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We examine distinct measures of fermionic entanglement in the exact ground state of a finite superconducting
system. It is first shown that global measures such as the one-body entanglement entropy, which represents
the minimum relative entropy between the exact ground state and the set of fermionic Gaussian states, exhibit
a close correlation with the BCS gap, saturating in the strong superconducting regime. The same behavior is
displayed by the bipartite entanglement between the set of all single-particle states k of positive quasimomenta
and their time-reversed partners k̄. In contrast, the entanglement associated with the reduced density matrix of
four single-particle modes k,k̄, k′,k̄′, which can be measured through a properly defined fermionic concurrence,
exhibits a different behavior, showing a peak in the vicinity of the superconducting transition for states k,k′ close
to the Fermi level and becoming small in the strong coupling regime. In the latter, such reduced state exhibits,
instead, a finite mutual information and quantum discord. While the first measures can be correctly estimated
with the BCS approximation, the previous four-level concurrence lies strictly beyond the latter, requiring at least
a particle-number projected BCS treatment for its description. Formal properties of all previous entanglement
measures are as well discussed.
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I. INTRODUCTION

Quantum entanglement is an essential feature of quantum
mechanics. The basic notion was developed for systems of
distinguishable components [1–4], where it has been exten-
sively investigated [5–7], playing a key role in fundamental
quantum information processing tasks [8,9]. On the other hand,
the theory of entanglement for systems of indistinguishable
components such as fermions is more recent [10–32], and is
subject to some debate [33]. There are essentially two distinct
approaches. One is based on the entanglement between modes
[16–20,31]. Here, the subsystems are defined in terms of sub-
sets of single-particle modes, and entanglement depends obvi-
ously on the choice of basis for the single-particle state space
and then on the choice of modes for each subsystem. The other,
known as entanglement between particles [10–15,21–26],
considers the indistinguishable constituents as subsystems and
entanglement is defined beyond antisymmetrization, such that
a Slater determinant is not entangled.

In [27] we defined a one-body entanglement entropy for
fermion systems, which for pure states is determined by the
one-body density matrix and vanishes if and only if (iff) the
state is a Slater determinant. It can be obtained from a single-
particle mode entanglement measure after optimization over all
possible bases of the single-particle space. The approach can
be directly extended to deal with states with no fixed fermion
number (though still having fixed number parity [34]), in which
case it vanishes iff the state is a quasiparticle vacuum. In the
case of a single-particle space of dimension 4, the approach is
an extension of the entanglement measure developed in [10]
for pure states with fixed fermion number, and provides a lower
bound to the entanglement associated with any bipartition of
the single-particle space [31]. In such space its convex roof

extension can also be analytically evaluated for any mixed state
in terms of the fermionic concurrence [10,27].

The aim of this work is to analyze the previous general
measures of fermionic entanglement in the exact ground
state of a finite superconducting system. Previous studies of
entanglement in such systems focused mainly on the formal
properties of pairing correlations [15] or on the Bardeen-
Cooper-Schrieffer (BCS) state [20,35–37], using in this case
methods and measures specifically devised for such state. Here,
we first show that the one-body entanglement entropy is in
the present system a direct indicator of pairing correlations,
reflecting essentially the BCS gap and saturating in the strong
superconducting regime. It is also shown to be closely related
to the bipartite mode entanglement between the � states k and
their time-reversed partners, becoming strictly proportional
to it at the BCS level. On the other hand, the fermionic
entanglement associated with four single-particle modes kk̄,
k′k̄′ exhibits a different behavior. This quantity is determined
by a mixed reduced state with no fixed fermion number yet
fixed (even) number parity, and can be explicitly evaluated
through the fermionic concurrence defined in [27]. It shows
a peak in the vicinity of the ground-state superconducting
transition for levels k,k′ close to the Fermi level, becoming
then small in the strong superconducting regime (if the system
size is not too small). In the latter, this reduced state exhibits
instead classical and discord-type [38–41] correlations, leading
to a finite mutual information and quantum discord. We also
discuss the BCS description of these quantities, showing that
it can indeed provide a correct estimation of the first measures
in the superconducting phase, although it fails to describe the
four-mode fermionic concurrence, which is identically zero
in BCS for all coupling strengths. This quantity is shown to
require at least a projected BCS treatment.
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In Sec. II we first discuss the main properties of the
employed fermionic entanglement measures, some of them
not included in [27,31], showing in particular their direct
relation with the minimum relative entropy to a fermionic
Gaussian state. It is also shown that in the case of four single-
particle modes, their extension to mixed states also warrants, if
nonzero, a finite bipartite mode entanglement for any partition
of the single-particle space. The application of these measures
to the exact ground state of a finite superconducting system is
discussed in Sec. III A, where their behavior as a function of
the pairing coupling strength is analyzed. Their description
through the BCS approximation is discussed in Sec. III B,
which also includes a simple projected (before variation) BCS
treatment, necessary for describing the four-mode fermionic
concurrence. Other quantities like the mutual information
and quantum discord of four single-particle modes, are also
discussed in Sec. III and in the Appendices, which contain
additional details. Exact analytic expressions for the strong
coupling regime are as well provided.

II. FORMALISM

A. One-body entanglement entropies

We consider a fermion system described by a single-particle
spaceH, spanned by fermion operators ci,c

†
i , i = 1, . . . ,d, sat-

isfying the anticommutation relations {ci,c
†
j } = δij , {ci,cj } =

{c†i ,c†j } = 0. Given a pure state |�〉 of this system, the set of
averages

ρ
sp
ij = 〈c†j ci〉 ≡ 〈�|c†j ci |�〉 (1)

form the one-body density matrix ρsp = 1 − 〈cc†〉 [c =
(c1, . . . ,cd )t ]. It plays the role of a “reduced” density matrix
which determines the average of any one-body operator Ô =
c†Oc =∑i,j Oij c

†
i cj : 〈Ô〉 = tr [ρspO], with tr denoting the

trace in the single-particle space.
In [27] we have defined an associated one-body entangle-

ment entropy

E(|�〉) = tr [h(ρsp)] =
∑

i

h(fi), (2)

h(fi) = −fi log2 fi − (1 − fi) log2(1 − fi), (3)

wherefi = 〈a†
i ai〉 are the eigenvalues ofρsp and a = U †c is the

set of fermion operators diagonalizing ρsp, such that 〈a†
j ai〉 =

(U †ρspU )ij = fiδij , with U †U = 1.
Equation (2) vanishes iff fi = 0 or 1 ∀ i, i.e., iff |�〉

is a Slater determinant (|�〉 = [
∏

i(a
†
i )fi ]|0〉), and remains

obviously invariant under one-body unitary transformations
|�〉 → exp[−ic†Oc]|�〉 (O† = O), which just lead to a
unitary transformation of ρsp (ρsp → e−iOρspeiO). It is also
the minimum, over all single-particle bases, of the entropy
determined by the average occupation of the corresponding
single-particle states [27]:

E(|�〉) = Min
{ci }

∑
i

h(〈c†i ci〉), (4)

with h(〈c†i ci〉) representing the entanglement entropy of a
single-particle mode with the remaining modes (see also
Sec. II B).

Equation (2) also admits other interpretations. It can be
regarded as the von Neumann entropy S(ρ ′), in the grand
canonical ensemble, of the independent fermion density op-
erator ρ ′ which reproduces the whole single-particle density
matrix determined by |�〉: If

ρ ′ = Z−1 exp[−c†�c] = Z−1 exp

[
−
∑

i

λia
†
i ai

]
, (5)

with Z = Tr exp[−c†�c] =∏i(1 + e−λi ) and λi the eigenval-
ues of the matrix �, then

S(ρ ′) = −Tr [ρ ′ log2 ρ ′] =
∑

i

h(fi), (6)

where fi = Tr[ρ ′a†
i ai] = [1 + eλi ]−1. Equation (6) will then

coincide with (2) provided these fi’s are identical with the
eigenvalues of the single-particle density matrix (1), i.e.,
provided

1 − tr[ρ ′cc†] = [1 + exp(�)]−1 = ρsp, (7)

which implies � = ln[(ρsp)−1 − 1].
This result shows that Eq. (2) is in fact the relative entropy

[42,43] (in the grand canonical ensemble) between the pure
state ρ = |�〉〈�| and the state (5) which satisfies (7) since
S(ρ) = 0 and (7) implies Tr[ρ log2 ρ ′] = Tr[ρ ′ log2 ρ ′]:

S(ρ||ρ ′) ≡ −Tr [ρ(log2 ρ ′ − log2 ρ)] (8)

= S(ρ ′) = tr [h(ρsp)]. (9)

Moreover, as shown in Appendix A, Eq. (9) is also the minimum
relative entropy (in the grand canonical ensemble) between ρ

and any operator of the form (5):

Min
ρ ′

S(ρ||ρ ′) = tr [h(ρsp)]. (10)

Hence, Eq. (2) is a measure of the minimum distance between
ρ and the set of operators of the form (5) (fermionic Gaussian
states commuting with N ).

Extension to quasiparticles. If the state |�〉 does not have a
fixed fermion number N =∑i c

†
i ci (but has a definite number

parity eiπN = ±1, in agreement with the parity superselection
rule [34]), we can define a generalized one-body entanglement
entropy [27] based on the extended one-body density matrix
ρqsp, which contains the contractions κij = 〈cj ci〉 and −κ∗

ij =
〈c†j c†i 〉:

Eqsp(|�〉) = −tr[ρqsp log2 ρqsp] =
∑

i

h(f̃i), (11)

ρqsp = 1 −
〈(

c
c† t

)
(c† ct )

〉
=
(

ρsp κ

−κ∗ 1 − (ρsp)∗

)
. (12)

Here, f̃i = 〈ã†
i ãi〉 and 1 − f̃i = 〈ãi ã

†
i 〉 are the eigenvalues of

ρqsp [which always come in pairs (f̃i ,1 − f̃i)], with ãi the
fermion quasiparticle operators diagonalizing ρqsp, related to
the original operators ci , c

†
i through a Bogoliubov transforma-

tion [44]. Equation (11) reduces to (2) iff κ = 0, and vanishes
iff |�〉 is a Slater determinant or also a quasiparticle vacuum
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(or, equivalently, a quasiparticle Slater determinant, which
can be always written as a quasiparticle vacuum through a
particle-hole transformation). Equation (11) remains invariant
under arbitrary particle-hole transformations (ci → c

†
i for

some single-particle states i), as well as arbitrary Bogoliubov
transformations [27]. It is the minimum, over all single-
quasiparticle bases, of the sum of the entanglement entropies
of all single-quasiparticle modes [27].

Equation (11) is also the minimum relative entropy between
ρ and any fermionic Gaussian state, i.e., any ρ ′ which is the
exponent of a generalized one-body operator:

Min
ρ ′

S(ρ||ρ ′) = −Tr[ρqsp log2 ρqsp], (13)

ρ ′ = Z−1 exp

[
−c†�c − 1

2
(c†
c† t + ct
†c)

]

= Z̃−1 exp
[
−(c† ct )L

( c
c† t

)]
, L =

(
� 


−
∗ 1 − �∗

)
.

(14)

The minimum (13) is reached for that ρ ′ which reproduces the
full ρqsp, i.e., that satisfying

1 − tr
[
ρ ′
( c

c† t

)
(c† ct )

]
= [1 + exp(L)]−1 = ρqsp,

which implies L = ln[(ρqsp)−1 − 1] and hence S(ρ ′) =
−tr[ρqsp log2 ρqsp].

B. Entanglement of bipartitions of the single-particle space

Given a decomposition HA ⊕ HB of the single-particle
space H in orthogonal subspaces of finite dimension dA,
dB = d − dA, we may expand |�〉 in a set of Slater de-
terminants in HA and HB as |�〉 =∑μ,ν αμν |μν〉, where

|μν〉 = [
∏

i∈A(c†i )n
ν
i ][
∏

j∈B(c†j )n
μ

j ]|0〉, with nν
i = 0,1 the occu-

pation number of single-particle state i in Slater determinant
ν. The reduced states associated with these single-particle
subspaces are [29] ρA =∑μ,μ′(αα†)μμ′ |μ〉〈μ′| and ρB =∑

ν,ν ′ (αtα∗)νν ′ |ν〉〈ν ′|, which reproduce all expectation values
of operators containing creation and annihilation operators
acting just on these subspaces. They are normalized mixed
states with the same nonzero eigenvalues λk , given by the
singular values of the matrix α. Their entropies S(ρA) =
S(ρB) = −∑k λk log2 λk represent the entanglement entropy
E(A,B) associated with this partition [27,29].

For states |�〉 having definite fermion number, ρA(B)

will commute with the local fermion number NA(B) =∑
i∈A(B) c

†
i ci , but will in general be a mixture of states with

different particle number (it will be represented by a 2dA(B) ×
2dA(B) matrix). Similarly, if |�〉 has definite number parity, ρA(B)

will commute with the local number parity eiπNA(B) , being a
mixture of even and odd states.

For instance, if HA involves just one single-particle level i,
ρA ≡ ρi will be determined by the average occupation 〈c†i ci〉:

ρi =
(

〈c†i ci〉 0
0 〈cic

†
i 〉

)
(15)

in the basis {c†i |0〉,|0〉}, with 〈cic
†
i 〉 = 1 − 〈cic

†
i 〉 (〈ci〉 = 0 due

to number-parity conservation). Its entropy S(ρi) = h(〈c†i ci〉)
represents the entanglement entropy of such mode with the
remaining modes. A single-particle basis where S(ρi) = 0 ∀ i

exists iff Eq. (2) vanishes. A single-quasiparticle basis with the
same property exists iff Eqsp(|�〉) = 0.

Similarly, if HA comprises a pair of levels i �= j , then

ρij =

⎛
⎜⎜⎜⎜⎝

〈c†i cic
†
j cj 〉 0 0 〈cj ci〉

0 〈c†i cicj c
†
j 〉 〈c†j ci〉 0

0 〈c†i cj 〉 〈cic
†
i c

†
j cj 〉 0

〈c†i c†j 〉 0 0 〈cic
†
i cj c

†
j 〉

⎞
⎟⎟⎟⎟⎠
(16)

in the basis {c†i c†j |0〉,c†i |0〉,c†j |0〉,|0〉}. This reduced state
(Tr ρij = 1) determines the average of any operator involving
just ci,cj ,c

†
i ,c

†
j , and its entropy S(ρij ) is the entanglement

entropy of this pair of single-particle modes with the remaining
modes. The outer (inner) block of ρij corresponds to positive
(negative) pair number parity. In contrast with ρi , ρij is not
fully determined by ρqsp since its diagonal elements (i.e., the
probabilities of finding none, one or both levels occupied)
involve two-body contractions. Nonetheless, if ci,cj are opera-
tors diagonalizingρqsp (ci(j ) → ãi(j )),ρij is obviously diagonal
and E(|�〉) = 0 or Eqsp(|�〉) = 0 implies S(ρij ) = 0 for such
operators (just one of the diagonal elements will be nonzero).

Note also that S(ρij ) depends on the subspace spanned
by the single-particle levels i,j , but not on the particular
choice of states i,j within this subspace: any unitary or
Bogoliubov transformation involving just ci,c

†
i ,cj ,c

†
j will leave

such entropy invariant.

C. Entanglement of subspaces of the single-particle space

Let us now consider the entanglement of a reduced state
ρA of a single-particle subspace HA. For reduced states which
commute with the local fermion number NA, we define the
associated one-body entanglement of formation as

E(ρA) = Min∑
α qα |�A

α 〉〈�A
α |=ρA

qαE
(∣∣�A

α

〉)
, (17)

where qα � 0,
∑

α qα = 1, and the minimization is over all
representations of ρA as a convex combination of pure states
inHA with definite fermion number. Equation (17) vanishes iff
ρA can be written as a convex mixture of Slater determinants.
Similarly, we define the generalized one-body entanglement
of formation as

Eqsp(ρA) = Min∑
α qα |�A

α 〉〈�A
α |=ρA

qαEqsp
(∣∣�A

α

〉)
, (18)

where the minimization is now over all representations of ρA

as convex combination of pure states with definite number
parity. Equation (18) vanishes iff ρA can be written as a convex
mixture of quasiparticle vacua or Slater determinants.

It is first apparent that if the full state |�〉 is a quasiparticle
vacuum or Slater determinant, then Eqsp(ρA) = 0 for any sub-
spaceHA: In this case, all averages involved in the construction
of ρA can be determined through Wick’s theorem [44], and
hence expressed in terms of the elements of ρqsp involving

062109-3



M. DI TULLIO, N. GIGENA, AND R. ROSSIGNOLI PHYSICAL REVIEW A 97, 062109 (2018)

this subspace. Therefore, ρA can be written as the exponent
of a suitable generalized one-body operator of the form (14)
providing the same ρqsp for this subspace, and will then be
a convex combination of quasiparticle Slater determinants
or vacua. A nonzero value of Eqsp(ρA) is then indicative of
correlations beyond those provided by a global quasiparticle
vacuum. Similarly, if |�〉 is a standard Slater determinant, then
E(ρA) = 0 since in this case κ = 0 and ρA can then be written
as an operator of the form (5).

It is also apparent that for a single level i, E(ρi) =
Eqsp(ρi) = 0 for any |�〉. Similarly, for two single-particle
levels we always have Eqsp(ρij ) = 0 since any pure state with
fixed number parity in a two-dimensional single-particle space
(such as the eigenstates of ρij ) can be written as a quasiparticle
vacuum or Slater determinant [27,29]. And if 〈cicj 〉 = 0 (i.e.,
[ρij ,Nij ] = 0), then E(ρij ) = 0. The same property holds for
three distinct levels i,j,k for the same reason: Any pure state
with fixed number parity in a three-dimensional single-particle
space can be written as a quasiparticle vacuum or Slater
determinant [27], implying Eqsp(ρijk) = 0 [and also E(ρijk) =
0 if [ρijk,Nijk] = 0].

The first nontrivial case is that of four distinct single-particle
levels i,j,k,l, in which case a closed expression for the one-
body entanglement of formation for any state ρijkl with fixed
number parity was obtained in [27], extending the results of
[10] for states with fixed fermion number. The result is

Eqsp(ρijkl) = −4
∑
ν=±

fν log2 fν, f± = 1 ±√1 − C2(ρijkl)

2
,

(19)

where C is the corresponding fermionic concurrence [10,27]

C(ρijkl) = Max[2λmax − Tr R(ρijkl),0] , (20)

with λmax the largest eigenvalue of R(ρ) =
√

ρ1/2ρ̃ρ1/2 and
ρ̃ = Tρ∗T in a standard basis. The operation T is given
explicitly in Appendix B (note that ρijkl and T are represented
by 8×8 matrices).

For a pure ρijkl = |�〉〈�|, C2 becomes a quadratic
entropy of the corresponding four-level ρqsp: C2(|�〉) =
1
2 Trρqsp(1 − ρqsp) = 4f+f−, with f+, f− = 1 − f+ the
(fourfold-degenerate) eigenvalues of ρqsp [27]. For a mixed
ρijkl , the result (20) coincides with the convex roof extension
of C(|�〉) [Eq. (18) with Eqsp(|�A

α 〉) replaced by C(|�A
α 〉)]. If

ρijkl commutes with number parity but contains components
of both parities, it can be written as a mixture

∑
p=± qpρ

p

ijkl of
two mixed states with definite number parity and Eqsp(ρijkl)
can be evaluated as the average of the expressions for each
parity [27].

We can also consider bipartitions (A1,A2) of the HA sub-
space, with A1 and A2 of nonzero dimension and determined
by a given choice of levels in some single-particle basis of
HA, and examine the associated bipartite entanglement in the
state ρA1,A2 . Such state will be separable iff it can be written
as a convex combination of pure product states (with definite
number parity) in A1 and A2, and entangled otherwise. While
there is in general no relation between this entanglement and
Eqsp(ρA), in the case of four single-particle levels, it was shown
in [31] that for a pure ρijkl = |�〉〈�|, the quantity 1

4Eqsp(|�〉)

provides a lower bound to the entanglement entropy of any
bipartition of the single-particle space.

For a general ρijkl , we now show the following Lemma,
which relates the fermionic concurrence (19) with the entan-
glement of a bipartition: For a general four-level fermionic
state ρijkl commuting with number parity and satisfying
C(ρijkl) > 0, any bipartition ofHijkl [like (ij − kl) or i − jkl]
is entangled.

Proof. If ρijkl were separable for a given bipartition A1 −
A2, it could be written as a convex combination of pure product
states |μA1〉〈μA1 | ⊗ |νA2〉〈νA2 |, with |μA1〉, |νA2〉 having defi-
nite number parity. But, since they are definite number-parity
pure states in a single-particle space of dimension d � 3, they
are necessarily a Slater determinant or quasiparticle vacuum,
as discussed above. Consequently, ρijkl can be written as a
convex combination of Slater determinant or quasiparticle
vacua |μA1νA2〉〈μA1νA2|, of definite number parity, entailing
C(ρijkl) = 0. Thus, C(ρijkl) > 0 ensures that any bipartition
of HA is entangled, for any choice of single particle or
quasiparticle basis of this subspace. �

III. APPLICATION TO A FINITE PAIRING SYSTEM

A. Exact results

We now consider a fermion system with a single-particle
space H of finite dimension 2�, spanned by � orthogonal
single-particle states k and the corresponding � time-reversed
states k̄. We consider in such space a pairing Hamiltonian of
the form

H =
∑

k

εk(c†kck + c
†
k̄
ck̄) −

∑
k,k′

Gkk′c
†
k′c

†
k̄′ck̄ck, (21)

where εk are the single-particle energies (the same for k and k̄

states) and the pairing interaction moves pairs of fermions from
k,k̄ to k′,k̄′. We will focus on an equally spaced single-particle
spectrum εk+1 − εk = ε ∀ k, with a constant coupling strength
Gkk′ = G � 0 ∀ k,k′, and examine the half-filled case where
the number of fermions is N = �, with � even.

The exact ground state will then be a linear combination
of Slater determinants with fixed fermion number N and fully
occupied or empty pairs (k,k̄):

|�〉 =
∑

ν

αν

[∏
k

(c†kc
†
k̄
)n

ν
k

]
|0〉, (22)

where nν
k = 0,1 indicates the occupation of pair k,k̄ (

∑
k nν

k =
N/2) and ν = 1, . . . ,

(
�

N/2

)
runs over these Slater determinants

(
∑

ν |α2
ν | = 1). This state leads to a single-particle density

matrix which remains strictly diagonal in the unperturbed
single-particle basis: 〈c†kck̄′ 〉 = 0 ∀ k,k′ and

〈c†kck′ 〉 = 〈c†
k̄
ck̄′ 〉 = δkk′fk, (23)

where fk = 〈c†kck〉 = 〈c†
k̄
ck̄〉 =∑ν |α2

ν |nν
k is the average occu-

pation of single-particle state k or k̄ in the exact ground state
(22) (2

∑
k fk = N ). Since no off-diagonal terms arise, these

fk are the eigenvalues of ρsp.
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1. One-body entanglement entropy and global
bipartite entanglement

The exact one-body entanglement entropy (2) then becomes

E(|�〉) = 2
∑

k

h(fk), (24)

where h(fk) = −fk log2 fk − (1 − fk) log2(1 − fk) repre-
sents the entropy S(ρk) of the single-mode density [Eq. (15)]

ρk = ρk̄ =
(

fk 0
0 1 − fk

)
, (25)

i.e., the single-mode entropy. We remark that for the exact
ground state, E(|�〉) = Eqsp(|�〉) since |�〉 has a fixed N . We
also note that h(fk) is an increasing function of the occupation-
number fluctuation〈

n2
k

〉− 〈nk〉2 = fk(1 − fk) = 1
4S2(ρk), (26)

where S2(ρ) = 2 Tr [ρ(1 − ρ)] is the quadratic (also called
linear) entropy. Equation (26) is then also a measure of single-
mode entanglement. The relation between entanglement and
fluctuations (and also higher-order cumulants) has been dis-
cussed in detail in [45].

A plot of (24) for the exact ground state (obtained by
diagonalization of H ) of a system with 2� = 32 single-particle
states is depicted in Fig. 1. This entropy, which measures the
deviation of (22) from a Slater determinant, is seen here to be
a direct indicator of pairing correlations, becoming nonzero
for all G > 0 and large in the BCS superconducting phase
G > Gc (see Sec. III B). Its behavior for G > Gc resembles in
fact that of the scaled BCS gap �/G (also depicted). Pairing
correlations smooth out the original Fermi surface, leading
to finite average occupations 0 < fk < 1

2 for single-particle
levels above the Fermi level, which increase with increasing
G, and 1

2 < fk < 1 for levels below the Fermi level, which

FIG. 1. Intensive one-body entanglement entropy E(|�〉)/(2�)
[Eq. (24), dimensionless], in the ground state of the Hamiltonian (21)
as a function of the (dimensionless) scaled coupling strength G/ε (ε
is the single-particle level spacing) for 2� = 32 single-particle levels
and N = �. Exact and BCS results are depicted. The scaled BCS gap
�/g, with g = G�/2, is also shown. All quantities approach 1 for
G/(�ε) → ∞. BCS results vanish for G < Gc. Quantities plotted
are dimensionless in all figures.

FIG. 2. The entanglement entropy Sk = S(ρk) = h(fk) of a
single-particle mode k with the rest of the system, for a level closest
to the Fermi level (k = �/2) (a) and most distant from the Fermi
level (k = 1) (b), in the system of Fig. 1. Exact and BCS results are
depicted.

decrease with increasing G. Then, each term h(fk) in the
sum (24) increases as G increases, giving rise to the previous
behavior of E(|�〉). While for G > Gc these effects can be
correctly described with the BCS approach, in a finite system
pairing effects become also visible in the exact ground state
within the weak coupling sector 0 < G < Gc, where BCS
results vanish. For any G > 0 and finite �, the coupling will
mix all states in the expansion (22), leading to αν > 0 ∀ ν and
hence to 0 < fk < 1 ∀ k. The state (22) will then cease to be
a strict Slater determinant as soon as G increases from 0 (see
also end of Appendix C).

As seen in Fig. 2, the increase with G of the single-mode
entropies h(fk) will obviously be initially more rapid for levels
close to the Fermi level since their occupation will be more
strongly affected by the coupling. The occupation-number
fluctuation fk(1 − fk) rapidly increases for these levels,
leading to a larger h(fk). The finite value of E(|�〉)
for 0 < G < Gc is precisely due to the non-negligible
contributions h(fk) from levels close to the Fermi level
[Fig. 2(a)]. Nonetheless, for sufficiently large G all levels
reached by the coupling become significantly affected.

In the strong pairing limit G � �ε, E(|�〉) and all h(fk)
saturate for N = �, reaching their upper bounds: In this limit,
each term in the sum (22) will have the same weight, implying,
for N = �,

αν →
G/(�ε)→∞

1√(
�

�/2

) . (27)

Equation (27) leads to fk → 1
2 and hence to h(fk) → 1 ∀ k

[entailing maximum fluctuation fk(1 − fk) → 1
4 ], implying

E(|�〉) → 2�.
The entanglement generated by the pairing correlations can

also be seen at the bipartite level, by considering the bipartition
of the full single-particle space formed by the � single-particle
states k and the � single-particle states k̄ (H = H� ⊕ H�̄).
For such partition, the expression (22) is already the Schmidt
decomposition of |�〉 since each term in the sum involves
orthogonal Slater determinants at each side. The associated
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FIG. 3. The exact intensive one-body entanglement entropy (solid
line) together with the bipartite � − �̄ entanglement entropy (28)
between all modes k and their time-reversed partners k̄ (dashed line),
scaled to its maximum value, in the system of Fig. 1. In BCS, these
two quantities are identical.

entanglement entropy is then

E�−�̄(|�〉) = −
∑

ν

∣∣α2
ν

∣∣ log2

∣∣α2
ν

∣∣. (28)

At the BCS level, this entropy is, remarkably, just half the
one-body entropy (24) [see Eq. (43)]. In the exact result, this
relation holds approximately for finite �. Equation (28) also
increases with increasing G/ε and saturates for G/(�ε) → ∞,
where it reaches its upper bound compatible with a fixed N :
Emax

�−�̄
= log2

(
�

�/2

)
for N = �. When scaled to its maximum

value, E�−�̄/Emax
�−�̄

lies in fact very close to E(|�〉)/(2�), as
seen in Fig. 3. Note also that for large �, i.e., for a system with
a large number N = � of particles, log2

(
�

�/2

) ≈ � at leading
order, which is half the saturation value of E(|�〉). This entails
E�−�̄ = 1

2E(|�〉) in this limit, as in BCS.

2. Entanglement of reduced states

Regarding now the reduced state ρkk̄ of a pair of modes
(k,k̄), just the outer 2×2 even-parity block in Eq. (16),
involving here the states |0〉 and c

†
kc

†
k̄
|0〉, will be nonzero since

the exact ground state contains no broken pairs and hence
〈c†kckck̄c

†
k̄
〉 = 0 = 〈c†

k̄
ck〉 = 〈ckck̄〉. Since 〈c†kc†k̄ck̄ck〉 = fk , this

block will then be identical to (25), implying, ∀ k,

S(ρkk̄) = S(ρk) = S(ρk̄) = h(fk). (29)

Thus, there is a classical-like correlation between single-
particle modes k and k̄, captured by the mutual information

Ikk̄ = S(ρk) + S(ρk̄) − S(ρkk̄) = h(fk), (30)

which is then identical to the single-mode entropy. Nonethe-
less, there is no entanglement between them since ρkk̄ is
diagonal in the basis {c†kc†k̄|0〉, |0〉} [this also shows that
Eqsp(ρkk̄) = E(ρkk̄) = 0, as previously stated].

We can also omit states with broken pairs in the reduced
density matrix of four single-particle modes (kk̄,k′k̄′), k �= k′.
The (16×16) matrix ρkk̄k′ k̄′ then reduces to an effective 4×4

nonzero block ρr
kk̄k′ k̄′ , with support on the even-number-parity

states {c†kc†k̄c
†
k′c

†
k̄′ |0〉, c

†
kc

†
k̄
|0〉, c

†
k′c

†
k̄′ |0〉, |0〉}:

ρr
kk̄k′ k̄′ =

⎛
⎜⎜⎜⎝

〈nkk̄nk′ k̄′ 〉 0 0 0
0 〈nkk̄ñk′ k̄′ 〉 〈c†kc†k̄ck̄′ck′ 〉 0

0 〈c†k′c
†
k̄′ck̄ck〉 〈ñkk̄nk′ k̄′ 〉 0

0 0 0 〈ñkk̄ ñk′ k̄′ 〉

⎞
⎟⎟⎟⎠.

(31)

Here, nkk̄ = c
†
kckc

†
k̄
ck̄ , ñkk̄ = ckc

†
kck̄c

†
k̄

are nonzero iff the pair
(k,k̄) is fully occupied or empty, respectively. In contrast with
ρkk̄ ,ρkk̄k′ k̄′ will contain quantum correlations due to the nonzero
off-diagonal element.

Its fermionic concurrence Ckk′ ≡ C(ρkk̄k′ k̄′), which deter-
mines the entanglement of formation E(ρkk̄k′ k̄′) = Eqsp(ρkk̄k′ k̄′)
through Eq. (19), becomes, using Eq. (20),

Ckk′ = 2 Max[|〈c†kc†k̄ck̄′ck′ 〉| −
√

〈nkk̄nk′ k̄′ 〉〈ñkk̄ ñk′ k̄′ 〉,0], (32)

which will be nonzero for G > 0. Equation (32) also represents
here the bipartite concurrence [46] between modes kk̄ and k′k̄′,
where each “side” is analogous to a qubit (it can be either
empty or fully occupied in the ground state), forming together
a two-qubit system (see Appendix C). The associated bipartite
entanglement of formation is just Ekk′ = Eqsp(ρkk̄k′ k̄′)/4. Thus,
the fermionic entanglement of ρkk̄k′ k̄′ can be directly identified
here with a bipartite entanglement. It is also verified, by simple
use of Wick’s theorem, thatCkk′ vanishes identically in the BCS
approximation (see next section), so that this entanglement
lies strictly beyond the standard BCS description, in contrast
with previous quantities. As stated before, Ckk′ vanishes for all
fermionic Gaussian states, which include in particular the BCS
ground state. A finite concurrence requires sufficiently strong
two-body correlations.

As seen in Fig. 4, Ekk′ exhibits, remarkably, a prominent
peak in the vicinity of the BCS superconducting transition
region G ≈ Gc for the pair of levels closest to the Fermi level,

FIG. 4. Entanglement of formation Ekk′ determined by the con-
currence (32) between the modes kk̄ and k′k̄′, for pairs closest
(k = �/2, k′ = k + 1) (a) and most distant (k = 1, k′ = �) (b) to
the Fermi level, and also for pairs next to closest (k = �/2 − 1,
k′ = k + 3) (c), in the system of Fig. 1. The BCS result for this
quantity vanishes identically. The peak in (a) occurs close to the BCS
superconducting transition.
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becoming then small for G � Gc. This peak is obviously also
present in the concurrence Ckk′ (Ekk′ is just an increasing func-
tion of Ckk′), and its height rapidly decays for levels k,k′ not
too close to the Fermi surface, disappearing for distant levels.

The previous behavior can be understood by analyzing
first the strong superconducting limit G/(�ε) → ∞, where
ρr

kk̄k′ k̄′ will be independent of k,k′, according to Eq. (27): The
diagonal terms 〈nkk̄nk′ k̄′ 〉 and 〈ñkk̄ ñk′ k̄′ 〉 in (31), which are the
probabilities of finding both pairs fully occupied or empty
become, for N = �/2,

〈nkk̄nk′ k̄′ 〉 = 〈ñkk̄ ñk′ k̄′ 〉 =
(
� − 2
�/2

)
(

�

�/2

) = � − 2

4(� − 1)
, (33)

while all elements of the inner block become equal,

〈nkk̄ñk′ k̄′ 〉 = 〈ñkk̄nk′ k̄′ 〉 = 〈c†kc†k̄ck̄′ck′ 〉 =
(

�−2
�/2−1

)
(

�

�/2

) = �

4(� − 1)
,

(34)

implying it will have a single nonzero eigenvalue �
2(�−1) .

With Eqs. (33) and (34), Eq. (32) leads in this limit to

Ckk′ = 1

� − 1
, (35)

∀ k �= k′, decreasing as �−1 for large � (i.e, for a large number
N = � of fermions) and implying Ekk′ ≈ 1

2�−2 log2(2�
√

e).
Equation (35) is in agreement with the result for fully con-
nected systems [47] and the monogamy property of the con-
currence [48,49] (

∑
k′ �=k C2

kk′ � C2
k,{k′ �=k}). All ρr

kk̄k′ k̄′ become
equally entangled in this limit for k �= k′, implying that Ckk′

should scale with �−1 for large �.
Thus, for not too small �, monogamy prevents a significant

entanglement between pairs kk̄ and k′k̄′ in the strong supercon-
ducting regime. In contrast, at the onset of superconductivity
(G ≈ Gc) just the levels k,k′ closest to the Fermi level are
affected by the pairing correlations, originating the initial
increase and ensuing peak in the corresponding Ckk′ and
Ekk′ . As G increases further, Ckk′ becomes appreciable for an
increasing number of pairs k �= k′ around the Fermi level and
the highest Ckk′ must then decrease to comply with monogamy
requirements. For large �, Ckk′ is then significant only for k,k′
close to the Fermi level and just at the transition region, rather
than at the strong superfluid regime.

In the latter, correlations between modes kk̄ and k′k̄′ in
the reduced state ρkk̄k′ k̄′ do exist, but lead just to a finite
mutual information Ikk′ and finite quantum discord Dkk′ (see
Appendix C), as shown in Fig. 5. In the limit G/(�ε) → ∞,
Eqs. (33) and (34) lead to S(ρr

kk̄k′ k̄′) ≈ 1
2 (3 − �−1) for large �,

implying that the mutual information

Ikk′ ≡ S(ρkk̄) + S(ρk′ k̄′) − S(ρkk̄k′ k̄′)

= h(fk) + h(fk′) − S(ρr
kk̄k′ k̄′) (36)

approaches in this limit a finite common value ≈ 1
2 (1 + �−1)

for all k �= k′. Both Ikk′ and Dkk′ are initially obviously larger
for pairs k,k′ close to the Fermi level, in which case they
develop a moderate peak at the transition region, but remain
significant for G � Gc since they are not restricted by a
monogamy property [50]. In contrast with Ekk′ , they can
be correctly estimated through BCS. The finite value of the

FIG. 5. The mutual information (36) (top) and the quantum
discord (bottom) between modes kk̄ and k′k̄′, for pairs closest (a)
and most distant (b) to the Fermi level, in the system of Fig. 1.
Both quantities are significant in the superconducting phase. The BCS
estimate is now nonvanishing for G > Gc.

discord (whose calculation details and asymptotic expression
are discussed in Appendix C) indicates that in the strong pairing
regime, the correlations between pairs kk̄ and k′k̄′, while not
leading to a significant entanglement of the reduced state, are
not fully classical either. As seen from Eqs. (31)–(34), ρr

kk̄,k′ k̄′
does not become diagonal in a product basis, having instead
a maximally entangled nondegenerate eigenstate in the inner
block, which leads to the previous nonclassical effect (finite
discord).

In the smallest nontrivial case � = 2, ρkk̄k′ k̄′ = |�〉〈�|
becomes pure (k = 1, k′ = 2). Hence, the discord coincides
with Ekk′ , which in turn becomes proportional to the one-body
entanglement entropy and also the entropy (28): Dkk′ = Ekk′ =
E�−�̄ = E(|�〉)/4 = h(fk) = h(f ′

k), where fk and fk′ = 1 −
fk are the (twofold-degenerate) eigenvalues of ρsp (see end of
Appendix C). All previous measures then collapse to a single
value.

B. BCS description

1. Standard treatment

As is well known, the BCS approximation to the ground
state of Hamiltonian (21) relies on a state of the form [44,51]

|BCS〉 =
[∏

k

(uk + vkc
†
kc

†
k̄
)

]
|0〉, (37)
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for even N , where |u2
k| + |v2

k | = 1. Such state is the vacuum
of quasiparticle fermion operators

ak = ukck − vkc
†
k̄
, ak̄ = vkc

†
k + ukck̄, (38)

satisfying ak|BCS〉 = ak̄|BCS〉 = 0 together with fermion an-
ticommutation relations. The coefficients minimizing 〈H 〉 =
〈BCS|H |BCS〉 under a fixed 〈N〉 = 2

∑
k |v2

k | constraint can

be chosen real non-negative, and are given by uk
vk

=
√

λk±ε̃k

2λk
,

where λk =
√

ε̃2
k + �2 are the quasiparticle energies, ε̃k =

εk − μ, with μ the chemical potential and � = G
∑

k〈ck̄ck〉 is
the BCS gap (we have dismissed minor effects in ε̃k stemming
from self-energy terms). For 〈N〉 = � and a uniformly spaced
spectrum, μ = 1

�

∑
k εk .

As 〈ck̄ck〉 = ukvk = �/(2λk), � is determined by the gap
equation

� = G�
∑

k

1

2λk

. (39)

The superconducting phase corresponds to the nontrivial solu-
tion � > 0, which arises for G > Gc with

Gc = 2∑
k

1
|ε̃k |

≈ ε

ln(�/2) + γ
, (40)

where the last expression holds for large � in the equally
spaced case (γ = −
′[1/2]


[1/2] ≈ 1.96). For G < Gc, � = 0.
While Eqsp(|BCS〉) = 0 ∀ G, as |BCS〉 is a quasiparticle

vacuum, the one-body entanglement entropy

E(|BCS〉) = tr
[
h
(
ρ

sp
BCS

)] = 2
∑

k

h(fk) (41)

is finite for G > Gc and provides an excellent approximation
to the exact E(|�〉) = Eqsp(|�〉) in the superconducting phase,
as seen in Fig. 1. Here, ρ

sp
BCS = 〈BCS|1 − cc†|BCS〉 is the

BCS single-particle density matrix, which is diagonal in
the unperturbed single-particle basis, with eigenvalues fk =
〈c†kck〉 = 〈c†

k̄
ck̄〉 given by

fk = ∣∣v2
k

∣∣ = 1

2

(
1 − ε̃k

λk

)
. (42)

For G < Gc, v2
k = 1 (0) for levels below (above) the Fermi

level and (41) vanishes, whereas for G > Gc, v2
k ∈ (0,1),

smoothing the Fermi surface and leading to a finite value of
(41). This indicates the departure of (37) from a standard Slater
determinant. For G/(�ε) → ∞ and N = �, Eq. (39) leads
to � ≈ G�/2 and v2

k ≈ 1
2 (1 − ε̃k/�), implying E(|BCS〉) ≈

2�[1 −
∑

k ε̃2
k

2��2 ln 2 ], which saturates in the limit.
Equation (42) also provides a good approximation to the

single-mode entropies S(ρk) = h(fk), as seen in Fig. 2. As
stated before, each term h(fk) is an increasing function of
the occupation-number fluctuation fk(1 − fk), which in BCS
becomes u2

kv
2
k . The quadratic one-body entanglement entropy

S2(ρsp) = 4 tr [ρsp(1 − ρsp)] = 8
∑

k u2
kv

2
k is in BCS just twice

the total number fluctuation 〈N2〉 − 〈N〉2 [44]. Of course, this
relation is not valid in the exact ground state, for which the
number fluctuation is strictly zero.

The BCS state (37) does not have a fixed fermion number but
has a definite (positive) number parity. It is in fact of the same

form (22) with αν =∏k v
nν

k

k u
1−nν

k

k and nν
k = 0,1independent

variables, such that ν = 1, . . . ,2�. Thus, the entanglement
entropy (28) between all modes k and all modes k̄ reduces
to the entropy of a product of �-independent density operators
with eigenvalues |v2

k | = fk and |u2
k| = 1 − fk . Hence,

E�−�̄(|BCS〉) =
∑

k

h(fk) = 1

2
E(|BCS〉). (43)

A similar relation holds approximately in the exact result
(Fig. 3). An entropy similar to (43) was defined in [20] for
the BCS state and analyzed in the continuous limit.

Considering now the reduced state of levels (kk̄), BCS leads
(using Wick’s theorem [44]) to 〈c†kckck̄c

†
k̄
〉 = 〈c†kck〉〈ck̄c

†
k̄
〉 −

〈c†kc†k̄〉〈ck̄ck〉 = v2
ku

2
k − (ukvk)2 = 0 and 〈c†kc†k̄ck̄ck〉 = v4

k +
(ukvk)2 = fk , as in the exact case. Hence, Eqs. (29) and (30)
remain valid in BCS with fk given by (42).

Differences arise, however, in the four-level density
matrix (31) since Wick’s theorem implies that all quan-
tities will be a function of the fk . For k �= k′ we
have 〈nkk̄nk′ k̄′ 〉 = 〈nkk̄〉〈nk′ k̄′ 〉, 〈nkk̄ñk′ k̄′ 〉 = 〈nkk̄〉〈ñk′ k̄′ 〉, and
〈ñkk̄ ñk′ k̄′ 〉 = 〈ñkk̄〉〈ñk′ k̄′ 〉, with 〈nkk̄〉 = v2

k = fk , 〈ñk〉 = u2
k =

1 − fk ≡ f̃k , and 〈c†kc†k̄ck̄′ck′ 〉 = ukvkuk′vk′ . Hence, in BCS,
Eq. (31) becomes

ρr BCS
kk̄k′ k̄′ =

⎛
⎜⎜⎝

fkfk′ 0 0 0
0 fkf̃k′

√
fkf̃kfk′ f̃k′ 0

0
√

fkf̃kfk′ f̃k′ f̃kfk′ 0
0 0 0 f̃kf̃k′

⎞
⎟⎟⎠.

(44)

It then has always just three nonzero eigenvalues (fkfk′ , f̃kf̃k′ ,
and fkf̃k′ + f̃kfk′), which in the exact state occurs exactly only
for G/(�ε) → ∞. These expressions lead to |〈c†kc†k̄ck̄′ck′ 〉| =√〈nkk̄nk′ k̄′ 〉〈ñkk̄ ñk′ k̄′ 〉 and hence to Ckk′ = 0 ∀ � and k �= k′,
as previously stated. BCS cannot reproduce the concurrence
(32) since the latter vanishes in any Gaussian state, and hence
for any |�〉 which is a Slater determinant or quasiparticle
vacuum, like the BCS state (37). A finite concurrence requires
sufficiently strong two-body correlations, in order to have a
positive difference in (32).

Nonetheless, BCS still leads to a good estimate of S(ρkk̄k′ k̄′)
and of both the mutual information Ikk′ and quantum dis-
cord Dkk′ in the superconducting phase G > Gc, as seen in
Fig. 5. Moreover, for G/(�ε) → ∞, fk → 1/2 ∀ k, and the
exact limits Ikk′ = 1

2 , S(ρkk′) = 3
2 , and Dkk′ = 3

2 − 3 log2 3
4 (see

Appendix C) are obtained for large �.

2. Number-projected treatment

One could now ask how the finite value of the concurrence
Ckk′ can be predicted in a BCS-based scheme. The answer lies,
of course, in the number-projected BCS approximation [44],
based on the state

PN |BCS〉 ∝
∑

ν

[∏
k

v
nν

k

k u
1−nν

k

k (c†kc
†
k̄
)n

ν
k

]
|0〉, (45)

where PN = 1
2π

∫ 2π

0 e−iφ(N̂−N)dφ is the projector onto fixed
(even) fermion number N , nν

k = 0,1 and now
∑

k nν
k = N/2,
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FIG. 6. Top: entanglement of formation Ekk′ between modes kk̄

and k′k̄′ for pairs closest to the Fermi level according to exact
and projected BCS results, in the system of Fig. 1. Bottom: the
corresponding one-body entanglement entropy. The projected BCS
result is accurate for all values of G, although the difference �E

2�
=

(EBCSP−EExact )
2�

, depicted in the inset, is also maximum at the transition
region.

with ν = 1, . . . ,
(

�

N/2

)
(the nν

k are no longer independent vari-
ables). The state (45) has the same form as the exact state (22),
but with specified coefficients αν =∏k v

nν
k

k u
1−nν

k

k .
While projection after variation already improves BCS in

the superconducting phase, projection before variation can
properly describe also the normal sector G < Gc, where
standard BCS estimates vanish for all correlation measures.
We consider here a simple approach where the form of the
coefficients uk and vk in (45) is the same as in standard
BCS, but � is left as a variational parameter to be deter-
mined from the minimization of the projected average energy
〈H 〉N = 〈BCS|PNH |BCS〉

〈BCS|PN |BCS〉 . Full self-consistent methods can also
be employed [52].

As seen in Fig. 6, such an approach is sufficient to predict
a finite concurrence Ckk′ , which fairly reproduces the exact
result, including the peak for pairs kk̄,k′k̄′ close to the Fermi
level. The essential reason is that for � > 0, the projected state
(45) is no longer Gaussian, i.e., it is not a quasiparticle vacuum
nor a Slater determinant, and Wick’s theorem no longer holds.
It contains two-body correlations and has in fact a very high
overlap with the exact ground state (22).

The effective � obtained with projection before variation is
positive for all G > 0 and exhibits a smooth increase with
increasing G, so that (45) will also lead to quite accurate
estimates of all other quantum correlation measures shown in
Figs. 1–3 and 5, including the interval 0 < G � Gc, as seen
in the bottom panel of Fig. 6 for the one-body entanglement
entropy. It is also noticed that the transition region G ≈ Gc,
where Ckk′ exhibits its peak, is precisely that where the dis-
crepancy between the exact and the projected BCS predictions
is most significant, as seen in the inset.

IV. CONCLUSIONS

We have analyzed in detail the behavior of general fermionic
entanglement measures in the exact ground state of a finite
superconducting system. The one-body entanglement entropy,
which represents the minimum distance (as measured by the
relative entropy) to a fermionic Gaussian state, is seen to be
here a close indicator of pairing correlations, saturating in the
strong coupling limit and behaving like a scaled BCS gap. It is
practically proportional to the bipartite entanglement entropy
between all single-particle modes k and their time-reversed
partners k̄, being exactly proportional at the BCS level. BCS
provides in fact a good estimation of these entropies in the
whole superconducting phase.

In contrast, the entanglement of a subset of fermionic
modes, determined in general by a mixed reduced state
with no fixed fermion number, can exhibit a quite different
behavior. The first nontrivial case was shown to be that of
four single-particle modes k,k̄,k′,k̄′, whose entanglement of
formation can be evaluated through the fermionic concurrence
and can be interpreted as a bipartite mode entanglement. This
entanglement vanishes identically in BCS as well as in any
fermionic Gaussian state. In the exact ground state it shows
instead a peak in the vicinity of the superconducting transition
region for single-particle states k,k′ close to the Fermi level,
which are those most affected by the coupling at the onset
of the transition, possessing then a larger occupation-number
fluctuation in this region. The concurrence becomes then small
in the strong coupling regime for not too small � due to
monogamy restrictions. Hence, it is here an indicator of the
transition, reflecting the increased complexity of the exact
ground state in this region. It requires at least a number
projected BCS treatment for its approximate description. We
have also shown that while not significantly entangled, these
four modes do remain correlated in the strong coupling regime,
exhibiting there a finite mutual information and quantum
discord, due the nonzero off-diagonal terms in the density
matrix, and showing for this reason a less noticeable peak
at the transition region. The present results provide then
insights into the relation between fermionic entanglement and
superconducting correlations.
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APPENDIX A: MINIMUM RELATIVE ENTROPY

Given two density operators ρ, ρ ′ for a given system, the
relative entropy (8) can be written as [42,43]

S(ρ||ρ ′) = −Tr[ρ log2 ρ ′] − S(ρ), (A1)

where S(ρ) = −Tr[ρ log2 ρ] is the von Neumann entropy. It
satisfies S(ρ||ρ ′) � 0, with S(ρ||ρ ′) = 0 iff ρ = ρ ′ [42]. Let
us now consider a ρ ′ of the form

ρ ′ = Z−1 exp

[
−

m∑
ν=1

λνOν

]
, (A2)

where Z = Tr exp[−∑ν λνOν] and {Oν, ν = 1, . . . ,m} is an
arbitrary set of m linearly independent operators (Hermitian
or comprising both Oν and O†

ν ). This form of ρ ′ is that which
maximizes the entropy S(ρ ′) subject to the constraint of fixed
expectation values 〈Oν〉, ν = 1, . . . ,m. It is easy to show that
for fixed ρ,

Min
{λν }

S(ρ||ρ ′) = S(ρ ′) − S(ρ), (A3)

with the minimum reached for those λν satisfying

Tr [ρ ′Oν] = Tr [ρOν], ν = 1, . . . ,m (A4)

i.e., for that ρ ′ which reproduces the expectation values
determined by ρ of all operators Oν of the chosen set.

Proof. Setting 〈Oν〉ρ ≡ Tr [ρOν], we obtain, from Eqs. (A1)
and (A2),

S(ρ||ρ ′) = 1

ln 2

(
k∑

ν=1

λν〈Oν〉ρ + ln Z

)
− S(ρ). (A5)

As ∂ ln Z
∂λν

= −〈Oν〉ρ ′ , equations ∂
∂λν

S(ρ||ρ ′) = 0 lead to

〈Oν〉ρ ′ = 〈Oν〉ρ, ν = 1, . . . ,m (A6)

in which case Eq. (A5) reduces to Eq. (A3). �
It then follows that S(ρ ′) � S(ρ), with S(ρ ′) = S(ρ) iff

ρ ′ = ρ. The minimum relative entropy is then a measure of
the information contained in ρ that cannot be contained in any
operator of the form (A2). If ρ is pure and the operators Oν

comprise the full set of one-body operators c
†
i cj , (A3) leads

to Eq. (10) provided traces are taken in the grand canonical
ensemble. Similarly, if the Oν also include the operators cicj

and c
†
i c

†
j , (A3) leads to Eq. (13) (again in the full grand

canonical ensemble).

APPENDIX B: FERMIONIC CONCURRENCE
OF FOUR SINGLE-PARTICLE STATES

Labeling the four single-particle states i,j,k,l as 1,2,3,4,
and setting |0̄〉 ≡ c

†
1c

†
2c

†
3c

†
4|0〉, with |0〉 the fermionic vacuum,

the operator T in R(ρijkl) in Eq. (20) is represented,
in the basis {|0〉,c†1c†2|0〉,c†1c†3|0〉,c†1c†4|0〉, − |0̄〉,c2c1|0̄〉,
c3c1|0̄〉,c4c1|0̄〉}, by the matrix [27]

T =
(

0 I4

I4 0

)
.

The same matrix holds for an odd-parity state ρijkl in the basis
{c†1|0〉,c†2|0〉,c†3|0〉,c†4|0〉, c1|0̄〉,c2|0̄〉,c3|0̄〉,c4|0̄〉}.

APPENDIX C: FOUR MODES REDUCED STATES AS
TWO-QUBIT STATES AND QUANTUM DISCORD

The ground state in (22) is a superposition of states where
pairs of modes kk̄ are either fully occupied or empty. Following
Ref. [31], we could think of such pairs as even-parity qubits
and use this representation to see the reduced state (31) of the
four modes kk̄,k′k̄′, as a mixed two-qubit state. From Lemma 1
of [31] it then follows that the fermionic concurrence (32) is
the Wootters concurrence [46] of these two qubits.

Furthermore, fermion operators analogous to the Pauli
matrices can be introduced for these qubits, so that any local
operation can be described in terms of them:

σ̃ x
k = c

†
kc

†
k̄
+ ck̄ck, (C1)

σ̃
y

k = −i(c†kc
†
k̄
− ck̄ck), (C2)

σ̃ z
k = c

†
kck + c

†
k̄
ck̄ − 1. (C3)

It is verified that these operators satisfy [σ̃ μ

k ,σ̃ ν
k′] =

2iδkk′εμνγ σ̃
γ

k and (σ̃ μ

k )2|ψ〉k = |ψ〉k for any even-parity state
|ψ〉k of the pair kk̄. In terms of these operators, any mixed state
of these two qubits can be written as

ρkk′ = ρkρk′ + 1
4Cμνσ

μ

k σ ν
k′ , (C4)

ρk = 1
2 (1 + rkμσ

μ

k ), (C5)

where rkμ = 〈σμ

k 〉 and Cμν = 〈σμ

k σ ν
k′ 〉 − 〈σμ

k 〉〈σ ν
k′ 〉 is the cor-

relation tensor of the state. This representation turns out to be
convenient to evaluate the quantum discord [53].

Recall that the quantum discord D(A|B) of a state ρAB of
a bipartite system of distinguishable constituents A, B can be
defined as the minimum difference of two quantum extensions
of the conditional entropy [38–40]

D(A|B) = Min
{�j }

S(A|B{�j }) − [S(ρAB) − S(ρB )], (C6)

S(A|B{�j }) =
∑

j

pjS(ρA/�j
), (C7)

where ρA(B) = TrB(A)ρAB is the reduced state of subsystem
A(B), the set {�j } describes a local measurement on B, pj =
Tr [ρAB�j ] is the probability of result j in that measurement,
and ρA/�j

= p−1
j TrB[ρAB�j ] the conditional state of A after

such result is obtained. EvaluatingD(A|B) then requires to find
the minimum over all local measurements of the conditional
entropy S(A|B{�j }).

For a two-qubit state and for a projective measurement along
direction k in the Bloch sphere of qubit B, the conditional
entropy (C7) reads as, explicitly,

S(A|Bk) =
∑

μ=±,ν=±
pνkf

(
λ

μ

νk

)
, (C8)

where f (x) = −x log2 x, pνk = 1
2 (1 + νrB · k) are the prob-

abilities of the two possible results of such measurement, and

λ
μ

νk = 1

2

(
1 + μ

∣∣∣∣rA + ν
Ck

1 + νrB · k

∣∣∣∣
)
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the eigenvalues of the ensuing conditional state ρA/νk of qubit
A. It was shown in Ref. [53] that in the weakly correlated
regime, the measurement minimizing (C8) is determined es-
sentially by the direction of one of the singular vectors of the
correlation tensor C.

Our interest here is in the state (31), which in the present
notation is an X-type state symmetric under rotations around
the z axis. It has marginal vectors rk(k′) parallel to the singular
vector zk(k′) of C, i.e., rk = (0,0,rkz) with rkz = 2〈nkk̄〉 − 1,
and a correlation tensor already diagonal in the chosen basis,
with

Cxx = Cyy = 2〈c†kc†k̄ck̄′ck′ 〉, (C9)

Czz = 4(〈nkk̄nk′ k̄′ 〉 − 〈nkk̄〉〈nk′ k̄′ 〉). (C10)

Therefore, the minimizing measurement in the weakly cor-
related limit can be a projective measurement either along
z or along any vector k in the xy plane. Beyond weak
correlation, it is easy to show that for this state the previous
projective measurements are still stationary. Moreover, for
reduced states obtained from the ground state of the present
pairing system, we have verified that the minimum is always
obtained for a measurement along any vector k in the xy plane,
which is precisely that determined by the pairing correlations
[Eq. (C9)].

We then obtain pνk = 1
2 and λ

μ

νk = 1
2 [1 + μ

√
r2
kz + C2

xx]
for both ν = ±. In particular, in the strong superconducting

regime, Eqs. (33) and (34) lead to rkz = 0 and Cxx = �
4(�−1) ,

in which case Eqs. (C6)–(C8) lead to

Dkk′ ≈ 1

2

(
1 − log2 3

2

)
(3 + �−1), (C11)

for large �. The discord remains then finite in this limit.
The case N = � = 2. The case of N = 2 fermions in

� = 2 twofold-degenerate levels is the smallest nontrivial
pairing system. The exact ground state of the Hamiltonian
(21) for G � 0 becomes just |�〉 = (αkc

†
kc

†
k̄
+ αk′c

†
k′c

†
k̄′)|0〉,

with k = 1, k′ = 2, αk
k′ =

√
λ±ε
2λ

, and λ = √
ε2 + G2, which

is entangled for G > 0 (i.e., it is not a Slater determinant nor
a quasiparticle vacuum). The state (31) becomes obviously
pure, with 〈nkk̄nk′ k̄′ 〉 = 〈ñkk̄ ñk′ k̄′ 〉 = 0 and 〈nkk̄ñk′ k̄′ 〉 = |α2

k |,
〈c†k′c

†
k̄′ck̄ck〉 = αkα

∗
k′ = G/(2λ). The concurrence (32) reduces

to C = 2|αkαk′ |, i.e.,

Ckk′ = |G|√
ε2 + G2

, (C12)

approaching 1 for G/ε → ∞, in agreement with the limit
(35) for � = 2. The quantum discord then coincides exactly
with the bipartite entanglement entropy Ekk′ , which here
is just E�−�̄, and is exactly proportional to the one-body
entropy E(|�〉) = h(ρsp): Dkk′ = Ekk′ = S(ρkk̄) = S(ρk′ k̄′) =
E�−�̄ = E(|�〉)/4 = −∑k |α2

k | log2 |α2
k | = h(fk) = h(fk′),

with Ikk′ = 2Ekk′ and fk = |α2
k |, k = 1,2, the eigenvalues

(twofold degenerate) of ρsp.
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