
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computer remains out of reach experimentally, more special-
purpose quantum simulation devices are seeing the light,
whose architecture in fact often resembles that of a QW
[6,7]. In these QW-based schemes, the walker propagates
on the regular lattice, and a continuum limit is taken to
show that this converges toward some well-known physics
equation that one wishes to simulate. As an added bonus, QW-
based schemes provide: (1) stable numerical schemes, even for
classical computers, thereby guaranteeing convergence as soon
as they are consistent [8]; and (2) simple discrete toy models
of the physical phenomena, which conserve most symmetries
(unitarity, homogeneity, causality, sometimes even Lorentz-
covariance [9,10], perhaps even general covariance [11,12]),
thereby providing playgrounds to discuss foundational ques-
tions in physics [13]. It seems that QWs are becoming a new
language to express quantum physical phenomena.

While the present work is clearly within the latter trend,
technically it borrows from the former. Indeed, the QW-based
schemes that we will describe depart from the regular lattice,
to go to the honeycomb and triangular grid—which opens the
way for QW-based simulation schemes on trivalent graphs.

Motivations. That quantum simulation schemes need not
rely on the regular lattice grid is mathematically interesting—
but there are numerous other motivations for this departure
from the rectangular grid. One is the hot topic of simulating or
modeling many quantum condensed-matter system dynamics,
driven by the usual high-binding Hamiltonian or by the Dirac-
like Hamiltonian, for example, in graphene, and within crystals
in general [14]. This work would establish a connection
between such physical phenomena and QWs. Another hot topic
is related to topological phases. QWs on triangulations should
allow us to model all sorts of topologies as simplicial com-
plexes, and hopefully help predict their transport properties
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[15]. The fact that our triangular QW converges to the Dirac
equation shows that we have the right prediction at least in the
flat case.

Yet another motivation for exploring nonflat geometries
is general relativity. In fact, two of the authors have already
developed QW models of the curved space-time Dirac equation
[11,12,16]. These were on the regular lattice, using a nonho-
mogeneous coin to code for the space-time-dependent metric.
We wonder whether a QW on triangulations can also model the
curved space-time Dirac equation, using a homogeneous coin
but a space-time-dependent triangulation. This problem is rem-
iniscent of the question of matter propagation in triangulated
space-time, as arising, e.g., in loop quantum gravity [17]. Here
again, the fact that our triangular QW converges toward the
Dirac equation demonstrates that we have the right prediction
at least in the triangulation-of-flat-space case. Finally, let us
mention the work of two of the authors which models the
massive Dirac equation as a Dirac QW on a cylinder [18]. QWs
on triangulations should allow us to vary the geometry of this
cylinder, so as to model richer fields with just the massless
Dirac QW.

Related works. The Grover quantum search algorithm has
been expressed as a QW on the honeycomb lattice in [19] (and
also in [20] with continuous time). It has also been expressed
as a QW on the triangular lattice [21,22]. Again for quantum
algorithmic purposes, Ref. [23] studies the possibility to use
graphene nanoribbons to implement quantum gates. From the
quantum simulation perspective, QWs on triangular lattices
have been used to explore transport in graphene structures
[24,25], and they have also been used to explore topological
phases [15]; but no actual continuum limit is taken in these
works. A work that does take a continuum limit of a discrete-
time QW while departing from the regular lattice is [26], where
a Dirac-like Hamiltonian is recovered. What we show is that
the exact Dirac Hamiltonian can be recovered, both in the
honeycomb and the triangular lattices. That this can be done
is somewhat surprising. Indeed, in [27], the authors conducted
a thorough investigation of isotropic QWs of coin dimension
2 over arbitrary Caley graphs Abelian groups, from which it
follows that only the square lattice supports the Dirac equation.
Our results circumvent this no-go theorem, while keeping
things simple, by making use of two-dimensional spinors that
lie on the edges shared by adjacent triangles, instead of lying
on the triangles themselves. Thus means that, per triangle,
there are three thus including an additional degree of freedom
associated with these edges.

Plan. To start gently, Sec. II, explains how the Dirac
equation in (2 + 1) dimensions can be simulated by a QW
on the regular lattice. In Sec. III, we express the (2 + 1)-
dimensional Dirac Hamiltonian in terms of derivatives along
arbitrary three 2π/3–rotated axes ui . We use this expression
to simulate the Dirac equation with a QW on the honeycomb
lattice. In Sec. IV, we introduce a QW on the triangular lattice,
which will turn out to be equivalent to that on the honeycomb
lattice. In V we provide a summary and some perspectives.

II. REGULAR LATTICE

In this section, we recall a well-known QW on the reg-
ular lattice with axis x, y and spacing ε, which has the

Dirac equation in the continuum limit. It arises by operator-
splitting [28] the original, one-dimensional Dirac QW [3,4,29].

A possible representation of this equation is (in units such
as h̄ = c = 1)

i∂t |ψ〉 = HD|ψ〉, with HD = pxσx + pyσy + mσz (1)

the Dirac Hamiltonian, σi (i = 1,2,3) the Pauli matrices, pi

the momentum operator components, and m the particle mass.
To simulate the above dynamics on the lattice, we de-

fine a Hilbert space H = Hl ⊗ Hs , where Hl represents the
space degrees of freedom and is spanned by the basis states
|x = εl1,y = εl2〉 with l1,l2 ∈ Z, whereas Hs = Span{|s〉/s ∈
{−1,1}} describes the internal (spin) configuration. When
acting on Hl , the pi are called quasimomentum operators
(since they no longer satisfy the canonical commutation rules
with the position operators). Still, the translation operators are
given by T(j,ε) = exp(−iεpj ) and verify that

T(1,ε)|x,y〉 = |x + ε,y〉, T(2,ε)|x,y〉 = |x,y + ε〉.
By analogy with these notations, we introduce the time evolu-
tion operator as T(0,ε) = exp(−iεHD). In this way, the time
evolution of a state |ψ(t)〉 is given by

|ψ(t + ε)〉 = T(0,ε)|ψ(t)〉 = exp(−iεHD)|ψ(t)〉. (2)

After substitution of Eq. (1) into this definition, and making use
of the Lie-Trotter product formula (assuming that ε is small)
we arrive at

T(0,ε) � e−iεmσze−iεpxσx e−iεpyσy

= e−iεmσzHe−iεpxσzHH1e
−iεpyσzH

†
1 ,

since σx = HσzH with H the Hadamard gate, and σy =
H1σzH

†
1 with H1 = 1√

2
( i 1

−i 1 ). Using the definition of σz,
we get

T(0,ε) � CεHT1,εHH1T2,εH
†
1 , (3)

with Cε = exp (−iεmσz)

and Tj,ε =
∑

s∈{−1,1}
|s〉〈s|T(j,sε),

where the Tj,ε matrices are partial shifts. This defines the Dirac
QW, which is known to converge toward the Dirac equation in
(2 + 1) dimensions [8].

III. HONEYCOMB LATTICE

We now introduce a QW over the honeycomb lattice (Fig. 1)
which we show has the Dirac equation as its continuum limit.
The results of this section will also help us in the next section,
when we introduce a QW over the triangular lattice. Our
starting point is Eq. (2), with HD as defined in Eq. (1). The basic
idea is to rewrite this Hamiltonian using partial derivatives
(which will then turn into translations) along the three (ui)
vectors that characterize nearest neighbors in the hexagonal
lattice, instead of the ux and uy vectors that do so in the regular
lattice. The vectors ui, i = 0,1,2 are given by

ui = cos

(
i
2π

3

)
ux + sin

(
i
2π

3

)
uy, (4)
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FIG. 1. Left: Honeycomb QW. The particle moves first along the
u0 direction (blue solid line), then u1 (red dot-dashed line) and finally
u2 (green dot line). Right: Triangular QW. Starting at the edge k = 0,
the dynamics is equivalent to the honeycomb QW, in three time steps.
The circle line represents the counterclockwise rotation operator.

with ux and uy the unit vectors along the x and y directions.
In terms of momentum operators,

πi = cos

(
i
2π

3

)
px + sin

(
i
2π

3

)
py.

We then look for three 2 × 2 matrices τi satisfying the follow-
ing conditions:

(C1) Each of them has {−1,1} as eigenvalues, i.e., there
exists a unitary Ui such that

τi = U
†
i σzUi.

(C2) We impose that
∑2

i=0 τiπi = pxσx + pyσy , i.e., the
Dirac Hamiltonian adopts the form

HD =
2∑

i=0

τiπi + mσz.

It was surprising to us that these conditions lead to unique
(τi) matrices, up to a sign:

τ0 = 2

3
σx + ξσz,

τ1 = −1

3
σx +

√
3

3
σy + ξσz,

τ2 = −1

3
σx −

√
3

3
σy + ξσz,

with ξ = ±
√

5
3 . Let us choose ξ =

√
5

3 , and notice that∑
i

τi =
√

5

3
σz. (5)

Thus

e−iεHD = e
−iε(

∑
i τiπi+ 3√

5
m

∑
i τi ).

As before, we use the Lie-Trotter product formula and obtain

e
−iε(

∑
i

3√
5
mτi+τiπi ) �

2∏
i=0

e
−iε 3√

5
mτi e−iετiπi . (6)

We now make use of condition (C1) to rewrite, for each i,

e−iετiπi = e−iεU
†
i σzUiπi = U

†
i e

−iεσzπi Ui = U
†
i Ti,εUi,

where now the partial shifts Ti,ε are defined through the πi

operators, instead of px and py . Similarly, for all i,

e
−iε 3√

5
mτi = U

†
i e

−iε 3√
5
mσzUi.

Let M = e
−iε 3√

5
mσz . Wrapping it up, we have obtained a QW

over the honeycomb lattice:

|ψ(t + ε)〉 =
(

2∏
i=0

U
†
i MTi,εUi

)
|ψ(t)〉, (7)

which, by construction, has the Dirac equation (1) as its
continuum limit as ε → 0. By mere associativity the QW
rewrites as

U0|ψ(t + ε)〉 =
(

2∏
i=0

Ui+1U
†
i MTi,ε

)
U0|ψ(t)〉.

Thus, if the matrix products Ui+1U
†
i could be made indepen-

dent of i (with i + 1 understood modulo 3), the QW could be
reformulated to have a constant coin operator. Surprisingly,
this can be done thanks to a natural choice of the Ui matrices,
expressed in terms of well-chosen rotations in the Bloch
sphere, understood as the set of possible spin operators. The
natural choice for U0 is Rσy

(α) = e−iασy/2, the rotation of

angle α = arccos
√

5
3 around σy . IndeedRσy

(α) maps the Bloch
vector of τ0 into the Bloch vector of σz:

σz = Rσy
(α)τ0R†

σy
(α). (8)

Next, we observe that the Bloch vectors τi are related by a
rotation of angle 2π/3 around σz. For reasons that will become
apparent, it matters to us that the cube of this rotation is
the identity, which is obviously not the case for Rσz

( 2π
3 ) =

e−iπ/3σz , since it represents a spin-1/2 rotation and will acquire
a minus sign when applied three times. Hence we take S =
ei π

3 Rσz
( 2π

3 ) instead. Then, the natural choices for the matrices
U1 and U2 are

U1 = U0S, U2 = U1S.

Indeed, these again fulfill (C1): first the S unitary brings τi to
τ0, and then the U0 rotation brings τ0 to σz. Now, the fact that the
Ui matrices are related by a unitary which cubes to the identity
entails that the products Ui+1U

†
i = U0SU

†
0 are independent of

i. We introduce

W = U0SU
†
0M. (9)

Then, if we redefine the field up to an encoding, via

|ψ̃(t)〉 ≡ U0|ψ(t)〉,
Then the honeycomb QW rewrites as just

|ψ̃(t + ε)〉 = (WT2,εWT1,εWT0,ε)|ψ̃(t)〉. (10)

In other words, the honeycomb QW just shifts the ± com-
ponents along ±u0, applies the fixed U (2) matrix W at each
lattice point, shifts the ± components along ±u1, applies W

again, etc. For certain architectures it could well be that the
time homogeneity of the coins makes the scheme easier to
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implement experimentally, compared to earlier alternate QWs
on the regular lattice [8].

IV. TRIANGULAR LATTICE

Having understood how to obtain the Dirac equation over
the honeycomb lattice will make it much easier to tackle the
triangular or related lattice such as the kagome lattice [30]. Let
us first describe the lattice and its state space. Our triangles
are equilateral with sides k = 0,1,2, see Fig. 1. Albeit the
drawing shows white and gray triangles, these differ only by the
way in which they were laid—they have the same orientation,
for instance. Our two-dimensional spinors lie on the edges
shared by neighboring triangles. We label them ψ(t,v,k) =
( ψ↑(t,v,k)

ψ↓(t,v,k) ), with v a triangle and k a side. But, since each
spinor lies on an edge, we can get to it from two triangles. For
instance, if triangle v0 (white) and v1 (grey) are glued along
their k = 1 side, then ψ(t,v0,1) = ψ(t,v1,1). In fact let us take
the convention that the upper (lower) component of the spinor,
namely ψ↑ (ψ↓), lies on the white (gray) triangle’s side. From
this perspective each triangle hosts aC3 vector, e.g., ψ(t,v0) =
[ψ↑(t,v0,k)]Tk=0...2 and ψ(t,v1) = [ψ↓(t,v1,k)]Tk=0...2.

The dynamics of the triangular QW is the composition
of two operators. The first operator, R, simply rotates every
triangle anticlockwise. Phrased in terms of the hosted C3

vectors, the component at side k hops to side (k + 1 mod 3).
For instance Rψ(t,v0) = [ψ↑(t,v0,k − 1)]k=2,0,1. The second
operator is just the application of the 2 × 2 unitary matrix W

given in Eq. (9), to every two-dimensional spinor of every
edge shared by two neighboring triangles. Again we work on
pre-encoded spinors

ψ̃(t,v,k) = Ukψ(t,v,k), (11)

where the Uk are those of Sec. III, but this time the chosen
encoding depends on side k. Altogether, the triangular QW
dynamics is given by(

ψ̃↑(t + ε,v,k)
ψ̃↓(t + ε,v,k)

)
= W

(
ψ̃↑(t,v,k − 1)

ψ̃↓(t,e(v,k),k − 1)

)
, (12)

where e(v,k) is the neighbor of triangle v alongside k.
This triangular QW is actually implementing the honey-

comb QW in a covert way. Indeed, whereas the honeycomb
QW propagates the walker along the three directions succes-
sively, the triangular QW propagates the walker along the three
translation simultaneously—depending on the edge at which
it currently lies. Thus the walker will start moving along one
of the three directions depending on its starting point, then
another, etc. For instance, focusing on what happens to spinors
on edges k = 0, we readily get(

ψ̃↑(ε,v,1)
ψ̃↓(ε,v,1)

)
= V M

(
ψ̃↑(0,v,0)

ψ̃↓(0,e(v,2),0)

)
,

which is equivalent to a translation along u0 (as is clear from
Fig. 1), followed by the action of W . But the result now lies on
edges k = 1, and will undergo a translation along u1 followed
by the action of W , etc.

As a sanity check we computed the continuum limit ob-
tained by letting ε → 0 after three iterations of Eq. (12). The
0th order is trivial. The 1st is what defines the dynamics.

Let us align the middle of side 1 of triangle v with the origin of
the Euclidean space, so that ψ(0,v,1) = ψ(0,0,0) in Cartesian
coordinates. Expand the initial condition ψ(0,x,y) as

ψ(0,x,y) = ψ(0,0,0) + εx∂xψ(0,0,0) + εy∂yψ(0,0,0),

where x and y are the coordinates in the lattice. As usual we
also expand the M inside the W as I − 3iεmσz/

√
5. After

three steps of the triangular QW we obtain (with the help of a
computer algebra system)

T(0,3ε)ψ = ψ(0,0) −
√

3

2
ε(σx∂x + σy∂y)ψ(0,0)

− 3iεmσzψ(0,0) + O(ε2).

Using that T(0,3ε) = ψ(0,0) + 3ε∂tψ(0,0) + O(ε2), and tak-
ing the limit ε → 0, we arrive at the Dirac equation under the
following form:

i∂tψ(0,0) =
√

3

6
(pxσx + σypy)ψ(0,0) + mσzψ(0,0).

The factor
√

3
6 comes from two sources: the fact that a

continuous limit results from three time steps and the fact that
the distance between the middles of the sides of a triangle is√

3
2 . To get rid of this factor, it suffices to rescale the length of

the spatial coordinates of the triangles by the same factor, or
conversely to rescale time as t ′ = 6√

3
t .

V. SUMMARY AND PERSPECTIVES

Summary. We constructed a 2 × 2 unitary W , defined in
Eq. (9), which serves as the “coin” for both the honeycomb
QW and the triangular QW. On the honeycomb lattice, each
hexagon carries a C2 spin. The honeycomb QW, defined in
Eq. (10), simply alternates a partial shift along the ui direction
of Eq. (4), followed by a W on each hexagon, for i = 0,1,2.
On the triangular lattice, each side of each triangle carries a C,
so that each edge shared by two neighboring triangles carries
a C2 spin. The triangular QW, defined in Eq. (12), simply
alternates a rotation of each triangle, and the application of
W at each edge. The simplicity of these QW-based schemes,
compared to those of the regular lattice [Eq. (3)], makes them
not only elegant, but also easy to implement. Our main result
states that up to a simple, local unitary encoding given by
Eq. (11), both the honeycomb QW and the triangular QW
admit, as their continuum limit, the Dirac equation in (2 + 1)
dimensions.

Perspectives. Thus we have shown that such quantum
simulation results need not rely on the grid. We believe that
this constitutes an important step toward modeling propaga-
tion in crystalline materials, identifying substrates for QW
implementations, studying topological phases, understanding
propagation in discretized curved space-time, and coding fields
in closed dimensions. In the near future, we wish to run
numerical simulations, and to understand what happens when
deforming the triangles, and whether similar results can be
achieved in (3 + 1) dimensions.
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Note added. We recently became aware that a French-
Australian team is tackling the same problem. We agreed to
swap papers so that the two works would be independent and
yet cite each other. Manuscript [31] is indeed very recommend-
able, as it goes further in terms of applications: electromagnetic
field, gauge invariance, and numerical simulations. Their
triangular walk is, however, an alternation of three different
steps that use different coins—whereas the present paper just
iterates the very same step. This is both mathematically more
elegant, and easier to implement. Thus the two works have
turned out to be nicely complementary.
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