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The existence of incompatibility is one of the most fundamental features of quantum theory and can be
found at the core of many of the theory’s distinguishing features, such as Bell inequality violations and the
no-broadcasting theorem. A scheme for obtaining new observables from existing ones via classical operations,
the so-called simulation of observables, has led to an extension of the notion of compatibility for measurements.
We consider the simulation of observables within the operational framework of general probabilistic theories
and introduce the concept of simulation irreducibility. While a simulation irreducible observable can only be
simulated by itself, we show that any observable can be simulated by simulation irreducible observables, which
in the quantum case correspond to extreme rank-1 positive-operator-valued measures. We also consider cases
where the set of simulators is restricted in one of two ways: in terms of either the number of simulating observables
or their number of outcomes. The former is seen to be closely connected to compatibility and k compatibility,
whereas the latter leads to a partial characterization for dichotomic observables. In addition to the quantum case,
we further demonstrate these concepts in state spaces described by regular polygons.

DOI: 10.1103/PhysRevA.97.062102

I. INTRODUCTION

Recently, the concept of measurement simulability of
quantum observables (modeled as positive-operator-valued
measures) has been introduced and studied [1,2]. It can be seen
as a natural generalization of the concept of compatibility, and
it allows one to study how one can implement a set of target
observables from some chosen set of observables. This kind of
concept naturally arises in the studies of local hidden variable
models [3] as well as proposals to test fundamentally binary
or n-ary theories [4,5].

The framework of general probabilistic theories (GPTs) is
natural platform to investigate foundational aspects of quantum
theory. Features of quantum theory, such as incompatibility
and nonlocality, can be explored in a wider class of theories,
allowing one to compare theories to one another and quantify
how restricted these features are in different theories. GPTs
are based on operational notions of states and measurements so
that, for example, an observable is any affine function that maps
states into probability distributions. This is the exact analog
of positive-operator-valued measures (POVMs) in the case of
quantum theory. The incompatibility of observables in GPTs
has been recently studied in several works [6–11]. The purpose
of the present paper is to formulate measurement simulability
in the framework of GPTs and to further investigate the
properties of this concept.

The difficulty or complexity of simulating a given collection
of observables can be quantified by studying two types of lim-
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itations on the set of simulator observables. First, we can look
for the minimal set of simulator observables that can produce
the target observables. From this point of view, a target set is
compatible if and only if it can be obtained with a single simula-
tor observable. Another quantification is obtained by allowing
an arbitrary number of simulator observables but restricting
them to have fewer outcomes than some threshold value.

We will demonstrate these two quantifications of simulabil-
ity by comparing quantum theory to polygon theories [12]. It is
interesting to recall that the so-called box world (i.e., square bit
state space) [13,14] possesses more incompatibility than any
finite-dimensional quantum state space [6,15] if incompatibil-
ity is quantified as the global robustness under noise. However,
in both quantifications of simulability, the box world is closest
to classical theory among all nonclassical theories.

The key concept in our investigation is simulation irre-
ducibility. An observable has this property if it cannot be ob-
tained from some essentially different simulator observables.
We present a general characterization of simulation irreducible
observables and explicitly give them in several theories. In
particular, we show that the set of all observables on state
spaces described by regular polygons can be simulated by a fi-
nite number of trichotomic simulation irreducible observables
with the only exception being the square bit state space, where
simulation irreducible observables are dichotomic.

II. OBSERVABLES, POSTPROCESSING, AND MIXING

A. States, effects, and observables

We first recall some of the basic concepts of general proba-
bilistic theories. The state space S is a compact convex subset
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of a finite-dimensional real vector space V . The convexity
arises from the probabilistic mixing of states so that for
p ∈ [0,1] and states s1,s2 ∈ S the convex sum ps1 + (1 − p)s2

represents a state where we prepare the state s1 with probability
p and state s2 with probability 1 − p.

An effect e is given as a function e : S → [0,1] on states
such that

e(ps1 + (1 − p)s2) = pe(s1) + (1 − p)e(s2). (1)

Then e(s) ∈ [0,1] is interpreted as the probability that the
measurement event that the effect e represents happens when
the system is in the state s ∈ S . A functional f : S → R with
property (1) is called affine on S and we denote by F (S) the
set of affine functionals on S . We can define a partial order in
F (S) by denoting e � f for e,f ∈ F (S) if e(s) � f (s) for all
s ∈ S . The effect space can then be expressed as

E(S) = {e ∈ F (S) | o � e � u}, (2)

where o and u are the zero and unit effects respectively, i.e.,
o(s) = 0 and u(s) = 1 for all s ∈ S .

Sometimes it is useful consider the state space S as being
embedded in an ordered vector spaceA such thatS is a compact
base for a generating positive coneA+ = {x ∈ A | x � 0} [16].
Hence, the state space can be expressed as

S = {x ∈ A | x � 0, u(x) = 1}, (3)

i.e., as an intersection of the positive cone A+ and an affine
hyperplane determined by (the extension of) the unit effect u on
A. Furthermore, if dim(aff(S)) = d, where aff(S) denotes the
affine span of S , then we can take dim(A) = d + 1. It follows
that, by adopting this approach, the effects can be expressed as
linear functionals on A so that

E(S) = {e ∈ A∗ | o � e � u}, (4)

where the partial order in the dual space A∗ is the dual order
defined by the positive dual cone A∗

+ = {f ∈ A∗ | f (x) �
0 for all x ∈ A+} of A+, and also dim(A∗) = d + 1. In fact,
E(S) is then just the intersection of the positive dual cone A∗

+
and the set u − A∗

+.
A nonzero effect e is indecomposable if a decomposition

e = e1 + e2 is possible only when e1 and e2 are scalar multiples
of e; otherwise they are decomposable. It has been shown in
Ref. [17] that in any GPT there exist indecomposable effects
and, further, any effect can be written as a finite sum of inde-
composable effects. It is easy to see that the indecomposable
effects are exactly the ones laying on the extreme rays of the
cone A∗

+.
LetS be a state space. An observable A with a finite number

of outcomes is a map A : x �→ Ax from a finite (outcome)
set X to E(S) with the normalization

∑
x∈X Ax(s) = 1 for all

s ∈ S . The normalization condition, which is equivalent to the
requirement that

∑
x∈X Ax = u, guarantees that we detect with

certainty one of the events corresponding to one of the effects
Ax of the observable. We denote the set of all observables with
outcome set X byOX and the set of all observables with a finite
number of outcomes on S by O.

An observable is called indecomposable if all of its nonzero
effects are indecomposable; otherwise it is decomposable.
From the decomposition of the unit effect into indecompos-

able effects, it follows that indecomposable observables do
exist [17].

Example 1 (quantum theory). In finite-dimensional quan-
tum theory, the state space Sq is given by the set of positive
trace-1 self-adjoint operators on a finite-dimensional Hilbert
space H:

Sq = S(H) = {� ∈ Ls(H) | � � O, tr[�] = 1}, (5)

where Ls(H) is the set of self-adjoint operators on H and
O is the zero operator. The set of positive operators forms
a generating positive cone in the vector space of self-adjoint
operators Ls(H) with S(H) as its compact base. The effect
space is given by the set of operators

E(H) = {E ∈ Ls(H) | O � E � 1}, (6)

where 1 is the identity operator, so that the one-to-one corre-
spondence with the effect functionals in E(Sq) can be given
by the equation e(�) = tr[�E]. An observable A with a finite
outcome set X then corresponds to a POVM A : x �→ A(x)
such that

∑
x∈X A(x) = 1. An effect E is indecomposable if

and only if E has rank equal to 1, or equivalently, E is a scalar
multiple of a one-dimensional projection [17].

B. Postprocessing of observables

A classical channel between outcome spaces X and Y is
given by a (right) stochastic linear map ν : X → Y , i.e., map
with matrix elements νxy , x ∈ X, y ∈ Y with 0 � νxy � 1 and∑

x∈X νxy = 1. The matrix element νxy gives the transition
probability that outcome x is mapped into outcome y. In
addition to being used as a transformation between outcome
spaces, classical channels are most commonly used to describe
noise.

For an observable A with an outcome set X and a classical
channel ν : X → Y between X and some other outcome space
Y , we denote by ν ◦ A a new observable defined as

(ν ◦ A)y =
∑
x∈X

νxyAx (7)

for all outcomes y ∈ Y . Physically, the observable ν ◦ A can be
implemented by first measuring A and then using the classical
channel ν on each measurement outcome.

For two observables A and B, we say that B is a postprocess-
ing of A, denoted by A → B, if there exists a classical channel
ν such that B = ν ◦ A. In the context of quantum observables,
this relation was introduced in Ref. [18]. We follow the
terminology of Ref. [19] and say that an observable A is
postprocessing clean if, for any observable B, the relation B →
A implies that A → B. We have the following characterization.

Proposition 1. An observable is postprocessing clean if and
only if it is indecomposable.

Proof. Let A be a postprocessing clean observable with an
outcome set �. In Ref. [17], it was shown that each nonzero
effect Ax has a decomposition Ax =∑rx

i=1 a
(x)
i into rx < ∞

indecomposable effects a
(x)
i . We denote r = maxx∈� rx and

define an observable B with an outcome set {1, . . . ,r} × � by
B(i,x) = a

(x)
i if i � rx and B(i,x) = o otherwise. Now we see
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that

Ax =
rx∑

i=1

a
(x)
i =

r∑
i=1

B(i,x) =
∑
i,x ′

ν(i,x ′)xB(i,x ′),

where we have defined the postprocessing ν : {1, . . . ,r} ×
� → � by ν(i,x ′)x = δx ′,x for all i = 1, . . . ,r and x,x ′ ∈ �.
Thus, B → A. Since A is postprocessing clean, it follows that
also A → B; hence there exists a postprocessing μ : � →
{1, . . . ,r} × � such that

B(i,x) =
∑
y∈�

μy(i,x)Ay

for all i = 1, . . . ,r and x ∈ �. Each nonzero effect B(i,x) =
a

(x)
i is indecomposable, and so for all x,y ∈ � and i =

1, . . . ,rx there exists a real number pi
xy > 0 such that

μy(i,x)Ay = pi
xya

(x)
i . From the normalization

∑
i,x μy(i,x) = 1

for all y ∈ � it follows that for each y ∈ � (such that Ay 	= o)
there exists an element μy(iy ,xy ) 	= 0 for some iy = 1, . . . ,rxy

and xy ∈ �. Hence, for each y ∈ � (such that Ay 	= o),
there exists an outcome (iy,xy) for the observable B with an

indecomposable effect B(iy ,xy ) = a
(xy )
iy

such that

Ay = p
iy
xyy

μy(iy ,xy )
a

(xy )
iy

.

Thus, each nonzero effect of A is indecomposable.
Let then A be an indecomposable observable with an

outcome set �. We consider an observable C with an outcome
set �′ such that C → A, i.e., there exists a postprocessing η :
�′ → � such that Ax =∑z∈�′ ηzxCz for all x ∈ �. Without
loss of generality, observable C has only nonzero outcomes.
Thus, each effect Cz has a decomposition Cz =∑rz

j=1 c
(z)
j into

rz indecomposable effects c
(z)
j , and

Ax =
∑
z∈�′

rz∑
j=1

ηzxc
(z)
j

for all x ∈ �. Hence, for each z ∈ �′, j ∈ {1, . . . ,rz} and x ∈
� such that Ax 	= o there exists a real number q

j
xz � 0 such that

ηzxc
(z)
j = q

j
xzAx . By summing over all z ∈ �′ and j = 1, . . . ,rz

we have that⎛⎝∑
z∈�′

rz∑
j=1

qj
xz

⎞⎠Ax =
∑
z∈�′

rz∑
j=1

ηzxc
(z)
j =

∑
z∈�′

ηzxCz = Ax

for all x ∈ � such that Ax 	= o. Thus, for such x ∈ � we have
that

∑
z∈�′

∑rz

j=1 q
j
xz = 1. From this it also follows that 0 �∑

j q
j
xz � 1 for all z ∈ �′ and x ∈ � such that Ax 	= o.

Since ηzx = 0 for all x ∈ � such that Ax = o, we have from
the normalization of the postprocessing η that

c
(z)
j =

∑
x∈�

ηzxc
(z)
j =

∑
x ∈ �

Ax 	= o

ηzxc
(z)
j +

∑
x ∈ �

Ax = o

ηzxc
(z)
j

=
∑
x ∈ �

Ax 	= o

qj
xzAx.

Thus,

Cz =
rz∑

j=1

c
(z)
j =

∑
j

∑
x ∈ �

Ax 	= o

qj
xzAx =

∑
x∈�

λxzAx,

where we have defined λxz =∑rz

j=1 q
j
xz when Ax 	= o and

λxz = 1/#�′ otherwise. From the observations made above,
we have that 0 � λxz � 1 for all x ∈ � and z ∈ �′, and
furthermore

∑
z∈�′ λxz = 1 for all x ∈ � so that the map

λ : � → �′ defined by matrix element λxz is a postprocessing.
Hence, A → C for all observables C such that C → A and so
A is postprocessing clean. �

The postprocessing relation is a preorder on O, i.e., a
transitive and symmetric relation. Two observables A and B
are postprocessing equivalent if both A → B and B → A, and
in this case we denote A ↔ B. This is an equivalence relation,
and the set O therefore splits into equivalence classes. Two
postprocessing equivalent observables do not differ in any
physically relevant way.

Example 2 (Minimally sufficient representative). In every
equivalence class, one has an observable for which all effects
are pairwise linearly independent. This was proven for quan-
tum observables with a finite number of outcomes in Ref. [18].
A generalization of this property was introduced and studied
in Ref. [20], where such observables were called minimally
sufficient.

To see that an observable with pairwise linearly independent
effects exists for each equivalence class in our setting, let
us consider an observable A : X → E(S). Suppose that two
effects Ax ′ and Ax ′′ are linearly dependent (proportional to
each other). Consider the outcome set Y = X \ {x ′′} and a
postprocessing ν : X → Y such that νxy = δxx ′ + δxx ′′ if y =
x ′ and νxy = δxy otherwise. In the resulting observable B =
ν ◦ A, the effects Ax ′ and Ax ′′ are merged into Bx ′ = Ax ′ + Ax ′′ .
Thus, by construction A → B.

Note that Ax ′ = p′Bx ′ , Ax ′′ = p′′Bx ′ , where p′,p′′ � 0 and
p′ + p′′ = 1. By defining the postprocessing μ : Y → X such
that μyx = p′δxx ′ + p′′δxx ′′ if y = x ′ and μyx = δxy otherwise,
we see that A = μ ◦ B, and hence B → A. Therefore, A ↔
B. By continuing this kind of merging of linearly dependent
pairs of effects, we will eventually obtain an observable Â with
pairwise linearly independent effects which is postprocessing
equivalent with A.

Furthermore, it can be shown that the observable Â is
essentially unique: If Ã is another pairwise linearly inde-
pendent observable in the equivalence class of A, then the
postprocessing equivalence between Â and Ã is given by
permutation matrices so that the observables are only bijective
relabellings of each other. In Ref. [18], this was proved for
quantum observables but since the proof is analogous in the
GPT framework it is omitted here.

C. Mixing of observables

A mixing of observables means a procedure where, in each
measurement round, we randomly pick an observable from a
finite collection and measure it. Thus, if we have m observables
B(1), . . . ,B(m) with respective outcome sets X1, . . . ,Xm, then
for any probability distribution p : i �→ pi on {1, . . . ,m} we
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can form an observable B with the outcome set X ≡ ∪m
i=1Xi

by

Bx =
m∑

i=1

piB(i)
x , (8)

where each observable B(i) is extended onto X by setting B(i)
x =

o if x /∈ Xi . We can therefore assume that the outcome sets of
the mixed observables are the same.

There is another way of forming mixtures, found by keeping
track of the measured observable in each round of the measure-
ment. Just as above, we take the outcome sets of the observables
B(1), . . . ,B(m) to be equal, say X, but now the outcome in
each measurement round is a pair (k,x), where k ∈ {1, . . . ,m}
labels the measured observable B(k) and x ∈ X is the obtained
outcome. To formulate the mixing procedure mathematically,
the mixture of these observables is an observable B̃ with the
outcome set X0 = {1, . . . ,m} × X defined as

B̃(k,x) = pkB(k)
x (9)

for each k ∈ {1, . . . ,m} and x ∈ X, where pk is the probability
of measuring the observable B(k).

It is clear that the latter way of mixing leads to a finer
observable than the first one; by postprocessing B̃ we can
obtain the observable that corresponds to mixing without
keeping track of the measured observable. Namely, we define a
function f : X0 → X by f (k,x) = x and define the relabelling
νf : X0 → X by ν

f

(k,x)y = 1 if f (k,x) = x = y and ν
f

(k,x)y = 0
if f (k,x) = x 	= y. Then

(νf ◦ B̃)x =
∑
i,x ′

ν
f

(i,x ′)xpiB
(i)
x ′ =

∑
i

piB(i)
x = Bx . (10)

In the following definition, we will understand mixing in
the sense that the outcome sets are the same and we do not
keep track of the mixed observables.

Definition 1. An observable A ∈ OX is called extreme if
a convex sum decomposition A = λB + (1 − λ)C, 0 < λ < 1
with B,C ∈ OX implies B = C = A.

The following is a well-known fact for quantum observ-
ables; see, e.g., Ref. [21]. It is proven analogously in the GPT
framework and a proof is given in the appendix.

Proposition 2. Nonzero effects of an extreme observable
are linearly independent.

Also the following statement is well-known for quantum
observables; see, e.g., Ref. [22]. We find it useful to give a
proof that is valid in the GPT framework.

Proposition 3. A postprocessing clean observable A is ex-
treme if and only if its nonzero effects are linearly independent.

Proof. The necessity of linear independence follows from
Proposition 2. To prove sufficiency, let the nonzero effects
A1, . . . ,An of a postprocessing clean observable A be linearly
independent. Let A =∑k pkB(k) for some probability distri-
bution {pk}k and some set of observables {B(k)}k . We define an
observable B̃ as B̃(k,x) = pkB(k)

x . Then

Ay =
∑
k,z

ν(k,z)yB̃(k,z), (11)

where the postprocessing matrix ν has the form

ν(k,z)y =
{

1 if z = y,

0 if z 	= y.
(12)

Thus, B̃ → A. Since A is postprocessing clean, the latter
relation implies A → B̃; i.e., there exists a postprocessing
matrix μx(k,z) such that

B̃(k,z) =
∑

x

μx(k,z)Ax. (13)

Combining (11) with (13), we get

Ay =
∑

x

(∑
k,z

μx(k,z)ν(k,z)y

)
Ax. (14)

Since the effects A1, . . . ,An are linearly independent, the term
in parentheses must be equal to δxy . Further, since ν has the
specific form of (12), we have that

∑
k μx(k,x) = 1 for all x.

Since
∑

k,z μx(k,z) = 1 for all x and k, it follows that all the
elements μx(k,z) with z 	= x are zero. Thus, only one term in
the sum (13) contributes and hence

pkB(k)
z = B̃(k,z) = μz(k,z)Az ,

i.e., B(k)
z = μz(k,z)

pk
Az. Finally, as

∑
z B(k)

z = u and
∑

z Az = u,
we get

∑
z

(
B(k)

z − Az

) =
∑

z

(
μz(k,z)

pk

− 1

)
Az = 0. (15)

Since the effects A1, . . . ,An are linearly independent, the latter
equation implies μz(k,z) = pk for all z, so B(k)

z = Az and B(k) =
A for all k. This means that A is extreme. �

III. SIMULATION OF OBSERVABLES

A. Simulation scheme

Let us consider a subset B ⊆ O of observables. Following
Ref. [1], we consider the set of observables that can be obtained
fromB by means of classical manipulations, namely by mixing
and postprocessing. The simulation scheme consists of two
steps: (i) for any finite subset {B(i)}mi=1 ⊆ B of observables
with outcome set X we choose an observable B(i) with some
probability pi and measure it, and (ii) after obtaining an
outcome (i,x) by keeping track of the measured observable
we perform some postprocessing ν : ∪m

k=1{k} × X → Y , out-
putting an outcome y ∈ Y for some outcome space Y with a
probability ν(i,x)y . Thus, the result is an observable A with an
outcome set Y such that

Ay = (ν ◦ B̃)y =
∑
(i,x)

ν(i,x)yB̃(i,x) (16)

for all y ∈ Y , where B̃(i,x) = piB(i)
x is the observable used to

define the mixture where we keep track of the outcomes. The
scheme is depicted in Fig. 1.
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FIG. 1. Simulation of a new observable by using observables
A, B, and C. In every individual measurement, the random number
generator (RNG) chooses one of observables A, B, and C. Then, the
classical outcome is affected by a classical channel ν.

We see that we can write A in two equivalent ways. By
expanding (16), we see that

Ay =
∑
(i,x)

ν(i,x)yB̃(i,x) =
∑
(i,x)

ν(i,x)ypiB(i)
x

=
∑

i

pi

(∑
x

ν(i,x)yB(i)
x

)
. (17)

Now we may split the postprocessing ν into m parts by defining
postprocessings ν(i) : X → Y by

ν(i)
xy = ν(i,x)y (18)

for all x ∈ X, y ∈ Y and i = 1, . . . ,m. Hence, we can express
A as

Ay =
∑

i

pi

(∑
x

ν(i)
xyB(i)

x

)
=
∑

i

pi(ν
(i) ◦ B(i))y. (19)

Thus, we can think of either first mixing the observables and
then postprocessing the mixture, or first postprocessing the
observables individually and then mixing the postprocessed
observables. The scheme in Fig. 1 is therefore equivalent to
the scheme in Fig. 2.

As an additional remark, let us consider the case where some
of the observables used in the simulation are the same. Suppose
we have an observable A with an outcome set Y that can be
simulated by observables B(1), . . . ,B(m),B(m+1), . . . ,B(n) with
outcome sets X such that B(m+1) = B(m+2) = · · · = B(n); i.e.,

FIG. 2. Simulation can be equivalently seen as a mixture of
postprocessed observables.

FIG. 3. Multiple uses of a same observables are allowed but do
not alter the generality of simulability. The scheme on the left-hand
side can be reduced to the scheme on the right-hand side.

we can express A as

Ay =
∑
(i,x)

ν(i,x)ypiB(i)
x

=
m∑

i=1

∑
x

ν(i,x)ypiB(i)
x +

n∑
i=m+1

∑
x

ν(i,x)ypiB(m+1)
x (20)

for all y ∈ Y with some probability distribution (pi)ni=1 and
postprocessing ν : ∪n

k=1{k} × X → Y . We can then form a new
probability distribution (p′

i)
m+1
i=1 by

p′
i = pi ∀i = 1, . . . ,m,

p′
m+1 =

n∑
j=m+1

pj . (21)

and a new postprocessing ν ′ : ∪m+1
k=1 {k} × X → Y by setting

ν ′
(i,x)y = ν(i,x)y ∀i = 1, . . . ,m,

ν ′
(m+1,x)y =

n∑
j=m+1

pj

p′
m+1

ν(j,x)y, (22)

for all x ∈ X and y ∈ Y , so that

Ay =
m∑

i=1

∑
x

ν(i,x)ypiB(i)
x +

∑
x

p′
m+1

n∑
i=m+1

pi

p′
m+1

ν(i,x)yB(m+1)
x

=
m∑

i=1

∑
x

ν ′
(i,x)yp

′
iB

(i)
x +

∑
x

ν ′
(m+1,x)yp

′
m+1B(m+1)

x

=
m+1∑
i=1

∑
x

ν ′
(i,x)yp

′
iB

(i)
x

for all y ∈ Y . Hence, instead of using multiple instances of
the same observable in the simulating scheme, by modifying
the mixing and postprocessing we can reduce the multiplicity
so that only one instance of each different observable is used.
The intuitive reason for this is that when there are multiple
instances of the same observable in the simulator, a router can
be used to direct the outcomes to the individual postprocessings
with some (weighted) probabilities resulting in a reduction of
multiplicity; see Fig. 3. Looking from the other way round,
we can think of using the same simulator observable several
times, even if we would have only a single device to hand.

B. The simulation map

Consider a subset of observables B ⊆ O. Following the
terminlogy from Ref. [1], we say that an observable A is B
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FIG. 4. The set of simulable observables is convex.

simulable if it can be implemented with a simulation scheme
by using some finite number of observables fromB. Further, we
denote by sim(B) the set of all observables that areB simulable,
and we treat sim(·) as a map on the power set 2O. In the case
of a singleton set {B}, we simply denote sim(B) ≡ sim({B}).

For any subsets B,C ⊆ O, the map sim(·) satisfies the
following basic properties:

(sim1) B ⊆ sim(B),
(sim2) sim(sim(B)) = sim(B),
(sim3) B ⊆ C ⇒ sim(B) ⊆ sim(C).
These properties are easy to verify and they mean that sim(·)

is a closure operator on O. It is commonly known that the
closure operator properties (sim1)–(sim3) are equivalent to the
single condition

(sim4) B ⊆ sim(C) ⇔ sim(B) ⊆ sim(C).
In the definition of simulability we are requiring that the

simulation scheme consists of a finite number of observables.
It thus follows that

(sim5) sim(B) =⋃{sim(B′) : B′ ⊆ BandB′is finite}.
This property means that sim(·) is an algebraic closure

operator.
The map sim(·) also has the following two properties:
(sim6) sim(B) is convex, i.e., closed under mixing,
(sim7) sim(B) is closed under postprocessing.
The properties (sim6) and (sim7) are straightforward to

verify by noticing the equivalent ways to write mixtures
and postprocessings; see Figs. 4 and 5. Complete proofs are
presented in the appendix.

C. Simulability and noise content

For an observable A and a set N ⊂ O of noisy observables,
we define [10]

w(A;N ) = sup{0 � λ � 1 | A = λN + (1 − λ)B

for some N ∈ N and B ∈ O}
as the noise content of A with respect to N . The noise content
w(A;N ) thus quantifies how much of A is inN , which is taken
to describe noise in the measurements. Contrary to external

FIG. 5. The set of simulable observables is closed under
postprocessings.

noise, i.e., noise that is added to the observables, the noise
content gives us the amount of intrinsic noise that is already
contained in the observable. The typical choice for the set of
noisy observables is N = T , the set of trivial observables.

The noise content satisfies the following two
properties [10]:

(a) If N is closed under postprocessings, then w(ν ◦
A;N ) � w(A;N ) for all observables A and postprocessings
ν,

(b) If N is convex, then w(
∑

i piA(i);N ) �∑
i piw(A(i);N ) for all mixtures of any set of observables

{A(i)}i ⊂ O.
We can now prove the intuitive result that we cannot

simulate a less noisy observable from noisier ones:
Proposition 4. Let B be a set of simulators. If the set of

noisy observables N is closed under postprocessings and
mixing, then any observable in sim(B) has a noise content
greater or equal than the smallest noise content of its simulating
observables in B.

Proof. Let A ∈ sim(B) so that

Ax =
∑
(i,x)

piν(i,y)xB(i)
y =

∑
i

pi(ν
(i) ◦ B(i))x (23)

for some set of simulators {B(i)}i ⊂ B, probability distribution
(pi)i and postprocessing ν. Now from properties (a) and (b) of
the noise content it follows that

w(A;N ) = w

(∑
i

pi(ν
(i) ◦ B(i));N

)

�
∑

i

piw(ν(i) ◦ B(i);N )

�
∑

i

piw(B(i);N )

�
∑

i

pi min
k

w(B(k);N )

= min
k

w(B(k);N ).

If there is an observable B ∈ B such that w(B;N ) �
w(B(i);N ) for all i, then w(A;N ) � w(B;N ).

We note that the set of trivial observablesT is indeed convex
and closed under postprocessings. �

D. Simulation irreducible observables

Clearly, an observable A can be simulated by a subset
B whenever B contains A, or more generally, if there is
B ∈ B such that B is postprocessing equivalent to A. Those
observables for which this is the only way that they can be
simulated we call simulation irreducible:

Definition 2. An observable A is simulation irreducible if
for any subset B ⊂ O, we have A ∈ sim(B) only if there is
B ∈ B such that A ↔ B.

Simulation irreducibility thus means that the only way we
can simulate such observable is essentially with the observable
itself. We obtain a following characterization for the simulation
irreducible observables.
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Proposition 5. An observable is simulation irreducible if
and only if it is postprocessing clean and postprocessing
equivalent to an extreme observable.

Proof. Let A be postprocessing clean and postprocessing
equivalent to an extreme observable Ã so that there exist
postprocessings μ and η such that Ã = μ ◦ A and A = η ◦ Ã.
Suppose that A ∈ sim(B) for some set of simulators B, i.e.,
there exists a probability distribution (pi)i and postprocessings
ν(i) such that Ay =∑i,x piν

(i)
xyB(i)

x for some B(i)’s in B. We can
assume that pi 	= 0 for every i as if this is not the case, we
simply drop those terms away. We can now write

Ãz =
∑

y

μyzAy =
∑
i,x,y

piν
(i)
xyμyzB(i)

x

=
∑

i

pi

∑
x

(∑
y

ν(i)
xyμyz

)
B(i)

x

=
∑

i

pi

∑
x

(μ ◦ ν(i))xzB(i)
x

=
∑

i

pi(μ ◦ ν(i) ◦ B(i))z

for all outcomes z. From the extremality of Ã it follows that
μ ◦ ν(i) ◦ B(i) = Ã for all i, and therefore A = η ◦ μ ◦ ν(i) ◦
B(i) for all i. Since A is postprocessing clean, this means that
B(i) ↔ A for all i. Therefore, A is simulation irreducible.

Now let A be a simulation irreducible observable. First,
A has to be postprocessing clean; otherwise there exists an
observable B such that B is not a postprocessing of A but A ∈
sim(B). Second, if A is extreme, we are done, so let us consider
the case when A is not extreme. Then there exists some set
of extreme observables B = {B(i)}i such that A has a convex
decomposition A =∑i λiB(i). In particular, A ∈ sim(B) and
since A is simulation irreducible, there exists some k such that
A ↔ B(k), where now B(k) is extreme. �

We see that both postprocessing cleanness and postprocess-
ing equivalence to an extreme observable are truly needed for
simulation irreducibility.

Example 3 (Postprocessing clean but not simulation irre-
ducible quantum observable). There are postprocessing clean
quantum observables that are not simulation irreducible. For
instance, the four-outcome qubit observable A, related to the
POVM A(±1) = 1

4 (1 ± σx) and A(±2) = 1
4 (1 ± σy), consists

of linearly dependent but pairwisely linearly independent
effects. Therefore, A is not simulation irreducible even though
it is postprocessing clean. In fact, A can be obtained from
two dichotomic observables X and Y as a mixture, where the
corresponding POVMs are X(±1) = 1

2 (1 ± σx) and Y (±1) =
1
2 (1 ± σy), respectively.

We recall from the end of Sec. II B that for each observable
A, we can form an observable Â ↔ A such that the effects of
Â are pairwisely linearly independent. By using the previous
propositions, we find a more practical characterization of
simulation irreducibility.

Corollary 1. An observable A is simulation irreducible if
and only if Â is indecomposable and extreme, i.e., it consists
of linearly independent indecomposable effects.

Proof. First, let A be simulation irreducible. By Proposi-
tion 5, A is postprocessing clean and postprocessing equivalent

to an extreme observable B. From Proposition 1, we see that A
is indecomposable from which it follows that also the pairwise
linearly independent observable Â is indecomposable. What
remains to show is that the effects of Â are actually linearly
independent. Since B is extreme, by Proposition 2 the nonzero
effects of B are linearly independent. As B̂ is formed by
combining the pairwise linearly dependent effects of B, we
have that B̂ = B (without the possible zero effects of B).
Thus, B̂ is extreme. Since B̂ = B ↔ A is pairwise linearly
independent, we have by the uniqueness of Â that B̂ is a
bijective relabelling of Â. Hence, Â is extreme. Because Â
is also postprocessing clean, by Proposition 3 it consists of
linearly independent effects.

Second, suppose that Â consists of linearly independent
indecomposable effects. By Proposition 1, Â is postprocessing
clean so that by taking into account that the effects of Â
are linearly independent we have by Proposition 3 that Â is
extreme. Since also A is postprocessing clean and Â ↔ A is
extreme, from Proposition 5 we conclude that A is simulation
irreducible. �

We would expect that an observable that is not simulation
irreducible is reducible in the sense that it can be simulated
by some simulation irreducible observables. Indeed, we can
show that this is the case and even holds with a finite number
of simulators [21].

Proposition 6. For every observable A, there is a finite
collection BA of simulation irreducible observables such that
A ∈ sim(BA).

Proof. Let A be an observable with an outcome set �. Each
effect Ax can be decomposed into indecomposable effects
a

(x)
i such that Ax =∑rx

i=1 a
(x)
i for some finite rx . As in the

proof of Proposition 1, we denote r = maxx∈� rx and define an
indecomposable observable B with an outcome set {1, . . . ,r} ×
� by B(i,x) = a

(x)
i if i � rx and B(i,x) = o otherwise. Let

us consider the pairwise linearly independent observable B̂.
Observable A is then a postprocessing of B̂ (as it is of B).

If B̂ is extreme, we are done. Otherwise, B̂ is not extreme
so its effects are linearly dependent; i.e., there exist numbers
βi ∈ R such that

∑
i βiB̂i = o with

∑
i |βi | > 0. Note that we

must have both positive and negative βi’s.
We denote κ+ = maxi βi > 0 and κ− = mini βi < 0 and

consider two observables C and D defined as

Ci = (1 − βi/κ+)B̂i , (24)

Di = (1 − βi/κ−)B̂i , (25)

for all outcomes i. We note that both C and D have one nonzero
outcome less than B̂ since for some indices j and k we have that
βj = κ+ and βk = κ− so that Cj = Dk = o. Since the effects
of B̂i are indecomposable, the observables C and D are also
indecomposable. By setting λ = κ+/(κ+ − κ−), we find that

B̂i = λCi + (1 − λ)Di (26)

for all i.
Thus, B̂ can be expressed as a mixture of two indecompos-

able observables with one less nonzero outcome. If the nonzero
effects of C and D are still linearly dependent, we continue
this procedure until we eventually have reduced the outcomes
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with finite steps in such a way that the resulting observables,
denoted by the set BA, have linearly independent effects. Since
the indecomposability is preserved over the procedure, the
observables in BA are simulation irreducible. �

Example 4 (Simulation irreducible quantum observables).
As explained before, a quantum observable A is postprocessing
clean if and only if each operator A(x) is rank 1. To check
if such an observable is simulation irreducible, we can
construct a minimally sufficient representative Â of the
postprocessing equivalence class of A as explained in Sec. II B
and then check the linear independence of the effects of Â.
In d-dimensional quantum theory Qd , the maximal number
of linearly independent operators is d2. For any integer
d, . . . ,d2, one can construct an extreme postprocessing clean
observable [21]. Further, two POVMs A and B consisting of
rank 1 operators are seen to be postprocessing equivalent if
and only if the set of ranges ∪x{ran(A(x))} and ∪y{ran(B(y))}
are the same. There is therefore a continuum of postprocessing
inequivalent simulation irreducible observables in Qd for any
d � 2.

IV. LIMITATION ON THE NUMBER OF OBSERVABLES

A. Minimal simulation number

A set of observables A is compatible if there exists an
observable G such that every observable in A can be postpro-
cessed from G. Thus, if A = {A(1), . . . ,A(m)} is a collection
of m observables with outcome sets X1, . . . ,Xm, then A is
compatible if there exists an observable G with an outcome set
Y and postprocessings ν(i) : Y → Xi , i = 1, . . . ,m, such that

A(i) = ν(i) ◦ G (27)

for all i = 1, . . . ,m. This means that by measuring only G we
can implement a measurement of any observable in A just by
choosing a suitable postprocessing.

As explained in Ref. [1], simulability can be seen as an
extension of compatibility. In fact, if we consider an observable
G and the set of G-simulable observables sim(G), we see
that every simulation in sim(G) comprises mixing a single
observable G so that by reducing the multiplicity the mixing
becomes trivial. Then sim(G) is seen to be just the set of
postprocessings of G, and so sim(G) is a compatible set
of observables and every subset A ⊆ sim(G) is compatible.
On the other hand, if there is a compatible set A such that
every observable can be postprocessed from G, then clearly
A ⊆ sim(G).

If a subset A is not compatible, then there is no single
observable G such that A ⊆ sim(G). But we can still search
for the minimal collection of simulators that can produce A.
This leads to the following definition.

Definition 3. For a subset A ⊆ O, we denote by smin(A)
the minimal number of observables B(1), . . . ,B(n), if they
exist, such that A ⊆ sim(B(1), . . . ,B(n)). Otherwise we denote
smin(A) = ∞. We call smin(A) the minimal simulation number
for A.

Let us consider a finite set A = {A(1), . . . ,A(m)} ⊂
O. Clearly, smin(A(1), . . . ,A(m)) � m. Further, if k

observables among A(1), . . . ,A(m) are compatible, then
smin(A(1), . . . ,A(m)) � m − k + 1. This indicates that the
hypergraph structure of the compatibility relation of the set

A, as defined in Ref. [23], relates to smin(A); by identifying
the largest subset of compatible observables we get an upper
bound for smin(A). This connection is, however, only in
one direction, as observed in Ref. [1]. Namely, there exists
a set {A,B,C} of three quantum observables such that no
pair is compatible, but still smin(A,B,C) = 2. The following
example is slightly different from Example 1 in Ref. [1],
which consisted of four observables.

Example 5 (There exist three pairwisely incompatible
quantum observables A,B,C such that smin(A,B,C) = 2). We
denote A(±) = 1

2 (1 ± σx), B(±) = 1
2 (1 ± σy), and Ct (±) =

1
2 [1 ± t(σx + σy)/

√
2], where 0 < t < 1 is a parameter to

be specified. Since A (resp. B) consists of projections, any
observable compatible with it must commute with it (see,
e.g., Ref. [24]). Hence, Ct is incompatible with both for any
0 < t � 1. We clearly have A,B ∈ sim(A,B), and we also
have Ct ∈ sim(A,B) whenever t � 1/

√
2. Namely, by taking

the equal mixture of A and B, we get a POVM C1/2(±) =
1
2 [1 ± (σx + σy)/2]. By using a postprocessing matrix

1

2

(
1 + √

2t 1 − √
2t

1 − √
2t 1 + √

2t

)
,

we get Ct from C1/2 for any t � 1/
√

2. (The fact C /∈ sim(A,B)
for t > 1/

√
2 will be shown in Example 9.)

B. Connection to k compatibility

A joint measurement of observables A(1), . . . ,A(n) means
that we can simultaneously implement their measurements
using a single observable, even if only one input system is
available. In the context of quantum observables, this notion
has been recently generalized to the case where it is assumed
that we have access to k copies [25]. We can then make
a collective measurement on a state s⊗k . After obtaining a
measurement outcome, we can make copies of the outcome
and postprocess each copy in a preferred way. This leads
to the following notion: Observables A(1), . . . ,A(n) on sets
�1, . . . ,�n, respectively, are k compatible if there exists an
observable G with an outcome set �0 acting on the state space
S⊗k , and stochastic matrices ν1, . . . ,νn with νi : �i × �0 →
[0,1], such that∑

y∈�0

νi(xi,y)Gy(s⊗k) = A(i)
xi

(s) (28)

for all i = 1, . . . ,n, xi ∈ �i , and s ∈ S . This definition obvi-
ously requires that we have specified the tensor product of two
state spaces.

As in the usual case of compatibility, we can restrict to a
special kind of observables and postprocessings when deciding
whether a collection of observables is k compatible. Namely,
suppose that � is the Cartesian product � = �1 × · · · × �n

and that C is an observable with this outcome set. One
particular type of postprocessing comes from ignoring all but
the ith component xi of a measurement outcome (x1, . . . ,xn).
This kind of postprocessing gives the ith marginal of C, which
we denote as C[i], i.e.,

C[i]
x =

∑
� 	=i

∑
x�

Cx1,...,xi−1,x,xi+1...,xn
. (29)
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Suppose there exits an observable G and stochastic matrices
ν1, . . . ,νn such that (28) holds. We define C as

Cx1,...,xn
=
∑
y∈�0

ν1(x1,y) . . . νn(xn,y)Gy , (30)

in which case C is an observable with the outcome set �1 ×
· · · × �n and C[i] = A(i).

Proposition 7. If observables A(1), . . . ,A(n) can be simu-
lated by k observables (i.e., smin(A(1), . . . ,A(n)) � k), then they
are k compatible.

Proof. Let �i denote the outcome set of an observable
A(i) for all i = 1, . . . ,n and let B(1), . . . ,B(k) be observ-
ables with an outcome set � such that {A(1), . . . ,A(n)} ⊆
sim({B(1), . . . ,B(k)}). Thus, there exist n probability distri-
butions (p(i)

j )kj=1, i = 1, . . . ,n and n postprocessings ν(i) :
{1, . . . ,k} × � → �i , i = 1, . . . ,n such that

A(i)
yi

=
k∑

j=1

∑
x∈�

p
(i)
j ν

(i)
(j,x)yi

B(j )
x (31)

for all yi ∈ �i and all i = 1, . . . ,n.
We define an observable G with an outcome set �k on S⊗k

as

Gx1,...,xk
= B(1)

x1
⊗ · · · ⊗ B(k)

xk
(32)

for all (x1, . . . ,xk) ∈ �k , and postprocessings μ(i) : �k → �i

for all i = 1, . . . ,n by

μ
(i)
�xyi

=
k∑

j=1

p
(i)
j ν

(i)
(j,xj )yi

(33)

for all �x = (x1, . . . ,xk) ∈ �n and yi ∈ �i . We now see that

∑
�x∈�k

μ
(i)
�xyi

G�x(s⊗k) =
∑
x1∈�

· · ·
∑
xk∈�

μ
(i)
(x1,...,xk )yi

k∏
l=1

B(l)
xl

(s)

=
k∑

j=1

∑
x1∈�

· · ·
∑
xk∈�

p
(i)
j ν

(i)
(j,xj )yi

k∏
l=1

B(l)
xl

(s)

=
k∑

j=1

∑
xj ∈�

p
(i)
j ν

(i)
(j,xj )yi

B(j )
xj

(s)

= A(i)
yi

(s)

for all states s ∈ S , outcomes yi ∈ �i and i = 1, . . . ,n. Hence,
the observables A(1), . . . ,A(n−1), and A(n) are k compatible. �

Example 6 (Triplet of orthogonal qubit observables).
We denote Xt (±) = 1

2 (1 ± tσx), Yt (±) = 1
2 (1 ± tσy), and

Zt (±) = 1
2 (1 ± tσz), where t ∈ [0,1] is a noise parameter. For

t = 1 these observables are simulation irreducible and there-
fore smin(X1,Y1,Z1) = 3. The triplet is compatible if and only if
0 � t � 1/

√
3, so for exactly those values smin(Xt ,Yt ,Zt ) = 1.

It was proved in Ref. [25] that this triplet is 2 compati-
ble if and only if 0 � t �

√
3/2; hence we conclude that

smin(Xt ,Yt ,Zt ) = 2 for 1/
√

3 < t �
√

3/2. From these results,
we cannot conclude the minimal simulation number for values√

3/2 < t < 1.

V. LIMITATION ON THE NUMBER OF OUTCOMES

A. Effective number of outcomes

We denote by On the set of observables with the outcome
set {1, . . . ,n}.

Definition 4. An observable A has effectively n outcomes
if n is the least number such that A can be simulated by On.
We denote by Oeff

n the set of all those observables that have
effectively n or less outcomes. Further, we say that a subset
O′ ⊆ O is effectively n-tomic if O′ ⊆ Oeff

n .
Clearly, if an observable A can be simulated by On, then

also any postprocessing of A can be simulated by On. Further,
a mixture of two n-tomic observables is at most n-tomic.
Therefore, the sets Oeff

1 ⊆ Oeff
2 ⊆ · · · are convex and closed

under postprocessing. The setOeff
1 consists exactly of all trivial

observables, i.e., observables of the form T(x) = t(x)u.
As explained at the end of Sec. II B, for each observable

A we can form an observable Â ↔ A such that the effects
of Â are pairwisely linearly independent. It follows from the
construction of Â that the number of outcomes of Â is at most
the number of outcomes of A. If A is simulation irreducible,
then the effective number of outcomes of A is equal to the
number of outcomes of Â.

By Proposition 6, every observable can be simulated with
simulation irreducible observables. Therefore, the maximal
effective number of outcomes in a given theory can be
concluded by looking at the extreme simulation irreducible
observables. For instance, for a set of quantum observables
Qd in a d-dimensional quantum theory, the maximal effective
number of outcomes is d2. We will calculate the maximal
effective number of outcomes for some other states spaces in
Sec. VI.

Example 7 (Informationally complete quantum observ-
ables). An observable A is called informationally complete if
A(s1) 	= A(s2) for any two states s1 	= s2. A quantum observ-
able A is informationally complete if and only if the respective
set of POVM elements {A(x) : x ∈ �} spans the vector space
Ls(H) of all self-adjoint operators [26]. It follows that an
informationally complete observable on Qd has at least d2

outcomes. However, it is easy to construct an informationally
complete observable which is effectively dichotomic. For
this purpose, fix linearly independent operators B1, . . . ,Bd2 ∈
Ls(H). For each j , we define a dichotomic POVM A(j ) as

A(j )(±) = 1
2 (1 ± Bj/‖Bj‖) .

The equal mixture of these POVMs is then

A(±,j ) = 1
2d2 (1 ± Bj/‖Bj‖) ,

and then the span of the elements of A is clearly Ls(H).
Therefore, the corresponding observable A is informationally
complete but effectively dichotomic.

The mathematical criterion for an observable to be infor-
mationally complete is the same in every general probabilistic
theory [27], and one can show that the previous conclusion
is valid in any general probabilistic theory: There exists
an informationally complete observable which is effectively
dichotomic.
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B. Dichotomic observables

As a particular example, we will take a closer look at
dichotomic and effectively dichotomic observables. We will
see that in many cases they have a simple geometrical charac-
terization.

Proposition 8. Let B = {B(i)}mi=1 be a collection of m ob-
servables with an outcome set �. For a dichotomic observable
A with effects A+ and A− the following implication holds:

A+ ∈ conv
({{

B(i)
x

}
i,x

,o,u
}) ⇒ A ∈ sim(B).

Proof. Let A+ ∈ conv({{B(i)
x }i,x,o,u}) so that

A+ =
m∑

i=1

∑
x∈�

ηixB(i)
x + λu + μo (34)

for some positive numbers ηix,λ,μ ∈ R for all i = 1, . . . ,m

and x ∈ � such that
∑

i,x ηix + λ + μ = 1. From the nor-
malization of the observables in B, it follows that for any
probability distribution (qi)mi=1 we have

u =
∑
i,x

qiB(i)
x . (35)

By plugging the previous expression in Eq. (34) and
neglecting the term with the zero effect o, we have that

A+ =
∑
i,x

(ηix + λqi)B(i)
x =

∑
i,x

η̃ixB(i)
x , (36)

where we have denoted η̃ix = ηix + λqi for all i = 1, . . . ,m

and x ∈ �. We can now introduce a probability distribution
(pi)mi=1 by

pi = max
x∈�

η̃ix, i = 1, . . . ,m − 1,

pm = 1 −
m−1∑
i=1

pi .

It is straightforward to check that (pi)i actually forms a
probability distribution.

We define a postprocessing ν : {1, . . . ,m} × � → {+,−}
by

ν(i,x)+ =
{

η̃ix

pi
if pi 	= 0,

0, if pi = 0,
(37)

ν(i,x)− = 1 − ν(i,x)+, (38)

for all i = 1, . . . ,m and x ∈ �. We see that indeed ν(i,x)± ∈
[0,1] and ν(i,x)+ + ν(i,x)− = 1 for all i = 1, . . . ,m and x ∈ �,
so ν is a legitimate postprocessing. Hence, there exists a
probability distribution (pi)i and a postprocessing ν such that

A± =
∑
i,x

ν(i,x)±piB(i)
x (39)

so that A ∈ sim(B). �
The previous proposition only considers simulated observ-

ables which have only two outcomes. We see that the propo-
sition can in fact be extended to cover simulated observables
with more outcomes at the expense of the form of the simulator
observables.

Proposition 9. Let B = {B(i)}mi=1 be a collection of m di-
chotomic observables such that the set {u,{B(i)

+ }mi=1} is linearly
independent. For an observable A with an outcome set �, the
following implication holds:

Ay ∈ conv({{B(i)
± }i ,o,u}) ∀y ∈ � ⇒ A ∈ sim(B).

Proof. Let A be an observable with outcome set � such that
Ay ∈ conv({{B(i)

± }i ,o,u}) for all y ∈ � so that

Ay =
∑

i

(λ(i,y)
+ B(i)

+ + λ
(i,y)
− B(i)

− ) + λ(u,y)u + λ(o,y)o

=
∑

i

(ω(i,y)
+ B(i)

+ + ω
(i,y)
− B(i)

− ), (40)

where {{λ(i,y)
± }i ,λ(u,y),λ(o,y)} is a probability distribution for

all y ∈ � and ω
(i,y)
± = λ

(i,y)
± + 1

m
λ(u,y) for all i = 1, . . . ,m and

y ∈ �. Here we have taken into account that u = 1
m

∑
i(B

(i)
+ +

B(i)
− ).

Because of the normalization of A, we have that

u =
∑

y

Ay =
∑

i

(ω(i)
+ B(i)

+ + ω
(i)
− B(i)

− )

=
(∑

i

ω
(i)
−

)
u +

∑
i

(ω(i)
+ − ω

(i)
− )B(i)

+ , (41)

where ω
(i)
± =∑y ω

(i,y)
± � 0 for all i = 1, . . . ,m.

Since effects u, B(1)
+ , . . . ,B(m)

+ are linearly independent,
we conclude that ω

(i)
+ = ω

(i)
− =: pi for all i = 1, . . . ,m

and
∑

i pi = 1. We can then define a postprocessing ν :
{1, . . . ,m} × {+,−} → � by setting

ν(i,±)y =
⎧⎨⎩

ω
(i,y)
±
pi

, if pi 	= 0,

1
m

, if pi = 0.
(42)

From Eq. (40), we can now confirm that

Ay =
∑

i

pi(ν(i,+)yB(i)
+ + ν(i,−)yB(i)

− ) (43)

for all y ∈ � so that A ∈ sim(B). �
We note that if there is only one dichotomic simulator

observable B, then {u,B+} is linearly independent if and only
if B is nontrivial. In the case of one simulator B, we can even
have more outcomes for B provided that the effects of B are
linearly independent.

Proposition 10. Let B be an observable with linearly inde-
pendent effects and an outcome set �. For an observable A
with an outcome set �, the following implication holds:

Ay ∈ conv({{Bx}x,o,u}) ∀y ∈ � ⇒ A ∈ sim(B).

Proof. Each effect Ay can be expressed as a convex decom-
position into the effects Bx , o, and u so that

Ay =
∑

x

λ(y)
x Bx + λ(y)

o o + λ(y)
u u (44)

for all y ∈ � for some positive numbers λ
(y)
x ,λ

(y)
o and λ

(y)
u

such that
∑

x λ
(y)
x + λ

(y)
o + λ

(y)
u = 1 for all y ∈ �. Since

062102-10



SIMULABILITY OF OBSERVABLES IN GENERAL … PHYSICAL REVIEW A 97, 062102 (2018)

u =∑x Bx , we have that

Ay =
∑

x

(
λ(y)

x + λ(y)
u

)
Bx (45)

for all y ∈ �. From the normalization of observables A and B
it follows that

∑
x

Bx = u =
∑

y

Ay =
∑

x

[∑
y

(
λ(y)

x + λ(y)
u

)]
Bx. (46)

The linear independence of the effects Bx leads us to conclude
that

∑
y (λ(y)

x + λ
(y)
u ) = 1 for all x ∈ �. Thus, if we define a

mapping ν : � → � by

νxy = λ(y)
x + λ(y)

u (47)

for all x ∈ � and y ∈ �, we see that now ν is a postprocessing
and A = ν ◦ B. �

As an example of this, a simulation irreducible observable
(or its minimally sufficient version) consists of linearly in-
dependent effects, and so in this case we have a sufficient
condition for an observable to be simulated by it. However,
we see that the condition is not a necessary one and also that if
we try to increase the number of simulators then the proposition
no longer holds. The converse of Proposition 8 is also seen to
be false in general.

Example 8 (Simulation irreducible qubit observable). Let
us consider a 4-outcome qubit observable B with effects

B(i) = 1
4 (1 + �bi · �σ ), i = 1,2,3,4,

where

�b1 =
(

2
√

2

3
,0, − 1

3

)
, �b2 =

(
−

√
2

3
,

√
2

3
, − 1

3

)
,

�b3 =
(

−
√

2

3
, −
√

2

3
, − 1

3

)
, �b4 = (0,0,1), (48)

so that the four vectors form the vertices of a tetrahedron inside
a unit ball. Clearly, any set of three of the four vectors form a
linearly independent set and in fact the set of all four effects
is linearly independent. Furthermore, since the effects B(i)
are rank 1 for all i = 1,2,3,4, we have that B is simulation
irreducible.

To see that the converses of Propositions 8 and 10 do not
hold, we define a dichotomic qubit observable A by setting

A(+) = B(1) + B(2) = 1

2

[
1 +

( �b1 + �b2

2

)
· �σ
]
,

A(−) = B(3) + B(4) = 1

2

[
1 +

( �b3 + �b4

2

)
· �σ
]
.

Clearly, A ∈ sim(B). We will show by contradiction
that A(+) does not belong to the convex set of ef-
fects O, 1, B(1), B(2), B(3), B(4). Suppose that A(+) ∈
conv({B(1),B(2),B(3),B(4),O,1}), i.e., for A(+) there exists

a convex decomposition

A(+) =
4∑

i=1

λiB(i) + λ51 + λ6O

= 1

2

[(∑4
i=1 λi

2
+ 2λ5

)
1 +

(∑4
i=1 λi

�bi

2

)
· �σ
]
.

By comparing the coefficients of 1 and the Pauli matrices,
we arrive at the following two equations:

4∑
i=1

λi + 4λ5 = 2,

4∑
i=1

λi
�bi = �b1 + �b2.

By using the latter equation and the condition that
∑4

i=1
�bi = �0,

we have that

(1 + λ4 − λ1)�b1 + (1 + λ4 − λ2)�b2 + (λ4 − λ3)�b3 = �0.

(49)

Now the set {�b1,�b2,�b3} is linearly independent so that

λ1 = λ2 = 1 + λ4 ⇒ λ1 = λ2 = 1, (50)

which contradicts the fact that
∑6

i=1 λi = 1. Thus, A(+)
cannot be contained in the convex hull of O, 1, and the effects
of B. By similar arguments, we see that since, for example, the
set {�b2,�b3,�b4} is linearly independent, then A(−) also cannot
be contained in the convex hull of O, 1, and the effects of B.

We also see that in Proposition 9 both the dichotomicity
of observables B(i) and the linear independence of the effects
{u,{B(i)

+ }i} is truly needed: Define dichotomic observables
C(i) by setting C(i)(+) = B(i) and C(i)(−) = 1 − Bi for all
i = 1,2,3,4. Clearly Bi ∈ conv({{C(j )(±)}4

j=1,O,1}) for all
i = 1,2,3,4 and even the effects C(1)(+),C(2)(+),C(3)(+), and
C(4)(+) are linearly independent by themselves but not with
the unit effect 1. If B ∈ sim({C(i)}4

i=1), then by the simulation
irreducibility of B we would have that B ↔ C(k) for some k ∈
{1,2,3,4} which is clearly not the case since when measuring
C(k) we only get information about the outcome k of the
observable B and not the other outcomes. This also happens
when we define two trichotomic observables D(1) and D(2) by
setting

D(1)(1) = B(1), D(1)(2) = B(2), D(1)(3) = B(3) + B(4),

D(2)(1) = B(3), D(2)(2) = B(4), D(2)(3) = B(1) + B(2),

since then the effects 1,D(1)(1), and D(2)(1) are linearly
independent and B(i) ∈ conv({{D(j )(k)}j,k,O,1}) for all i =
1,2,3,4 but now by the same arguments as above we have that
B /∈ sim({D(1),D(2)}). This also shows that Proposition 8 does
not hold with simulated observables which have more than two
outcomes.

If we restrict ourselves to sets of simulators composed of
dichotomic observables, the converse of Proposition 8 is seen
to hold even when allowing more outcomes for the simulated
observables.
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Proposition 11. Let B = {B(i)}mi=1 be a collection of m

dichotomic observables. For an observable A with an outcome
set �, the following implication holds:

A ∈ sim(B) ⇒ Ay ∈ conv({{B(i)
± }i ,o,u}) ∀y ∈ �.

Proof. Denote Im = {1, . . . ,m}. Let A ∈ sim(B) so that

Ay =
∑
i∈Im

pi(ν(i,+)yB(i)
+ + ν(i,−)yB(i)

− ) (51)

for some probability distribution (pi)mi=1 and a postprocessing
ν : Im × {+,−} → �.

For each y ∈ �, we denote I+
y = {i ∈ Im | ν(i,+)y � ν(i,−)y}

and I−
y = Im \ I+

y . Now we may express each effect Ay as

Ay =
∑
i∈I+

y

pi(ν(i,+)yB(i)
+ + ν(i,−)yB(i)

− )

+
∑
i∈I−

y

pi(ν(i,+)yB(i)
+ + ν(i,−)yB(i)

− )

=
∑
i∈I+

y

pi[(ν(i,+)y − ν(i,−)y)B(i)
+ + ν(i,−)yu]

+
∑
i∈I−

y

pi[(ν(i,−)y − ν(i,+)y)B(i)
− + ν(i,+)yu]

=
∑
i∈I+

y

pi(ν(i,+)y − ν(i,−)y)B(i)
+

+
∑
i∈I−

y

pi(ν(i,−)y − ν(i,+)y)B(i)
−

+
⎡⎣∑

i∈I+
y

piν(i,−)y +
∑
i∈I−

y

piν(i,+)y

⎤⎦u,

where we have used the fact that B(i)
− = u − B(i)

+ for all i ∈ Im.
We see that now the coefficients of all the effects in the above
expression are positive and for the total sum of the coefficients
we have that∑

i∈I+
y

pi(ν(i,+)y − ν(i,−)y) +
∑
i∈I−

y

pi(ν(i,−)y − ν(i,+)y)

+
∑
i∈I+

y

piν(i,−)y +
∑
i∈I−

y

piν(i,+)y

=
∑
i∈I+

y

piν(i,+)y +
∑
i∈I−

y

piν(i,−)y

�
∑
i∈I+

y

pi +
∑
i∈I−

y

pi =
∑
i∈Im

pi = 1.

Thus, by adding the zero effect o in the last expression for Ay

with a weight of 1 −∑i∈I+
y

piν(i,+)y −∑i∈I−
y

piν(i,−)y , we get
a convex decomposition for Ay so that

Ay ∈ conv({{B(i)
± }i ,o,u}) (52)

for all y ∈ �. �
The previous proposition shows that if an observable is

effectively dichotomic, all of its effects are contained in

the convex hull of the zero effect, the unit effect, and the
effects of the dichotomic simulator observables. That is, if
for a given set of dichotomic observables corresponding to
some measurement devices in a laboratory, we choose some
postprocessing and a probability distribution such that we make
a simulation with those measurement devices, the previous
proposition can be used to extract the simulated observable’s
convex decomposition into the effects of the set of simulators
and the zero and the unit effect, thereby giving us their
mathematical expressions.

On the other hand, it gives a useful necessary condition for
dichotomic simulability in an experimental setting. Let us say
we have access to some fixed set of measurement devices that
correspond to some dichotomic observables B and we want to
know whether a given observable A can be simulated using
the accessible measurements. If we find an effect of A that is
not contained in the convex hull of o, u, and the effects of the
observables in B, we know that A cannot be simulated by B.

In general, however, we note that if the set of simulators
is not fixed, for any observable we can always find such
dichotomic observables so that condition (52) is satisfied,
namely the binarizations of the given observable.

From Propositions 9 and 11, we get the following corollary.
Corollary 2. Let B = {B(i)}mi=1 be a collection of m di-

chotomic observables such that the set {u,{B(i)
+ }mi=1} is linearly

independent. An observable A with an outcome set � is
contained in sim(B) if and only if Ay ∈ conv({{B(i)

± }i ,o,u})
for all outcomes y ∈ �.

If the set of simulators as well as the simulated observable
are all dichotomic, we get the following simple corollary from
Propositions 8 and 11.

Corollary 3. Let B = {B(i)}mi=1 be a collection of m di-
chotomic observables. A dichotomic observable A is contained
in sim(B) if and only if A+ ∈ conv({{B(i)

± }i ,o,u}).
From Propositions 10 and 11, we get a full characteriza-

tion for the simulation set of a single simulation irreducible
dichotomic observable.

Corollary 4. Let B be a simulation irreducible dichotomic
observable. An observable A with an outcome set � is
contained in sim(B) if and only if Ay ∈ conv({B+,B−,o,u})
for all y ∈ �.

Example 9. A qubit effect E can be written in the form E =
1
2 [(1 + e0)1 + �e · �σ ] for some e0 ∈ R and �e = (ex,ey,ez) ∈ R3

satisfying |e0| + ‖�e‖2 � 1. The real number e0 ∈ [−1,1] is
called the bias of the effect E, with E being unbiased if
e0 = 0. We denote by X, Y, and Z the observables that have the
effects X(±) = 1

2 (1 ± σx), Y (±) = 1
2 (1 ± σy), and Z(±) =

1
2 (1 ± σz), and consider the simulation set sim(X,Y,Z) of those
observables. We also denote by T the trivial observable with
effects T (+) = 1 and T (−) = O.

Since the set of effects {1,X(+),Y (+),Z(+)} is linearly
independent, it follows from Corollary 2 that a qubit observ-
able E with an outcome set � is contained in sim(X,Y,Z)
if and only if the effects E(j ) = 1

2 [(1 + e
(j )
0 )1 + �e(j ) · �σ ] ∈

conv({X(±),Y (±),Z(±),O,1}) for all j ∈ �. The set of ef-
fects {T (±),X(±),Y (±),Z(±)} is convexly independent, so
the set of extreme effects of conv({T (±),X(±),Y (±),Z(±)})
are exactly the effects {T (±),X(±),Y (±),Z(±)}. These ef-
fects correspond to vectors {(±1,0,0,0),(0, ± 1,0,0),(0,0,
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FIG. 6. The unbiased effects in sim(X,Y,Z) form an octahedron.

± 1,0),(0,0,0, ± 1)} in R4, respectively, which in turn are the
extreme points of the four-dimensional convex set

S4 =
{

(r0,r1,r2,r3) ∈ R4 |
3∑

i=0

|ri | � 1

}
. (53)

Thus, there is a one-to-one correspondence with the effects in
conv({X(±),Y (±),Z(±),O,1}) and the points in S4, and so
the observable E with effects E(j ) = 1

2 [(1 + e
(j )
0 )1 + �e(j ) · �σ ]

is in sim(X,Y,Z) if and only if (e(j )
0 ,�e(j )) ∈ S4 for all j ∈ �,

i.e.,

|e(j )
0 | + ‖�e(j )‖1 � 1. (54)

For the unbiased case, i.e., when e
(j )
0 = 0 for all j ∈ �,

inequality (54) defines an octahedron inR3 which is depicted in
Fig. 6. We also see that the set of unbiased effects in sim(X,Y)
forms a square in R2 [as do sim(X,Z) and sim(Y,Z) too].

VI. NONQUANTUM STATE SPACES

A. Classical state spaces

A state space S is classical if all pure states are distin-
guishable, or equivalently, S is simplex. Up to the labeling of
outcomes, the observable that can distinguish all pure states is
unique. It is clear that any classical state space Scl has only one
equivalence class of simulation irreducible observables: Let G
be the observable onScl that distinguishes the pure states ofScl .
For each observable A we define a postprocessing νA by setting
νA

xy = Ay(sx) for all outcomes y and pure states sx ∈ Sext
cl .

Since for any state s =∑x λxsx we have that Gx(s) = λx , and
so

Ay(s) =
∑

x

λxAy(sx) =
∑

x

νA
xyGx(s) = (νA ◦ G)y(s) (55)

for all outcomes y and states s ∈ Scl , so A ∈ sim(G) and
therefore O = sim(G). If G′ is some other simulation irre-
ducible observable, then G′ ∈ sim(G), and from the fact that
G′ is postprocessing clean it follows that also G ∈ sim(G′)
which yields G′ ↔ G. Furthermore, the extreme simulation
irreducible observable has the same number of outcomes as

the number of pure states in Scl . We conclude that the effective
number of any observable in a classical state space is at most
n, where n is the number of pure states.

On the other hand, if there exists only a single equivalence
class of simulation irreducible observables on a state space S ,
the state space must be classical; this follows from the result
of Ref. [9]. In the following, we give an alternative proof of
this fact, relying on the properties of simulation irreducible
observables.

Let us denote d = dim(aff(S)) so that as in Sec. II A
we can consider S and E(S) to be embedded in (d + 1)-
dimensional ordered vector spaces A and A∗ respectively.
Denote by B the extreme simulation irreducible observable
in the equivalence class and suppose it has n outcomes. From
Proposition 6, it follows that every observable on S can be
simulated with B. Now B consists of n linearly independent
indecomposable effects Bi . For each indecomposable effect
Bi there exists an extreme effect bi and βi ∈ (0,1] such that
Bi = βibi for all i = 1, . . . ,n [17]. Since the n dichotomic
observables determined by the effects bi must be simulable by
B, there exist postprocessings ν(i) such that bi =∑j νj+Bj =∑

j νj+βjbj for all i = 1, . . . ,n and since the set {bi}i is
linearly independent, it follows that βi = 1 for all i = 1, . . . ,n.
Thus, the effects of B are actually extreme.

It is easy to see that for each extreme effect there exists an
extreme state that gives probability one for the state [17]. Thus,
for every effect Bi there exists a pure state si such that Bi(si) =
1 for all i = 1, . . . ,n. Furthermore, due to the normalization
of B, we have that

1 = u(si) =
∑

j

Bj (si) = Bi(si) +
∑
j 	=i

Bj (si)

= 1 +
∑
j 	=i

Bj (si),

so that Bj (si) = 0 and sj 	= si for all j 	= i where i = 1, . . . ,n.
Hence, B distinguishes the set of states {s1, . . . ,sn}.

We now note that the effects of B are the only indecom-
posable effects that lie on different extreme rays. Indeed, let
e be any indecomposable effect and consider the dichotomic
observable E with E+ = e. Since E ∈ sim(B), there exists a
postprocessing μ such that e =∑i μi+Bi so that from the
indecomposability of e it follows that e is proportional to Bl

for some l ∈ {1, . . . ,n}. Thus, there exist exactly n linearly
independent extreme rays that define the generating positive
cone in the (d + 1)-dimensional effect space, and therefore we
must have that n = d + 1.

It is straightforward to check that the states {s1, . . . ,sn} are
affinely independent so that dim(aff({s1, . . . ,sn})) = n − 1 =
d = dim(aff(S)). Thus, every state s ∈ S can be expressed
as an affine combination of the states {s1, . . . ,sn}, i.e., s =∑

i γisi for some {γi}i ⊆ R such that
∑

i γi = 1. However, we
see that

γj =
∑

i

γiBj (si) = Bj (s) � 0,

so the affine decomposition of s is actually convex, which
shows that the only pure states are actually s1, . . . ,sn. Since
S is then a convex hull of d + 1 affinely independent (distin-
guishable) pure states, S must be a d simplex.
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FIG. 7. Square state space (above) and the space of effects
(below).

We can rephrase this result as follows.
Proposition 12. A state space is nonclassical if and only

if there exist at least two inequivalent simulation irreducible
observables.

B. Square bit state space

Consider a state space S� = conv({s1,s2,s3,s4}) that is
isomorphic to a square in R2, i.e., s1 + s3 = s2 + s4 (see
Fig. 7). Such a state space is also referred to as the square bit
state space or squit state space. The set of effects E(S�) is an
intersection of the positive dual cone A∗

+ and the set u − A∗
+,

which is isomorphic to the octahedron in R3, Fig. 7.
In this section, we demonstrate that the set of all observables

O on the square bit state space can be simulated from a set of
two binary observables E and F defined as follows:

E+(s1) = E+(s2) = 0, E+(s3) = E+(s4) = 1,

E−(s1) = E−(s2) = 1, E−(s3) = E−(s4) = 0.

F+(s1) = F+(s4) = 0, F+(s2) = F+(s3) = 1,

F−(s1) = F−(s4) = 1, F−(s2) = F−(s3) = 0.

Since the set of effects {u,E+,F+} is linearly indepen-
dent, it follows from Corollary 2 that an observable A with
outcome set � is contained in sim({E,F}) if and only if
Ax ∈ conv({E+,E−,F+,F−,o,u}) for all x ∈ �, which is al-
ways fulfilled because conv({E+,E−,F+,F−,o,u}) = E(S�).
Hence, sim({E,F}) = O.

The obtained result implies the following:
(1) The effective number of outcomes for any observable

on the square bit state space is at most 2.
(2) Any simulation irreducible observable is postprocess-

ing equivalent to either E or F.
(3) smin(O) = 2.
It is known that the square bit state space possesses the

feature of maximal incompatibility: There exists a pair of
observables (which are actually exactly the observables E and
F) such that the minimum amount of noise one has to mix them
with to make their noisy versions compatible is enough to make
any other pair of observables compatible in any theory [6]. In
this sense, the square bit state space is even more nonclassical
than any finite-dimensional quantum theory [15].

Since classical theories have only one equivalence class of
simulation irreducible observables, we can argue that theories,
such as square bit state space, having just two of such

FIG. 8. Odd and even polygon state spaces S and corresponding
sets of effects E(S).

equivalence classes are somewhat closest to classical theory.
Furthermore, the effective number of all observables on this
state space is the same as in the simplest and one of the most
important classical theories, namely the bit. In this sense, the
square state space is closest to classical theory amongst all
nonclassical theories.

C. Polygon state spaces

We say that a convex set Pn is a regular n-sided polygon if
there exist n vectors �p1, . . . , �pn inR2 such that ‖ �p1‖ = ‖ �p2‖ =
· · · = ‖ �pn‖, and �pi · �pi+1 = ‖ �pi‖2 cos ( 2π

n
) for all i = 1, . . . ,n

(where the addition is modulo n) such that Pn is isomorphic
to conv({ �p1, . . . , �pn}). The extremal points of a polygon are
its vertices, and faces are exactly the sides of the polygon; see
Fig. 8.

As a state space, we consider polygons embedded in R3

lying on the z = 1 plane. A polygon state space Sn with n

vertices is then given by the convex hull of n extremal states

�sk =

⎛⎜⎝sec
(

π
n

)
cos
(

2kπ
n

)
sec
(

π
n

)
sin
(

2kπ
n

)
1

⎞⎟⎠, k = 1, . . . ,n. (56)

As the polygons are two dimensional, the effects can also
be represented as elements in R3. Hence, we can express each
e ∈ E(Sn) as �e = (ax,ay,az)T ∈ R3. With this identification we
have that e(s) = �e · �s for all e ∈ E(Sn) and s ∈ Sn, where now
�e,�s ∈ R3 and · is the Euclidean dot product in R3. We omit
the vector notation from here onward and simply denote the
states and effects in R3 by s and e instead of �s and �e. Clearly,
we now have the zero effect o = (0,0,0)T and the unit effect
u = (0,0,1)T .

To find the positive dual cone A∗
+ = {e | e(s) � 0 for all

s ∈ Sn}, it is enough to satisfy the requirement e(sk) � 0 for

062102-14



SIMULABILITY OF OBSERVABLES IN GENERAL … PHYSICAL REVIEW A 97, 062102 (2018)

all extremal states (56). We have

e(sk) = ax sec

(
π

n

)
cos

(
2kπ

n

)
+ ay sec

(
π

n

)
sin

(
2kπ

n

)
+ az � 0, (57)

k = 1, . . . ,n. The extremal rays of the positive dual cone A∗
+

correspond to the intersection of two adjacent planes e(sk) = 0
and e(sk−1) = 0 and have the form

e+
k =

⎛⎜⎝−az cos
( (2k−1)π

n

)
−az sin

( (2k−1)π
n

)
az

⎞⎟⎠, k = 1, . . . ,n, az � 0. (58)

Similarly, inequalities e(sk) � 1, k = 1, . . . ,n define the set
u − A∗

+ with extremal rays

e−
k =

⎛⎜⎝bz cos
( (2k−1)π

n

)
bz sin

( (2k−1)π
n

)
1 − bz

⎞⎟⎠, k = 1, . . . ,n, bz � 0. (59)

If n is even, then the extremal rays e+
k+n/2 and e−

k intersect,
with the resulting nontrivial extremal effects being

ek = 1

2

⎛⎜⎝cos
( (2k−1)π

n

)
sin
( (2k−1)π

n

)
1

⎞⎟⎠, k = 1, . . . ,n. (60)

If n is odd, then the rays e+
k and e−

k′ do not intersect. In this
case, the intersection of upward and downward cones results in
two families of extremal effects. The first family corresponds
to points at which 1

2e+
k+(n−1)/2 + 1

2e+
k+(n−1)/2−1 = e−

k and reads

fk = 1

1 + sec
(

π
n

)
⎛⎜⎝cos

( (2k−1)π
n

)
sin
( (2k−1)π

n

)
sec
(

π
n

)
⎞⎟⎠, k = 1, . . . ,n. (61)

The second family corresponds to points at which
1
2e−

k+(n−1)/2 + 1
2e−

k+(n−1)/2−1 = e+
k and reads

gk = 1

1 + sec
(

π
n

)
⎛⎜⎝− cos

( (2k−1)π
n

)
− sin

( (2k−1)π
n

)
1

⎞⎟⎠
= u − fk, k = 1, . . . ,n. (62)

In this case of odd n, we note that the nontrivial extremal
effects no longer lie in a single plane; see Fig. 8.

Thus, in the case of even polygon state
spaces we have E(Sn) = conv({e1, . . . ,en,o,u}) =
conv({E(1)

± , . . . ,E(n/2)
± ,o,u}), where we have defined the di-

chotomic observables E(i) with effects E(i)
+ = ei and E(i)

− = u −
E(i)

+ = ei+n/2, i = 1, . . . , n
2 . In the case of odd polygon state

spaces, we have E(Sn) = conv({f1, . . . ,fn,g1, . . . ,gn,o,u}) =
conv({F(1)

± , . . . ,F(n)
± ,o,u}), where we have defined the

dichotomic observables F(i) with effects F(i)
+ = fi and

F(i)
− = u − F(i)

+ = gi , i = 1, . . . ,n.

The fundamental difference between the effect spaces for
even and odd polygon state spaces is that, in the case of even
n, to construct E(Sn) one needs the effects of n

2 dichotomic
observables (plus the zero and the unit effect), whereas in the
case of oddn, one needs the effects ofndichotomic observables
(plus the zero and the unit effect) to get the whole effect space
E(Sn).

However, we find that Proposition 8 has strong conse-
quences in polygon state spaces in both even and odd cases.
Namely, if A is a dichotomic observable on a polygon state
space Sn with n vertices, then always

A+ ∈
{

conv({E(1)
± , . . . ,E

( n
2 )

± ,o,u}) if n is even,

conv({F(1)
± , . . . ,F(n)

± ,o,u}) if n is odd.
(63)

From Proposition 8, it follows that

A ∈
{
sim({E(1), . . . ,E( n

2 )}) if n is even,

sim({F(1), . . . ,F(n)}) if n is odd,
(64)

so that for the set O± of all dichotomic observables on Sn we
have

smin(O±) �
{

n
2 if n is even,

n if n is odd.
(65)

Next, we will characterize the extreme simulation irre-
ducible observables in polygon state spaces.

Proposition 13. The minimal simulation number for the set
O of all observables on an even polygon state space S2m equals
smin(O) = m + 1

3m(m − 1)(m − 2).
Proof. From Proposition 6, it follows that in order to find

smin(O) one merely needs to know the number of inequivalent
simulation irreducible observables. By Corollary 1, it is enough
to find the number of inequivalent observables A with linearly
independent indecomposable effects. Since A is indecom-
posable, its effects belong the extreme rays of the positive
effects cone, i.e., they are some positive scalar multiples of
the nontrivial extremal effects ek in (60). Furthermore, since
the effects of A are linearly independent and contained in R3,
A has at most three outcomes.

If A is dichotomic, then the only possibility is that A+ = ek

and A− = ek+m, k = 1, . . . ,2m. Thus, there are 2m choices for
the effects of A. Taking into account the bijective relabellings
of outcomes, i.e., the permutations of the set {+,−}, we have
2m/2! = m inequivalent simulation irreducible dichotomic
observables.

If A is trichotomic with effects A1, A2, and A3, then Aj =
cj ekj

for some kj ∈ {1, . . . ,2m} and 0 < cj � 1 for all j =
1,2,3 such that k1 	= k2 	= k3 	= k1. Denote c ≡∑3

j=1 cj 	= 0,
and then from the normalization of A it follows that

3∑
j=1

cj

c
ekj

= 1

c
u. (66)

Since 1
2u is the only scalar multiple of u contained in the plane

of nontrivial extreme effects, with necessity c = 2. Therefore,
1
2u must be contained in the convex hull of the extreme
effects {ekj

}3
j=1, which limits the choices of the indices kj .

Moreover, since the convex hull of the three effects ek1 ,ek2 ,
and ek3 is always a simplex, the real numbers c1,c2, and c3
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are uniquely determined. By counting the possible indices kj

and reducing the bijective relabellings, we find that the number
of inequivalent simulation irreducible trichotomic observables
equals 1

3m(m − 1)(m − 2). For details of the combinatorics,
we refer the interested reader to the appendix.

Combining the results for dichotomic and trichotomic
observables concludes the proof. �

Proposition 14. The minimal simulation number for the set
O of all observables on an odd polygon state space S2m+1

equals smin(O) = 1
6m(m + 1)(2m + 1).

Proof. The proof follows from similar arguments as in the
previous proposition. However, for odd polygon state spaces,
there are no indecomposable dichotomic observables because
the extreme rays (58) are aligned in such a way that no positive
linear combination of two effects in the extreme rays can sum
up to u. In other words, the complement of any indecomposable
effect cjgkj

does not belong to an extreme ray. For this reason,
we focus on trichotomic simulation irreducible observables A
with effects Aj = cjgkj

, j = 1,2,3. Since we are interested
in inequivalent observables A, the effects A1, A2, and A3 are
linear independent, which guarantees the uniqueness of the
convex decomposition

∑3
j=1 cjgkj

= u. The number of such
observables A is merely the number of ways to choose three
points k1, k2, and k3 among 2m + 1 vertices of a regular
polygon with restriction that the center of the polygon belongs
to the triangle �(k1,k2,k3). The number of different ways
equals 1

6m(m + 1)(2m + 1). For details of the combinatorics,
we refer the interested reader to the appendix. �

Propositions 13 and 14 show that in any polygon state spaces
with more than four vertices there always exists trichotomic
simulation irreducible observables. Since any simulation ir-
reducible observable can be simulated with its minimally
sufficient representative, which has been shown to have at most
three outcomes for polygon state spaces, we conclude that
in any polygon state space with n � 5 vertices the effective
number of outcomes for the whole space of observables O is
exactly three.

Corollary 5. For any polygon state spaceSn with n � 5, the
set of all observables is effectively trichotomic, i.e., O = Oeff

3 .
Finally, the following example illustrates the effect of noise

on simulability of observables.
Example 10. Consider a hexagon state space S6 and a

trichotomic simulation irreducible observable A with ef-
fects A1 = 2

3e1, A2 = 2
3e3, A3 = 2

3e5, where the effects ek

are given by formula (60). Obviously, A is effectively
trichotomic as it is simulation irreducible. Let us show
that the noisy observable A′ with effects A′

k = (1 − λ)Ak +
λ 1

3u becomes effectively dichotomic if 1
4 � λ < 1. In fact,

if λ = 1
4 , then A′

1 = 1
3 (e1 + 1

2e6 + 1
2e2), A′

2 = 1
3 (e3 + 1

2e2 +
1
2e4), A′

3 = 1
3 (e5 + 1

2e4 + 1
2e6). If this is the case, then A′

k =
1
3

∑3
i=1

∑
x=± ν(i,x)kB(i)

x , where B(i) is a dichotomic observable

with effects B(i)
+ = e2i−1 and B(i)

− = e2i+2, i = 1,2,3 (addition
in indices is modulo 6), ν(i,x)k is the right stochastic matrix
with elements ν(i,+)k = 1 and ν(i,−)k = 0 if i = k, ν(i,+)k = 0
and ν(i,−)k = 1

2 if i 	= k. Clearly, for larger noise the observable
A′ remains effectively dichotomic unless λ = 1, when the
observable A′ becomes trivial.

The above example illustrates that sufficiently noisy observ-
ables can be simulated by dichotomic observables.

VII. CONCLUSIONS

Within the framework of generalized probabilistic theories,
we have considered the fundamental properties of the set of
observables sim(B) that can be obtained from another set of
observablesB via mixing and postprocessing. Mathematically,
the simulation map sim(·) is an algebraic closure operator
on the set of observables. We introduced the concept of a
simulation irreducible observable, which turned out to be
useful in the analysis of simulability. In particular, we have
shown that any observable can be simulated by a finite number
of simulation irreducible ones.

The benefit of a simulation scheme is that a wide class
of observables can be realized (experimentally) via a small
number of simulators. We have discussed the minimal simula-
tion number smin(B) as an indicator of the incompatibility of a
subset B of observables, and we pointed out its connection (in
the case of quantum theory) to k compatibility of observables.
Another way to benefit from a simulation scheme is that one
can simulate observables with a larger number of outcomes as
compared with the number of outcomes for simulators. This
means that a class of observables with many outcomes can be
achieved by using, e.g., dichotomic simulators, in which case
we can regard those observables as effectively dichotomic.

We found that the effects of an effectively dichotomic
observable have a simple geometric characterization in terms
of the effects of the dichotomic simulator observables. This
then serves as a useful necessary condition for dichotomic
simulability when the set of available dichotomic measurement
devices is fixed. We also showed that the condition becomes
sufficient when we pose some additional restrictions on the
simulator observables.

Finally, we have considered particular examples of non-
quantum state spaces. The classical state spaces are the
state spaces where there exists, up to equivalence, only one
simulation irreducible observable. In general, the number of
inequivalent simulation irreducible observables is a character-
istic feature of a state space. We have considered even and odd
polygon state spacesSn in detail. In contrast to quantum theory,
where there exists a continuum of inequivalent simulation
irreducible observables, in any polygon state space the minimal
simulation number for the set of all observables is finite. Also,
we have shown that the set of all observables is effectively
dichotomic for n = 4 and effectively trichotomic for n � 5.
By a specific example, we have illustrated how an effectively
trichotomic observable becomes effectively dichotomic under
the addition of noise.
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APPENDIX

1. Proof of Proposition 2

Proof. Suppose the nonzero effects A1, . . . ,An of an ob-
servable A are linearly dependent, i.e.,

n∑
i=1

riAi = 0 (A1)

for real ri such that
∑

i |ri | > 0. This implies that∑
i: ri�0

riAi =
∑

i: ri<0

|ri |Ai . (A2)

Denote λ = 1
2 maxi |ri | > 0 and consider two observables B

and C defined as follows:

Bi =
{

(1 − λri)Ai if ri � 0,

(1 + λ|ri |)Ai if ri < 0,
(A3)

Ci =
{

(1 + λri)Ai if ri � 0,

(1 − λ|ri |)Ai if ri < 0.
(A4)

It is straightforward to see that B and C are indeed observables.
Now it follows that

A = 1
2 B + 1

2 C. (A5)

Therefore, A is not extreme. �

2. Proof of property (sim6)

Take A,A′ ∈ sim(B) so that there exists two finite
sets of observables {B(i)}mi=1,{B′(j )}m′

j=1 ⊆ B with outcome
sets X for B(i)’s and X′ for B′(j )’s, probability distri-
butions {pi}mi=1,{p′

j }m
′

j=1 ⊂ [0,1], and postprocessings ν :
{1, . . . ,m} × X → Y and ν ′ : {1, . . . ,m′} × X′ → Y ′ for
some outcome sets Y and Y ′ such that

Ay =
∑
(i,x)

ν(i,x)ypiB(i)
x , A′

y ′ =
∑
(j,x ′)

ν ′
(j,x ′)y ′p

′
jB′(j )

x ′ (A6)

for all y ∈ Y and y ′ ∈ Y ′.
For any 0 � λ � 1, we may form a mixture of A and A′

with outcome set Ymix ≡ Y ∪ Y ′ so that

λAy + (1 − λ)A′
y

=
∑
(i,x)

ν(i,x)yλpiB(i)
x +

∑
(j,x ′)

ν ′
(j,x ′)y(1 − λ)p′

jB′(j )
x ′ , (A7)

where we have also extended both postprocessings on Ymix by
setting ν(i,x)y = 0 if y /∈ Y and ν ′

(i,x)y = 0 if y /∈ Y ′.
We see now that we can use the observables

{B(1), . . . ,B(m),B′(1), . . . ,B′(m′)} ⊆ B to simulate the mixture
λA + (1 − λ)A′. Namely, if we denote B(m+i) = B′(i) for
all i = 1, . . . ,m′ and consider the probability distribution
{p̃i}m+m′

i=1 ≡ {λp1, . . . ,λpm,(1 − λ)p′
1, . . . ,(1 − λ)p′

m′ } ⊂
[0,1], we may define the mixture observable B̃ with outcome
set {1, . . . ,m + m′} × Xmix, where Xmix ≡ X ∪ X′, by

B̃(i,x) = p̃iB(i)
x (A8)

for all i = 1, . . . ,m + m′ that keeps track of the measured
observable. Similarly, we can define a postprocessing μ :

{1, . . . ,m + m′} × Xmix → Ymix by

μ(i,x)y = χ{1,...,m}(i)ν(i,x)y + χ{m+1,...,m+m′}(i)ν ′
(i−m,x)y, (A9)

where χS is the characteristic function of a set S ⊂ Z so that
χS(x) = 1 if x ∈ S and χS(x) = 0 otherwise. Now

(μ ◦ B̃)y =
∑
(i,x)

μ(i,x)yB̃(i,x)

=
m∑

i=1

∑
x

ν(i,x)yB̃(i,x) +
m+m′∑
i=m+1

∑
x

ν ′
(i−m,x)yB̃(i,x)

=
m∑

i=1

∑
x

ν(i,x)yλpiB(i)
x

+
m′∑

j=1

∑
x

ν ′
(j,x)y(1 − λ)p′

jB′(j )
x

= λAy + (1 − λ)A′
y

for all y ∈ Ymix so that λA + (1 − λ)A′ ∈ sim(B), which shows
that sim(B) is convex.

3. Proof of property (sim7)

Take A ∈ sim(B) with an outcome set Y so that

Ay =
∑
(i,x)

ν(i,x)ypiB(i)
x (A10)

for all y ∈ Y , some finite set of observables {B(i)}i ⊆ B with
outcome sets X, some probability distribution {pi}i ⊂ [0,1],
and some postprocessingν : ∪k{k} × X → Y . If nowμ : Y →
Z is a postprocessing from Y to some outcome set Z, then

(μ ◦ A)z =
∑

y

μyzAy

=
∑

y

μyz

⎛⎝∑
(i,x)

ν(i,x)ypiB(i)
x

⎞⎠
=
∑
(i,x)

(∑
y

ν(i,x)yμyz

)
piB(i)

x

=
∑
(i,x)

η(i,x)zpiB(i)
x ,

where we have defined the postprocessing η : ∪k{k} × X → Z

by η(i,x)z =∑y ν(i,x)yμyz for all i, x ∈ X, and z ∈ Z. Thus,
μ ◦ A ∈ sim(B).

4. Combinatorics in proof of Proposition 13

When choosing effects A1 = c1ek1 , A2 = c2ek2 , A3 = c3ek3 ,
we cannot have kl = kj + m for any l 	= j , since then from
the decomposition u = ekj

+ ekj +m it would follow that the
remaining effect Ai = cieki

, i 	= j 	= l 	= i, is decomposable.
Second, we cannot have kl = kj ± 1 for any l 	= j since this
would force the remaining index ki , i 	= l 	= j 	= i, to be
either ki = kj + m or ki = kj ± 1 + m in order for (66) to
hold, which in turn would lead to a violation of the previous
case. Thus, by considering possible cases for the indices kj ,
j = 1,2,3, such that (66) holds, we see that the problem
reduces to a simple problem of combinatorics:
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(i) We can choose the effect A1 to be proportional to any
nontrivial extreme effect ei , where i ∈ {1, . . . ,2m} so that A1

has 2m possibilities.
(ii) For A2 there are 2m − 4 possibilities since A2 cannot

be proportional to ei−1,ei,ei+1, or ei+m. Thus, we have that
A2 is proportional to ej , where either j ∈ {i + 2, . . . ,i + m −
1} or j ∈ {i + m + 1, . . . ,i + 2m − 2} so that j has m − 2
possibilities in both of these cases.

(iii) If j ∈ {i + 2, . . . ,i + m − 1}, the only possibility for
A3 is to be proportional to an effect ek which is limited to be
in some of the extreme rays between the complements of ei

and ej since otherwise the convex hull of {ei,ej ,ek} would not
contain u/2. Thus, k ∈ {i + m + 1, . . . ,j + m − 1} and since
j = i + l for some l ∈ {2, . . . ,m − 1} we have that k has a total
of l − 1 possibilities. By the same argument, in the case when
j ∈ {i + m + 1, . . . ,i + 2m − 2}, we still have l − 1 different
possibilities, where again each l represents different j from (ii).

Now we can calculate the total number of different cases.
As shown above, for A1 we have 2m possibilities, and then for
A2 and A3 there are

2
m−1∑
l=2

(l − 1) = 2
m−2∑
l′=1

l′

= 2
(m − 2)(m − 1)

2
= (m − 1)(m − 2) (A11)

different possibilities, where the multiplier 2 came from two
different sets of values for j in (ii). In order to not to include any
bijective relabellings of the effects of A, we have to take into
account the different permutations of the set {1,2,3}. Hence, the
total number of inequivalent simulation irreducible trichotomic
observable equals

2m(m − 1)(m − 2)

3!
= m(m − 1)(m − 2)

3
. (A12)

5. Combinatorics in proof of Proposition 14

Effects A1 = c1gk1 , A2 = c2gk2 , A3 = c3gk3 can be chosen
as follows:

(i) A1 is proportional to one of the nontrivial extreme
effects fi , where i ∈ {1, . . . ,2m + 1} so that for A1 we have
2m + 1 possibilities.

(ii) For A2 there are 2m possibilities since A2 cannot be
proportional to gi . Thus, we have that A2 is proportional
to gj , where either j ∈ {i + 1, . . . ,i + m} or j ∈ {i + m +
1, . . . ,i + 2m} so that j has m possibilities in both of these
cases.

(iii) If j ∈ {i + 1, . . . ,i + m}, the only possibility for A3 is
to be proportional to an effect gk with k ∈ {i+m+1, . . . ,j+m}
and since j = i + l for some l ∈ {1, . . . ,m} we have that k has
a total of l possibilities. By the same argument, in the case
when j ∈ {i + m + 1, . . . ,i + 2m}, we still have l different
possibilities, where again each l represents different j from
(ii).

From this, we can calculate the total number of different
cases. As shown above, for A1 we have 2m + 1 possibilities
and then for A2 and A3, there are

2
m∑

l=1

l = 2
m(m + 1)

2
= m(m + 1) (A13)

different possibilities, where the multiplier 2 came from two
different sets of values for j in (ii). In order to not to include any
bijective relabellings of the effects of A, we have to take into
account the different permutations of the set {1,2,3}. Hence, the
total number of inequivalent simulation irreducible trichotomic
observable equals

(2m + 1)m(m + 1)

3!
. (A14)
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