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All the noncontextuality inequalities for arbitrary prepare-and-measure experiments
with respect to any fixed set of operational equivalences
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Within the framework of generalized noncontextuality, we introduce a general technique for systematically
deriving noncontextuality inequalities for any experiment involving finitely many preparations and finitely many
measurements, each of which has a finite number of outcomes. Given any fixed sets of operational equivalences
among the preparations and among the measurements as input, the algorithm returns a set of noncontextuality
inequalities whose satisfaction is necessary and sufficient for a set of operational data to admit of a noncontextual
model. Additionally, we show that the space of noncontextual data tables always defines a polytope. Finally, we
provide a computationally efficient means for testing whether any set of numerical data admits of a noncontextual
model, with respect to any fixed operational equivalences. Together, these techniques provide complete methods
for characterizing arbitrary noncontextuality scenarios, both in theory and in practice. Because a quantum prepare-
and-measure experiment admits of a noncontextual model if and only if it admits of a positive quasiprobability
representation, our techniques also determine the necessary and sufficient conditions for the existence of such a
representation.
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I. INTRODUCTION

Proofs of the failure of noncontextuality place strong
constraints on our understanding of nature. For example, the
argument by Kochen and Specker [1] showed that quantum
theory cannot be explained by an ontological model in which
every projective measurement has its outcome determined by
hidden variables, independently of what other measurements it
is implemented jointly with (that is, independently of context).

A generalized notion of noncontextuality was defined in
Ref. [2]. Heuristically, it asserts that an ontological model of
some operational theory is noncontextual if and only if labo-
ratory operations which cannot be operationally distinguished
are represented identically in the model. It was shown that the
operational predictions of quantum theory are inconsistent with
the existence of such a model. Furthermore, this generalized
notion of noncontextuality (which we henceforth refer to
simply as “noncontextuality”) applies to arbitrary operational
theories—not just quantum theory—so one can ask whether
any given set of data describing possible statistics for a prepare-
and-measure experiment admits of a noncontextual model. We
will refer to such sets of data as data tables, since one can
organize the data into a table giving the probability for each
pairing of a preparation with a measurement outcome.

Because the generalized notion of noncontextuality of
Ref. [2] presumes neither the correctness of quantum theory
nor that the preparations and measurements are noiseless,
its operational consequences can be tested directly with real
experimental data.1 These tests take the form of noncontex-
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1Other articles, e.g., Refs. [3–5], have instead sought to make the

Kochen-Specker notion of noncontextuality applicable to arbitrary

tuality inequalities, whose violation by a data set witnesses
the impossibility of explaining that data with a noncontextual
ontological model. One such inequality has been violated with
high confidence in a recent experiment, demonstrating that
nature does not admit of a noncontextual model [7].

This article presents a systematic method for characterizing,
for any prepare-and-measure experiment, all the data tables
consistent with the principle of noncontextuality given any
fixed set of operational equivalences among the preparations
and any fixed set of operational equivalences among the
measurements. The inputs to our algorithm are these two sets of
operational equivalences, and the output is a set of inequalities
on the elements of the data table. The satisfaction of these
inequalities is necessary and sufficient for the data table to
admit of a noncontextual model with respect to the specified
operational equivalences. Our method shows that the space
of noncontextual data tables for any prepare-and-measure
scenario defines a polytope, which we term the generalized-
noncontextual polytope, in analogy with the local polytope of
a Bell scenario [9].

In addition, this article provides a systematic and efficient
method for deciding if any given data table, specified numeri-
cally, admits of a noncontextual model, given any fixed set of
operational equivalences.

Foundationally, the failure of noncontextuality plays a key
role as a notion of nonclassicality which has broad applicabil-
ity, and which subsumes other notions such as the negativity
of quasiprobability representations [10], the generation of
anomalous weak values [11], and violations of local causality

operational theories and thereby to derive experimental tests of this
notion. These proposals have been contrasted with those based on
generalized noncontextuality and criticized in Refs. [6–8].
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[2]. As such, our method for deriving inequalities allows one to
quantitatively identify the boundary between the classical and
the nonclassical in arbitrary prepare-and-measure scenarios.
Furthermore, it allows one to directly generate noise-robust
noncontextuality inequalities from arbitrary proofs of the
failure of noncontextuality in quantum theory [12], thereby
allowing one to find necessary and sufficient conditions for
noncontextuality in scenarios where only necessary conditions
were previously known [7,8,13–15].

Practically, quantifying the boundary between classical
and nonclassical is important for identifying tasks which
admit of a quantum advantage. For example, the failure of
noncontextuality has been shown to be a resource in various
tasks, providing advantages for cryptography [13,16–18] and
computation [19–21]. If a given protocol for quantum cryptog-
raphy or communication, or a given quantum circuit, can be
cast into the form of a prepare-and-measure experiment, then
one can apply our methods to determine whether the given
protocol or circuit admits of a noncontextual model. By this
sort of study, one might identify new quantum information-
processing tasks for which contextuality is a resource. Our
methods should also prove useful for the benchmarking of real
quantum devices, just as Bell inequality violations allow one to
certify randomness [22] and achieve key distribution [23,24]
in a device-independent fashion.

Identifying operational equivalences among laboratory pro-
cedures is the first step in deriving observable consequences
of generalized noncontextuality. The particular operational
equivalences considered, in turn, determine the set of noncon-
textuality inequalities which follow. As such, it is important
to understand where the operational equivalences come from
in the first place. Historically, most operational equivalences
for generalized noncontextuality have originated in quantum
no-go theorems for noncontextuality [7,8,13,14,25,26] or in a
frustrated network that can be used to build a quantum no-go
theorem [27,28]. These quantum no-go theorems are typically
designed to be as simple as possible or to highlight specific
structures within quantum theory. One then extrapolates to an
operational setting by identifying a set of (imperfect, noisy)
operational procedures that satisfy the precise operational
equivalence relations that held among the idealized (perfect,
noiseless) quantum procedures. By considering procedures
that are convex mixtures of the ones actually realized in an
experiment, it is possible to satisfy these particular operational
equivalences exactly [7]. To approximate what one would
expect quantumly, it is important that the experiment be
engineered to target the particular operational equivalences
in question. However, there is a different approach that one
can adopt: rather than trying to engineer one’s experiment to
accommodate some specific sets of operational equivalences,
one can instead take a set of data from an arbitrary experi-
ment, and then simply determine the operational equivalences
that it naturally exhibits.2 The only requirement that such
experiments must fulfill is that the set of preparations and
the set of measurements are tomographically complete (as

2A procedure for finding complete sets of operational equivalences
was demonstrated in a special case in Ref. [29]. A more general
method is forthcoming.

discussed in depth in Refs. [7,29]). Operational equivalences
extracted directly from experimental data will not generally
not be as simple in structure as those exhibited in quantum
no-go theorems (for instance, the latter often involve uniform
mixtures and are often symmetric under certain permutations
of the procedures). However, the techniques we provide in
this paper apply just as well to them. Further, because one
is not confined to testing a predetermined set of operational
equivalences, one can test for failures of noncontextuality in
generic experiments, rather than just those which target labo-
ratory procedures motivated by some specific no-go theorem.

Our method for finding the generalized-noncontextual poly-
tope comprises two distinct computational tasks. The first task
is to catalog all extremal solutions which satisfy some initial
set of linear constraints; i.e., it is an instance of the vertex
enumeration problem. That catalog allows us to formulate a
condition for membership in the generalized-noncontextual
polytope in terms of an existential quantifier. The second
task, then, is quantifier elimination and requires eliminating
variables for a system of linear inequalities. As elaborated
herein, a variety of standard algorithms are readily available
for efficiently solving both of these tasks. Moreover, vertex
enumeration and quantifier elimination algorithms are already
widely used in quantum foundations.3

Finally, we note that a prepare-and-measure experiment that
is consistent with quantum theory (i.e., a set of quantum prepa-
rations and a set of quantum measurements) admits of a positive
quasiprobability representation if and only if it admits of a
noncontextual ontological model [10]. We can therefore apply
our technique to solve the problem of determining whether
or not a given set of quantum preparations and measurements
admits of a positive quasiprobability representation [10,41,42].
It suffices to determine all of the operational equivalences
holding among the preparations and among the measurements
(see footnote 2) and then determine whether the data table
defined by the prepare-and-measure experiment violates any
noncontextuality inequality that is implied by these operational
equivalences.

II. OPERATIONAL AND ONTOLOGICAL
PRELIMINARIES

An operational theory specifies a set of laboratory proce-
dures, such as preparations and measurements, as well as a
prescription for finding the probability distribution p(m|M,P )
over outcomes m of any given measurement M when imple-
mented following any given preparation P .

3Familiar applications of vertex enumeration and quantifier
elimination—albeit not always referred to by these names—include
deriving standard Bell inequalities [30–33], deriving entropic in-
equalities for generalized correlation scenarios [34–36], and many
others [8,25,37–40]. For instance, Bell inequalities are defined as the
convex hull of all local strategies; i.e., they precisely characterize
the region in probability space spanned by deterministic strategies
[9]. This relates to vertex enumeration, because the convex hull
problem (finding inequalities given extreme points) is equivalent to
vertex enumeration (finding extreme points given inequalities) from
an algorithmic perspective (see, e.g., Appendix A in Ref. [25]).
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Two preparations P1 and P2 are termed operationally
equivalent if they generate the same statistics for all possible
measurements:

∀M : p(m|M,P1) = p(m|M,P2). (1)

We denote this operational equivalence relation by P1 � P2.
Similarly, two measurement procedures M1 and M2 are

termed operationally equivalent if they generate the same
probability distribution over their outcomes (denoted m1 and
m2) for all possible preparations:

∀P : p(m1|M1,P ) = p(m2|M2,P ). (2)

We denote this operational equivalence relation by M1 � M2.
We will refer to the event of a measurement M yielding an

outcome m as a measurement effect, denoted [m|M].
If one samples the choice of laboratory procedure Oi from

some probability distribution pi and then forgets the value
of i, we introduce the shorthand notation

∑
i piOi for the

effective procedure so defined. The procedures here could be
preparations or measurement effects.

An ontological model attempts to explain the probabilities
p(m|M,P ) in an operational theory via a set � of ontic
states. An ontic state λ ∈ � specifies all the physical properties
of the system and causally mediates correlations between
the preparation and the measurement. For every laboratory
preparation P , the model specifies a probability distribution
μP (λ), where

∀λ: μP (λ) � 0, (3)∫
�

dλ μP (λ) = 1. (4)

Whenever preparation P is implemented, the ontic state λ is
sampled from an associated probability distribution μP (λ).
Every measurement M generates an outcome m as a prob-
abilistic function of the ontic state according to some fixed
response function ξm|M (λ), where

∀λ,m: ξm|M (λ) � 0, (5)

∀λ:
∑
m

ξm|M (λ) = 1. (6)

For the ontological model to reproduce an operational theory’s
empirical predictions, one requires that

∀m,M,P : p(m|M,P ) =
∫

�

ξm|M (λ)μP (λ) dλ. (7)

Finally, note that an effective laboratory procedure
∑

i piOi

is represented in an ontological model by the correspond-
ing convex mixture of the ontological representations of the
individual operations Oi [see Eq. (7) of Ref. [10] and the
surrounding discussion].

An ontological model which respects the principle of
preparation noncontextuality [2] is one in which two opera-
tionally equivalent preparations are represented by the same
distribution over ontic states; that is,

P1 � P2 implies that

∀λ: μP1 (λ) = μP2 (λ). (8)

An ontological model which respects the principle of measure-
ment noncontextuality [2] is one in which two operationally
equivalent measurement effects are represented by the same
response function; that is,

[m1|M1] � [m2|M2] implies that

∀λ: ξm1|M1 (λ) = ξm2|M2 (λ). (9)

In this paper, the term noncontextuality refers to universal
noncontextuality [2], which posits noncontextuality for all
procedures, including preparations and measurements.

III. PROBLEM SETUP

The scenario we are considering has a set {P1,P2, . . . ,Pg}
of g preparations, a set {M1,M2, . . . ,Ml} of l measurements,
a set of d outcomes {1,2, . . . ,d} for each measurement,
a set of operational equivalences among the preparations,
denoted OEP , and a set of operational equivalences among
the measurements, denoted OEM . There are no restrictions on
any of these sets, beyond the fact that they must be finite, as
they are in any real experiment.4 Furthermore, we have not
presumed that one knows anything about the preparations and
measurements, beyond the fact that they can be performed
repeatedly so as to gather statistics. Without loss of generality,
we treat each measurement as having exactly d outcomes for
some sufficiently large value of d (since any measurement with
d∗ < d outcomes can be redefined to have d outcomes, d − d∗
of which never occur).

The input to our algorithm is a specification of the opera-
tional equivalences OEP and OEM , and the desired output is
a set of inequalities such that a data table {p(m|Mi,Pj )}i,j,m
admits a universally noncontextual model if and only if all the
inequalities are satisfied. Although it is not obvious from
the definition of universal noncontextuality, we will find that
the final inequalities will be linear in the probabilities.

Generically, each of the operational equivalences s ∈ OEP

is of the form ∑
j

αs
Pj

Pj �
∑
j ′

βs
Pj ′ Pj ′ (10)

for some sets of convex weights {αs
Pj

}j and {βs
Pj ′ }j ′ (a set of

convex weights is a list of nonnegative real numbers which sum
to one). Hence, the principle of preparation noncontextuality,
Eq. (8), implies that the same functional relationships must
hold among the ontological representations of the preparations;
in other words,

∀λ:
∑

j

αs
Pj

μPj
(λ) =

∑
j ′

βs
Pj ′ μPj ′ (λ). (11)

4In any real experiment with continuous variable systems, one must
coarse-grain the outcomes to a finite set to obtain nonzero probabilities
of any given event. There is also a nuance concerning experiments
with a finite number of preparations, measurements and outcomes: the
full set of operational equivalences among these might be infinite, but
one can always find a finite generating set of operational equivalences
whose implications for noncontextual data tables are equivalent to the
implications of the full infinite set. See footnote 2.
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Similarly, each of the operational equivalences r ∈ OEM is of
the form ∑

i,m

αr
m|Mi

[m|Mi] �
∑
i ′,m′

βr
m′|Mi′ [m

′|Mi ′] (12)

for some sets of convex weights {αr
m|Mi

}i,m and {βr
m′|Mi′

}i ′,m′ .
Hence, the principle of measurement noncontextuality, Eq. (9),
implies that the same functional relationships must hold among
the ontological representations of the effects; in other words,

∀λ:
∑
i,m

αr
m|Mi

ξm|Mi
(λ) =

∑
i ′,m′

βr
m′|Mi′ ξm′|Mi′ (λ). (13)

The question of whether a data table admits a universally
noncontextual model, then, may be compactly summarized as
follows:

Formulation F1 of the existence of a universally non-
contextual model. A universally noncontextual model for a
data table {p(m|Mi,Pj )}i,j,m exists (with respect to the sets
of operational equivalences OEP and OEM ) if and only if
∃�,∃{μPj

(λ)}j,λ,{ξm|Mi
(λ)}i,m,λ such that

∀λ,i,m: ξm|Mi
(λ) � 0, (14a)

∀λ,i:
∑
m

ξm|Mi
(λ) = 1, (14b)

∀λ,r:
∑
i,m

(
αr

m|Mi
− βr

m|Mi

)
ξm|Mi

(λ) = 0, (14c)

∀λ,j : μPj
(λ) � 0, (14d)

∀j :
∫

λ

μPj
(λ) = 1, (14e)

∀λ,s:
∑

j

(
αs

Pj
− βs

Pj

)
μPj

(λ) = 0, (14f)

∀i,j,m:
∫

�

ξm|Mi
(λ)μPj

(λ) dλ = p(m|Mi,Pj ). (14g)

Equations (14a)–(14g) represent, respectively, positivity
of the response functions Eq. (5); normalization of the re-
sponse functions Eq. (6); the consequences of noncontextuality
implied by the operational equivalences in OEM Eq. (13);
positivity of the distributions associated with the preparations
Eq. (3); normalization of the distributions associated with the
preparations Eq. (4); the consequences of noncontextuality
implied by the operational equivalences in OEP Eq. (11); and
the expression for the probabilities in the data table in terms of
the ontological model Eq. (7).

There are two key obstacles to deriving constraints directly
on {p(m|Mi,Pj )}i,j,m from the implicit constraints imposed
by Eqs. (14a)–(14g). First, the ontic state space � is unknown
and possibly of unbounded cardinality, so that it is not obvious
a priori whether there is an algorithm to solve the problem.
Second, even if the number of ontic states were known to
be finite, so that the problem could in principle be solved by
quantifier elimination methods, the probabilities in Eq. (14g)
are nonlinear in the unknown parameters {ξm|Mi

(λ)}i,m,λ and
{μPj

(λ)}j,λ appearing in the quantifiers; hence, the problem
would be one of nonlinear quantifier elimination, which is
computationally difficult. We overcome both of these problems
by leveraging the convex structure of the space of response

functions: we find the finite set of convexly extremal non-
contextual assignments to the measurements, identify the set
of ontic states with it, and then parametrize the distributions
corresponding to the preparations in terms of their proba-
bility assignments to these ontic states. Thus, the unknown
parameters form a finite set, and furthermore the operational
probabilities are linear in these parameters.

Finally, we perform linear quantifier elimination to obtain
constraints on the operational probabilities alone.

IV. CHARACTERIZING THE
GENERALIZED-NONCONTEXTUAL POLYTOPE

A. Enumerating the convexly extremal noncontextual
measurement assignments

No matter what the form or size of the ontic state
space �, a measurement-noncontextual assignment of prob-
abilities to all d outcomes of all l measurements, for
a particular ontic state λ∗, is an (ld)-component vec-
tor ξ (λ∗) ≡ (ξ1|M1 (λ∗),. . . ,ξd|M1 (λ∗),ξ1|M2 (λ∗),. . . ,ξd|Ml

(λ∗))
subject to the constraints of Eqs. (14a)–(14c). We call such
an (ld)-component vector a noncontextual measurement as-
signment. The set of all such assignments defines a polytope:

Characterization P1 of the noncontextual measurement-
assignment polytope. The (ld)-component vector ξ (λ∗) lies
inside the noncontextual measurement-assignment polytope if
and only if

∀i,m: ξm|Mi
(λ∗) � 0, (15a)

∀i:
∑
m

ξm|Mi
(λ∗) = 1, (15b)

∀r:
∑
i,m

(
αr

m|Mi
− βr

m|Mi

)
ξm|Mi

(λ∗) = 0. (15c)

In what follows, it is critical to characterize this polytope by
its vertices rather than its facets. The vertices are the convexly
extremal noncontextual measurement assignments. (Note that
if there are no operational equivalences among the measure-
ments, then these extremal assignments are deterministic, that
is, all of the elements of the vector have value 0 or 1.) In
general, to find the vertices of a polytope that is given in terms
of its facet inequalities, one must solve the vertex enumeration
problem [43–47]. Many excellent software packages are freely
available for vertex enumeration.5

We introduce the notation κ as a discrete variable
ranging over the vertices, and we indicate the (ex-
plicit) noncontextual measurement assignment of vertex

5Dedicated software for performing vertex enumeration includes
TRAF from PORTA (http://porta.zib.de), SKELETON64F from skeleton
(http://www.uic.unn.ru/zny/skeleton/), and LCDD_GMP from CCDLIB
(https://www.inf.ethz.ch/personal/fukudak/cdd_home), the last no-
tably being readily available on Linux (https://packages.ubuntu.com/
zesty/amd64/libcdd-tools/filelist) and MacOS (https://github.com/
Homebrew/homebrew-science). An especially versatile computa-
tional geometry suite for Linux is POLYMAKE (https://polymake.org/
doku.php/howto/install#distributions).
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κ∗ by the (ld)-component vector ξ̃ (κ∗) ≡ (ξ̃1|M1 (κ∗),. . . ,

ξ̃d|M1 (κ∗),ξ̃1|M2 (κ∗), . . . ,ξ̃d|Ml
(κ∗)).

Now, since any point in a polytope can be written as a con-
vex mixture of the vertices, the noncontextual measurement-
assignment polytope can be defined alternatively but equiva-
lently as the convex hull of its vertices:

Characterization P2 of the noncontextual measurement-
assignment polytope. The (ld)-component vector ξ (λ∗) lies
inside the noncontextual measurement-assignment polytope if
and only if there exist some convex weights {w(κ|λ∗)}k such
that

∀i,m: ξm|Mi
(λ∗) =

∑
κ

w(κ|λ∗)ξ̃m|Mi
(κ), (16)

where κ ranges over the vertices found by performing vertex
enumeration on the linear constraints of characterization P1.

Below, we presuppose that one has indeed characterized the
noncontextual measurement-assignment polytope by finding
its vertices explicitly.

B. Constructing a noncontextual model with known ontic states
and linearly constrained parameters

Suppose one has a universally noncontextual model of the
experiment in the sense of formulation F1, where the ontic
state space need not be of finite cardinality. The results of
the previous subsection imply that it is always possible to
infer from this model another universally noncontextual model
wherein the ontic state space is of finite cardinality, as follows.

By substituting Eq. (16) into Eq. (7), each operational
probability can be written in terms of a finite sum:

p(m|Mi,Pj ) =
∫

�

ξm|Mi
(λ)μPj

(λ) dλ (17)

=
∫

�

[∑
κ

ξ̃m|Mi
(κ)w(κ|λ)

]
μPj

(λ) dλ (18)

=
∑

κ

ξ̃m|Mi
(κ)

[∫
�

w(κ|λ)μPj
(λ) dλ

]
(19)

=
∑

κ

ξ̃m|Mi
(κ)νPj

(κ), (20)

where we have defined

νPj
(κ) ≡

∫
�

w(κ|λ)μPj
(λ) dλ. (21)

Because νPj
(κ∗) for a given vertex κ∗ is a convex combination

of the values of μPj
(λ), we can infer that each νPj

(κ) is a valid
probability distribution, and furthermore that the set {νPj

(κ)}
respects noncontextuality with respect to the operational equiv-
alences in OEP .

Thus, if any noncontextual ontological model exists, then
there must also exist a noncontextual model with an ontic state
space of finite cardinality. The latter model is constructed by
identifying one ontic state with each extremal noncontextual
measurement assignment, and then imagining every prepara-
tion as a probability distribution over those ontic states, as done
in Eq. (21). In other words,

Formulation F2 of the existence of a universally noncontex-
tual model. For a data table {p(m|Mi,Pj )}i,j,m, an ontological
model that is universally noncontextual with respect to the
operational equivalences in OEP and OEM exists if and only
if ∃{νPj

(κ)}j,κ such that

∀κ,j : νPj
(κ) � 0, (22a)

∀j :
∑

κ

νPj
(κ) = 1, (22b)

∀κ,s:
∑

j

(
αs

Pj
− βs

Pj

)
νPj

(κ) = 0, (22c)

∀i,j,m:
∑

κ

ξ̃m|Mi
(κ)νPj

(κ) = p(m|Mi,Pj ), (22d)

where κ ranges over the discrete set of vertices of the polytope
defined by Eqs. (15a)–(15c) or (16).

In this formulation, each operational probability
p(m|Mi,Pj ) is given as a linear function of a finite set
of unknown parameters. This is because the only unknown
parameters on the left-hand side of Eq. (22d) are {νPj

(κ)}κ ,
while the {ξ̃m|Mi

(κ)}κ are specified numerically—they are the
solution of the vertex enumeration problem described in the
previous section. Achieving linearity in all the constraints is a
critical intermediate step towards finding a final quantifier-free
formulation, as we do in the next section, and is critical for
the numerical methods we introduce in Sec. V.

C. The inequalities formulation of the
generalized-noncontextual polytope

To obtain constraints that refer only to operational prob-
abilities, we eliminate the unobserved {νPj

(κ)}j,κ from the
system of equations (22a)–(22d), obtaining a system of linear
inequalities over the {p(m|Mi,Pj )}i,j,m alone. The linearity
of the final inequalities follows from the linearity of the
inequalities and equalities in Eqs. (22a)–(22d). This establishes
that the space of noncontextual data tables defines a polytope.

The standard method for solving this problem of lin-
ear quantifier elimination is the Chernikov-refined Fourier-
Motzkin algorithm [48–52], which is implemented in a variety
of software packages.6

6Dedicated software for eliminating variables from a set
of linear inequalities via the Fourier-Motzkin algorithm in-
cludes FMEL from PORTA (http://porta.zib.de), FME from qskele-
ton (http://sbastrakov.github.io/qskeleton/), and FOURIER from lrs
(http://cgm.cs.mcgill.ca/avis/C/lrslib/USERGUIDE.html). From a
geometric perspective, each variable in a linear system is an axis
of some high-dimensional coordinate system; consequently, elim-
inating a variable is equivalent to projecting the polytope onto a
hyperplane orthogonal to that particular axis. As such, polytope
projection is the titular topic of most of the relevant literature on linear
quantifier elimination [48–52]. Furthermore, polytope projection and
vertex enumeration are intimately related: One can define the vertex
enumeration problem as a task of linear quantifier elimination, and
therefore any polytope projection algorithm can be used to perform
vertex enumeration, albeit less efficiently than specialized algorithms
[43–47]. Conversely, a brute-force technique for polytope projection
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Denoting the quantifier-free list of linear facet in-
equalities of the generalized-noncontextual polytope by
{h1,h2, . . . ,hn} ≡ H (for “half spaces”) and letting the coeffi-
cients of a specific facet inequality h be given by γ h

i,j,m while
γ h

0 indicates the constant term in that inequality, we find that:
Formulation F3 of the existence of a universally noncontex-

tual model. For a data table {p(m|Mi,Pj )}i,j,m, an ontological
model that is universally noncontextual with respect to the
operational equivalences in OEP and OEM exists if and only
if

∀h ∈ H :
∑
i,j,m

γ h
i,j,mp(m|Mi,Pj ) + γ h

0 � 0, (23)

where H is the set of n inequalities resulting from eliminating
all free parameters {νPj

(κ)}j,κ in the formulation of Eqs. (22a)–
(22d).

V. DOES A GIVEN NUMERICAL DATA TABLE ADMIT
OF A NONCONTEXTUAL MODEL?

To date, experimental tests of generalized noncontextuality
[7,13] have targeted the specific preparations, measurements,
and operational equivalences of some particular quantum
no-go theorem [7,8,13,14,25,26]. By abstracting away the
quantum-specific elements of the proof and describing the
experiment in entirely operational terms, one can identify
operational features of a set of preparations and measurements,
such that any theory exhibiting those features fails to admit of
a noncontextual ontological model. To test these operational
features, previous experiments have used postprocessed data
to enforce specific operational equivalences appearing in the
quantum no-go argument. (See the “secondary procedures”
technique described in Ref. [7].)

We here introduce a much more general analysis tech-
nique, in which one need not target any specific preparations,
measurements, and operational equivalences. Rather, arbitrary
numerical data tables can be directly analyzed. With respect
to whatever operational equivalences happen to be manifest in
the data (see footnote 2), one can use the methods we present
below to efficiently test whether the numerical data table
admits of a noncontextual model or not. Because answering
this yes-no question does not require deriving the full set of
noncontextuality inequalities for the scenario under study, it is
computationally very efficient.7 Furthermore, analyzing data
in this manner always allows for larger inequality violations,

is to first enumerate the polytope’s vertices, manually discard the to-
be-eliminated coordinates from each each vertex, and then reconvert
back to inequalities using a convex hull algorithm. This roundabout
method of performing polytope projection is generally suboptimal but
can be used in practice.

7An analagous pair of problems with widely differing computational
difficulties has long been appreciated it the study of Bell nonlocality.
Obtaining all the Bell inequalities which characterize some nonlo-
cality scenario can be quite difficult, but ascertaining if a particular
correlation admits a local model or not can be resolved with the
application of a single linear program [53,54]. The same (efficient)
linear program can be used to return a single Bell inequality which
certifies the nonlocality of the given correlation [55].

since the postprocessing required in the secondary procedures
technique of Ref. [7] always introduces additional noise.

To test whether a numerically specified data table
{p∗(m|Mi,Pj )}i,j,m admits of a noncontextual model, we
leverage the formulation in Eqs. (22a)–(22d). All the equality
constraints of Eqs. (22b), (22c), and (22d) can be encoded in
a single matrix equality constraint,

M · x = b∗, (24)

where M contains the parameters αs
Pj

− βs
Pj

and the

quantities {ξ̃m|Mi
(κ)}i,m,κ , x contains the unknown pa-

rameters {νPj
(κ)}j,κ , and b∗ contains the probabilities

{p∗(m|Mi,Pj )}i,j,m, as well as zeros and ones corresponding
to the right-hand sides of Eqs. (22b) and (22c). Equation (22a)
becomes simply x � 0. Hence, for a numerically specified
{p∗(m|Mi,Pj )}i,j,m, the formulation of Eqs. (22a)–(22d) de-
fines a linear program (LP).8

The primal LP is the search for a solution to a linear system
of equations, namely:

∃ x such that

M · x = b∗,

and x � 0. (25)

Because no objective function to maximize or minimize is
specified in the LP defined by Eq. (25), this means the LP is just
checking for the existence of an x which satisfies the constraints
and hence guarantees the existence of a noncontextual model,
via Eqs. (22a)–(22d).

Whenever the primal LP is infeasible—that is, no solution
can be found—one can obtain a certificate of primal infeasi-
bility, also known as the Farkas dual [56,57]. The certificate of
primal infeasibility is obtained by solving the complementary9

linear system

min
y

y · b∗ such that

1 � y · M � 0. (26)

Farkas’s lemma states that either the primal LP is feasible, or
else the certificate y resulting from Eq. (26) satisfies the strict
inequality y · b∗ < 0.

Farkas’s lemma is easily proven: Plainly, if there exists such
a y (i.e., not only y · M � 0 but also y · b∗ < 0), then there
cannot exist an x which satisfies the primal LP of Eq. (25),

8Linear programming is used across many fields; specialized
LP software packages include MOSEK (https://www.mosek.com/
resources/downloads), GUROBI (http://www.gurobi.com/products/
gurobi-optimizer), and CPLEX (https://www-01.ibm.com/software/
commerce/optimization/linear-programming/).

9The complementary LP defined in Eq. (26) is meant to explain
how infeasibility certificates are generated in practice. Note, however,
that the Farkas dual of an LP is not the same as the LP’s dual
formulation, although the concepts are related. See Refs. [56,57], as
well as Theorem 1 and Supplemental Materials of Ref. [39]).
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since the inequalities

x � 0, (27a)

y · M � 0, (27b)

and y · b∗ = y · M · x < 0 (27c)

cannot all be satisfied simultaneously.
Of relevance to this work is that we may interpret the certifi-

cate y resulting from Eq. (26) as a noncontextuality inequality,
since Farkas’s lemma ensures that y · b � 0 for every b for
which the primal LP is feasible. The extent to which y · b∗ is
negative is identically the amount by which the corresponding
noncontextuality inequality is violated by the (contextual)
{p∗(m|Mi,Pj )}i,j,m. When interpreting certificates of primal
infeasibility as noncontextuality inequalities, one deduces the
constant term from those elements of b∗ which do not depend
on {p∗(m|Mi,Pj )}i,j,m. In practice, therefore, the constant term
is the sum of those elements in y which correspond to the
normalization conditions of Eq. (22b).

This technique allows an experimenter to optimally certify
the contextuality of a numerical data table {p∗(m|Mi,Pj )}i,j,m
without first performing the computationally expensive task of
finding all the noncontextuality inequalities, i.e., without doing
any work to transform formulation F2 into formulation F3. In-
stead, by seeking a certificate of primal infeasibility—a single
query to a linear program—one obtains the noncontextuality
inequality which best witnesses the contextuality of the data
table.

VI. APPLICATIONS

A. Generalized-noncontextual polytope in the simplest
nontrivial case

As argued in Ref. [29], the simplest possible scenario in
which the principle of noncontextuality implies nontrivial
constraints on operational probabilities involves four prepara-
tions and two binary-outcome measurements.10 We imagine
for simplicity that the preparations satisfy the operational
equivalence

1
2P1 + 1

2P2 � 1
2P3 + 1

2P4 (28)

and that there are no operational equivalences among the
measurements.

We denote the operational probability p(0|Mi,Pj ) by
pij . [By normalization, probability p(1|Mi,Pj ) is then 1 −
pij .] Vertex enumeration finds four vertices for the non-
contextual measurement-assignment polytope, corresponding
to the four deterministic assignments (ξ0|M1 (λ),ξ0|M2 (λ)) ∈
{(0,0),(0,1),(1,0),(1,1)}. Each of the four preparations defines
a probability distribution over these four ontic states, so there
are 16 free parameters to be eliminated. Linear quantifier
elimination finds the polytope of data tables consistent with the
principle of noncontextuality and the operational equivalence

10Reference [29] also assumes that these two measurements are
tomographically complete, but we do not make this assumption here.
See Refs. [7,29] for details on the issue of tomographic completeness.

of Eq. (28) to be

∀i,j : 0 � pij � 1, (29a)

p12 + p22 − p23 − p14 � 1, (29b)

p12 + p22 − p13 − p24 � 1, (29c)

p22 + p13 − p12 − p24 � 1, (29d)

p12 + p23 − p22 − p14 � 1, (29e)

p22 + p14 − p12 − p23 � 1, (29f)

p23 + p14 − p21 − p22 � 1, (29g)

p12 + p24 − p22 − p13 � 1, (29h)

p13 + p24 − p12 − p22 � 1. (29i)

Note that the two probabilities which do not appear in
Eqs. (29b)–(29i), p11 and p21, are fixed by the operational
equivalence relation, Eq. (28):

p11 = p13 + p14 − p12, (30a)

p21 = p23 + p24 − p22. (30b)

Inequalities (29) and Eqs. (30) tightly define the
generalized-noncontextual polytope for this scenario. Further-
more, all of Ineqs. (29) are equivalent under relabeling. That is,
any one of the inequalities can generate all eight by applying
relabelings which respect the operational equivalences: M1 ↔
M2, P1 ↔ P2, and (P1,P2) ↔ (P3,P4). Similarly, each of
Eqs. (30) is equivalent to the other under the same relabelings.

As an illustration of how a noncontextuality inequality can
be derived from a numerically specified (contextual) data table,
consider the following example:

p11 = 1, p12 = 0, p13 = 1, p14 = 0,

p21 = 1, p22 = 0, p23 = 0, p24 = 1, (31)

which respects the operational equivalence relation of
Eq. (28), but maximally violates Ineq. (29i), since it has
p13 + p24 − p12 − p22 = 2 
� 1. Indeed, when we construct
the primal linear program per Eq. (25), we find it to be
infeasible, and we find that the certificate of infeasibility
returned by our numerical solver corresponds to Ineq. (29i).

1. Relevance to parity-oblivious multiplexing

In the communication task of “parity-oblivious multiplex-
ing,” an agent Alice wishes to communicate two bits to an
agent Bob, in such a way that Bob can extract information
about either of the two bits but cannot extract any information
about their parity [13]. This task involves four preparations
(associated to the four possibilities for the values of the
two bits) and two measurements (corresponding to which
bit Bob wishes to learn about), and the parity-obliviousness
condition implies an operational equivalence relation among
the preparations, namely, that of Eq. (28). Consequently, this
task fits precisely the operational scenario considered in this
section.

In Ref. [13], it was shown that contextuality provides
an advantage for the task of parity-oblivious multiplexing:
the maximum probability of succeeding at this task in a
noncontextual model is 3/4, so that any higher probability
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of success requires contextuality. In a quantum world, for
instance, one can succeed with probability 1

4 (2 + √
2) ≈ 0.85.

If one identifies our preparations P1, P2, P3, and P4 with
preparations P00, P11, P01, and P10, respectively, of Ref. [13],
then the inequality in Ref. [13] is our facet Ineq. (29i).
This is the same inequality which witnesses the failure of
noncontextuality for the data table defined in Eq. (31), which
is to be expected, as this particular data table describes a set of
probabilities which achieve the maximum logically possible
probability of success at parity-oblivious multiplexing.

Additionally, one could apply our algorithm to generalized
types of parity-oblivious multiplexing. For instance, Ref. [13]
derived a bound on the probability of success in a noncon-
textual model of n-bit parity-oblivious multiplexing, in which
Alice wishes to communicate n bits to Bob under the constraint
that Bob can learn no information about the parity between any
two of the bits. These bounds are tight, and can be saturated
by a naïve classical strategy. However, one could further use
our techniques to learn whether or not they constitute facet
inequalities of the generalized-noncontextual polytope, as well
as to find the full generalized-noncontextual polytope.

For the still more general case where the different n-
bit strings which Alice wishes to send do not have equal
a priori probabilities, our method can also find the generalized-
noncontextual polytope, from which one can immediately infer
the maximum success probability for the task.

B. Generalized-noncontextual polytopes for scenarios relevant
to state discrimination

One way in which one can generalize the simplest opera-
tional scenario described above is to increase the number of
binary-outcome measurements from two to three while still
not assuming any operational equivalences among them, so
that the only operational equivalence relation remains the one
between the preparations [Eq. (28)]. This operational scenario
can also be related to an information-theoretic task, namely,
the task of minimum error state discrimination, as noted by
two of the present authors in Ref. [58].

In the quantum version of this task, an agent wishes to guess
which of two pure quantum states a system was prepared in
given a single sample of the system, where the identity of the
two quantum states is known. Quantum theory prescribes a
particular trade-off relation between the probability of success
and the nonorthogonality of the two quantum states, and
Ref. [58] showed that this trade-off contradicts the principle of
generalized noncontextuality. The ideal quantum realization
of minimum error state discrimination fits the operational
scenario described above: the two pure quantum states define
two of the preparation procedures, while their orthogonal
complements in the two-dimensional (2D) subspace that they
span define the other two. The fact that the equal mixture of
any two orthogonal pure states in a 2D subspace is independent
of the basis implies the operational equivalence of Eq. (28).
Finally, the degree of nonorthogonality has an operational in-
terpretation as the probability of one state passing a test for the
other (termed the confusability). Therefore, the measurements
of each of the two bases, together with the discriminating
measurement, provide the three binary-outcome measurements
in the scenario.

The facet noncontextuality inequalities for this operational
scenario are given in Appendix D of Ref. [58],11 and these
are seen to imply a nontrivial upper bound on the probability
of successful discrimination for a given confusability. Hence,
contextuality provides an advantage for minimum error state
discrimination. The quantum probability of successful discrim-
ination for a given confusability is higher than that allowed in
a noncontextual model and hence partakes in this contextual
advantage.

Using our technique, one can also immediately derive the
generalized-noncontextual polytope for more general mini-
mum error state discrimination scenarios, such as those in
which the quantum states (preparations) being discriminated
are sampled with unequal probabilities, or in which there are
more than two quantum states (preparations).

Because state discrimination in various forms is a primitive
for many other quantum information-processing tasks, such
analyses should be valuable for identifying the circumstances
in which contextuality constitutes a resource.

C. Generalized-noncontextual polytopes for a scenario
involving both preparation and measurement noncontextuality

So far, our examples have involved operational equivalences
only among preparations. In this section, we revisit the scenario
considered in the recent experimental test of noncontextuality
in Ref. [7], which involves operational equivalences among the
preparations and also among the measurements. Specifically,
we imagine a set of six preparations and three binary-outcome
measurements, where the preparations satisfy the operational
equivalences

1
2P1 + 1

2P2 � 1
2P3 + 1

2P4 � 1
2P5 + 1

2P6, (32)

and the measurement effects satisfy the operational equiva-
lence:

1
3 [0|M1] + 1

3 [0|M2] + 1
3 [0|M3]

� 1
3 [1|M1] + 1

3 [1|M2] + 1
3 [1|M3]. (33)

(See Ref. [7] for a discussion of the significance of these
operational equivalences.)

We denote the operational probability p(0|Mi,Pj ) by
pij and p(1|Mi,Pj ) by pij . Vertex enumeration finds six
vertices for the noncontextual measurement-assignment
polytope, corresponding to the four indeterministic
assignments defined by (ξ0|M1 (λ),ξ0|M2 (λ),ξ0|M3 (λ)) ∈
{(0,12 ,1),( 1

2 ,0,1),(1,0,12 ),(1,12 ,0),(0,1,12 ),( 1
2 ,1,0)}. Each of the

six preparations defines a probability distribution over these
six ontic states, so there are 36 free parameters to be eliminated.
Linear quantifier elimination finds the polytope of data tables
consistent with the principle of noncontextuality and with the
operational equivalences of Eqs. (32) and (33). We find that
this polytope has 1596 facet inequalities.

Plainly, 1596 inequalities is far too many to list explicitly.
However, by considering the physical symmetries of this

11Actually, the polytope given therein is the intersection of the
generalized-noncontextual polytope with two additional inequalities,
which are implied by making sensible labeling choices.
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scenario, we can significantly simplify our description of
these facets. Since the scenario is invariant under various
relabelings of measurements [Eqs. (34a)–(34b)], outcomes
[Eq. (34c)], and preparations [Eqs. (34d)–(34f)]—i.e., those
relabelings which respect the operational equivalences—we
know a priori that the generalized-noncontextual polytope will
possess significant internal symmetry. The symmetry group
which leaves our polytope invariant is generated by the six
relabelings:

M1 ↔ M2, (34a)

M1 ↔ M3, (34b)

([0|M1],[0|M2],[0|M3]) ↔ ([1|M1],[1|M2],1|M3]), (34c)

P1 ↔ P2, (34d)

(P1,P2) ↔ (P3,P4), (34e)

(P1,P2) ↔ (P5,P6). (34f)

We use parentheses to indicate a coherent relabeling: e.g., the
outcomes of three measurements can be flipped per Eq. (34c),
but only if all three measurements have their outcomes rela-
beled simultaneously. This is in contrast to an exchange like
P1 ↔ P2 per Eq. (34d), which can be performed in isolation.
The total order of this symmetry group is 576.

Under this group, we find that the 1596 facet inequalities
admit classification into seven symmetry classes. We therefore
explicitly list a single representative inequality from each class:

Inequality Upper Orbit
terms bound size

p11 � 1 35

p11 +p23 +p35 � 2.5 48

p11 +p22 +p35 � 2.5 72

p11 −p14−2 p15−2 p22+2 p23+2 p35 � 3 576

2 p11 −p22+2 p23 � 3 144

p11 −p15 +p22 +p23+2 p35 � 4 576

p11 −p15+2 p22 +2 p35 � 4 144

(35)

The number of inequalities in each symmetry class is given by
the “Orbit size” in Ineqs. (35). The generalized-noncontextual
polytope for this scenario is defined by the 1596 facet in-
equalities, as well as by equalities which hold for any data
table (contextual or noncontextual) admitting the operational
equivalence relations per Eqs. (32) and (33). These equalities
fall into three distinct symmetry classes, represented by

p11 + p14 = p12 + p15, (36a)

p11 + p21 + p31 = 3/2, (36b)

p11 + p11 = 1. (36c)

The first two equalities are enforced by the operational equiv-
alence relations, Eqs. (32) and (33), respectively, while the
third equality is guaranteed by normalization of measurements,
Eq. (6).

To test if a given data table lies inside this generalized-
noncontextual polytope, one could reconstruct all 1596 in-
equalities from the seven given in Ineqs. (35), but it is likely
much easier to instead artificially generate equivalent-up-to-
symmetries data tables from one’s actual data table, and then
to test each of those against the seven canonical inequalities.12

One only needs to consider at most 576 data table variants
(per the group order), although in practice there will be fewer
variants to consider if the data table one wishes to investigate
possesses any internal symmetry of its own.

Noting that13

p11 + p23 + p35 = p12 + p24 + p36, (37)

the single inequality derived (and experimentally violated) in
Eq. (6) of Ref. [7] is recognized as a facet of the generalized-
noncontextual polytope; namely, it is precisely the second
inequality in Ineqs. (35):

2(p11 + p23 + p35) � 5. (38)

One can also derive Ineq. (38) directly (and efficiently!) by
using the linear program presented in Sec. V. Namely, it is
the inequality corresponding to the certificate of infeasibility
returned by our numerical solver, when we construct the
primal linear program using Eq. (25) together with the ideal
(contextual) quantum data table.

VII. CONNECTIONS TO BELL POLYTOPES AND TO
POLYTOPES OF GENERAL PROBABILISTIC MODELS IN

KOCHEN-SPECKER CONTEXTUALITY SCENARIOS

The central object of interest in prepare-and-measure con-
textuality scenarios are data tables, in particular the polytope
of noncontextual data tables discussed herein. Along the way
to finding this polytope, we have found it useful to first
compute the noncontextual measurement-assignment poly-
tope. It turns out that any Bell polytope is directly connected
to our generalized-noncontextual polytope for a correspond-
ing prepare-and-measure scenario, and that the polytope of
generalized probabilistic models of Ref. [59] (and instances
thereof, such as the polytope of ‘no-disturbance correlations’
defined in Ref. [60]) are special cases of our noncontextual
measurement-assignment polytope.

In the literature on Bell inequalities, the set of allowed
classical correlations is known as the Bell polytope (or equiv-
alently the local polytope) [61,62]. As discussed in Ref. [27],
any Bell scenario can be analyzed as a prepare-and-measure
contextuality experiment. In brief, one can always reimagine
the measurements of one of the parties in the Bell scenario as
a remote preparation of the distant party’s state (via quantum
steering). Under this mapping, the no-signaling condition in
the Bell scenario implies an operational equivalence in the
contextuality scenario: that the average state of the steered
system is the same for any choice of steering measurement.

12The first inequality in Ineqs. (35) is inviolable, even by contextual
data tables, so technically one only needs to test against the remaining
six inequalities.

13Equation (37) is a nontrivial but readily verifiable consequence of
the inviolable equalities in Eqs. (36).
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Further, under this mapping the assumption of local causality
implies the assumption of preparation noncontextuality for
this operational equivalence relation. Then one finds that our
generalized-noncontextual polytope is directly connected to
the Bell polytope: specifically, the latter is generated from the
former by multiplying each prepare-and-measure probability
by the probability of steering to the corresponding remote
preparation.

For example, our contextuality scenario in Sec. VI A is
isomorphic to the Clauser-Horne-Shimony-Holt Bell scenario
[63] (with two parties, each with two binary outcome measure-
ments), as discussed in Ref. [13]. Additionally, our contextual-
ity scenario in Sec. VI B is isomorphic to a Bell scenario (with
two parties, one with two binary measurements and another
with two ternary measurements), as discussed in Ref. [58].

In this way, all Bell scenarios are special cases of our
framework. However, our framework is much more general. As
stated in Ref. [58], the only prepare-and-measure contextuality
scenarios which are equivalent to a related Bell scenario are
those which do not leverage any operational equivalences
among the measurements, and which leverage only those
operational equivalences among the preparations which arise
from the various ensemble decompositions of a single mixed
preparation.

There is also a connection between our work and that
of Ref. [59], which gives an operational framework for
studying Kochen-Specker contextuality scenarios. Reference
[59] considers an arbitrary set of measurements, some of
which have one or more measurement effects in common,
and characterizes various classes of probability assignments
to those measurement effects (i.e., various classes of what we
have here called “measurement assignments”). They term these
classes of assignments “classical,” “quantum,” ‘probabilistic,”
etc. Note, however, that the class of assignments termed
“classical” in Ref. [59] does not correspond to the noncontex-
tual measurement-assignment polytope in our approach, since
Ref. [59] assumes outcome determinism, while in our approach
indeterministic probability assignments are allowed. Rather, it
is the polytope of general probabilistic models in Ref. [59] that
corresponds to our noncontextual measurement-assignment
polytope because the definition of a general probabilistic
model for the scenarios considered in Ref. [59] is precisely
our definition of a measurement-noncontextual assignment
(which, we recall, can be indeterministic).

The two polytopes coincide exactly in every scenario to
which the framework of Ref. [59] applies, since in that case
the operational equivalences among the measurements are

precisely those given by the occurrences of some effect in
more than one measurement. However, our noncontextual
measurement-assignment polytope is also defined for scenar-
ios with other types of operational equivalences among the
measurements, where the framework of Ref. [59] does not
apply.

VIII. CONCLUSIONS

For arbitrary prepare-and-measure experiments, we have
presented a method for finding necessary and sufficient condi-
tions for a data table to admit of a noncontextual model, subject
to any fixed sets of operational equivalences among prepara-
tions and among measurements. We have also presented an
efficient method for determining whether a numerical data
table is noncontextual, in this same setting.

We have provided worked examples of each of these meth-
ods, in the process deriving necessary and sufficient conditions
for operational scenarios in which only necessary conditions
were previously known. Equivalently, we have derived the full
generalized-noncontextual polytopes for scenarios in which
only a single facet inequality was previously known. The
operational scenario studied in Sec. VI A is of relevance to
parity-oblivious multiplexing [13], while the operational sce-
nario studied in Sec. VI C originates in a recent experimental
test of contextuality [7].

A precursor to the current work can be found in Ref. [37].
A distinct method, introduced in Ref. [25], also allows one
to derive all of the facet inequalities for many operational
scenarios. However, the method therein is not fully general, as it
applies only to scenarios in which one special equivalence class
of preparations is singled out (see Sec. III B of Ref. [25] for
details). It would be interesting to compare the two approaches,
e.g., in terms of computational efficiency, and to modify the
approach in Ref. [25] to make it as general as the approach
described in this article.
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