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One-dimensional three-boson problem with two- and three-body interactions
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We solve the three-boson problem with contact two- and three-body interactions in one dimension and
analytically calculate the ground and excited trimer-state energies. Then, by using the diffusion Monte Carlo
technique, we calculate the binding energy of three dimers formed in a one-dimensional Bose-Bose or Fermi-Bose
mixture with attractive interspecies and repulsive intraspecies interactions. Combining these results with our
three-body analytics, we extract the three-dimer scattering length close to the dimer-dimer zero crossing. In both
considered cases, the three-dimer interaction turns out to be repulsive. Our results constitute a concrete proposal
for obtaining a one-dimensional gas with a pure three-body repulsion.
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The one-dimensional N -boson problem with the two-body
contact interaction g2δ(x) is exactly solvable. Lieb and Lin-
iger [1] have shown that for g2 > 0 the system is in the
gas phase with positive compressibility. McGuire [2] has
demonstrated that for g2 < 0 the ground state is a soliton
with the chemical potential diverging with N . In the case
N = ∞, the limits g2 → +0 and g2 → −0 are manifestly
different: The former corresponds to an ideal gas whereas
the latter corresponds to collapse. Accordingly, the behavior
of a realistic one- or quasi-one-dimensional system close
to the two-body zero crossing strongly depends on higher
order terms not included in the Lieb-Liniger or McGuire
zero-range models. Sekino and Nishida [3] have considered
one-dimensional bosons with a pure zero-range three-body
attraction and found that the ground state of the system is a
droplet with the binding energy exponentially increasing with
N , which also means collapse in the thermodynamic limit.
Two of us [4] have argued that in a sufficiently dilute regime
the three-body interaction is effectively repulsive, providing
a mechanical stabilization against collapse for g2 < 0. The
competition between the two-body attraction and three-body
repulsion leads to a dilute liquid state similar to the one
discussed by Bulgac [5] in three dimensions.

The three-body scattering in one dimension is kinematically
equivalent to a two-dimensional two-body scattering [3,6].
Therefore, the corresponding interaction shift depends loga-
rithmically on the product of the scattering momentum and
three-body scattering length a3. An important consequence
of this fact is that, in contrast to higher dimensions, the
one-dimensional three-body interaction can become noticeable
even ifa3 is exponentially small compared to the mean interpar-
ticle distance. Therefore, three-body effects can be studied in
the universal dilute regime essentially in any one-dimensional
system that preserves a finite residual three-body interaction
close to a two-body zero crossing. Universality means that the
effective-range effects are exponentially small and the relevant
interaction parameters are the two- and three-body scattering
lengths a2 and a3.

In this Rapid Communication, we solve the problem of three
pointlike bosons and analytically relate the ground and excited
trimer energies with the scattering lengths. In particular,
we follow the evolution of these states as the ratio a3/a2

is changed. We then consider a two-component Bose-Bose
mixture with attractive interspecies and repulsive intraspecies
interactions. In this system, the interspecies attraction binds
atoms into dimers while the dimer-dimer interaction is tunable
by changing the intraspecies repulsion [4]. Our analytical
predictions are complemented by diffusion Monte Carlo calcu-
lation of the hexamer energy permitting to determine the three-
dimer scattering length close to the dimer-dimer zero crossing.
We perform this procedure for equal intraspecies coupling
constants and in the case where their ratio is infinite. In the latter
limit, one of the components is in the Tonks-Girardeau regime
and the system is equivalent to a Fermi-Bose mixture. We find
that the three-dimer interaction is repulsive in both cases.

Consider three bosons of mass m interacting via contact
two- and three-body forces characterized by the scattering
lengths a2 and a3, respectively. The correct boundary con-
dition for the wave function at the two-body coincidences
is ensured by the two-body pseudopotential g2δ(xij ) with
g2 = −2/ma2, where xij = xi − xj is the distance between
particles i and j and we set h̄ = 1. The three-body boundary
condition implies that in the limit of vanishing hyper-radius
ρ = √

2/3
√

x2
12 + x2

13 + x2
23 the three-body wave function

should be proportional to ln(ρ/a3). This small-hyper-radius
asymptote holds for all finite g2 since at ρ � |a2| the two-body
interaction can be neglected and the three-body kinematics
corresponds to the two-dimensional scattering on a zero-range
potential. The logarithmic scaling does not hold only in the case
of impenetrable particles (g2 = ∞), where a3 is ill defined.
However, this case is trivial since the contact three-body
interaction is completely screened by the two-body one and
plays no role. The applicability conditions for the zero-range
model that we use here requires, as usual, that the de Broglie
wavelengths of particles be much larger than the ranges of the
potentials.
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In order to construct the wave function ψ(x1,x2,x3), let us
for a moment think of it as Green’s function which solves the
equation

(Ĥ1 + V̂2 − mE)ψ(x1,x2,x3) = δ(x12)δ(x13), (1)

where Ĥ1 = −(∂2
x1

+ ∂2
x2

+ ∂2
x3

)/2 and V̂2 = −2[δ(x12) +
δ(x13) + δ(x23)]/a2. In the limit ρ → 0, one can neglect V̂2 and
mE in Eq. (1) which then acquires the Poisson form −∇2

ρψ =
2δ(ρ)/

√
3, where ρ = {x12,(x13 + x23)/

√
3}. For small ρ, we

thus have ψ = − ln(ρ/ξ )/
√

3π , where ξ depends on details
of the full Eq. (1) and is, therefore, a function of mE and a2.
Note that if ξ (mE,a2) were equal to a3, ψ would satisfy the
correct two- and three-body boundary conditions, thus solving
our original problem. Therefore, the logic of our approach is to
solve Eq. (1), extract ξ (mE,a2), and find E from the implicit
equation ξ (mE,a2) = a3.

The solution of Eq. (1) exists for any energy E and is unique,
if mE does not belong to the spectrum of the operator Ĥ1 + V̂2.
Here, we will be interested in three-body bound states and
will assume E below the three-atom (for a2 < 0) or atom-
dimer (for a2 > 0) scattering thresholds. Since Ĥ1 + V̂2 can
be diagonalized by the Bethe ansatz, one could, in principle,
expand ψ in terms of Bethe-ansatz states. This, however,
involves the summation over a two-dimensional parameter
space of free-atom states. Here we will use a different approach
which allows us to work only with the trimer and atom-dimer
scattering states.

Assuming zero center-of-mass momentum, we define
F (x) = 2ψ(2x/3, − x/3, − x/3)/a2 and move V̂2 to the right-
hand side of Eq. (1), arriving at

(Ĥ1 − mE)ψ =
3∑

i=1

F (xi − xj )δ(xjk) + δ(x12)δ(x13), (2)

where j and k are different from each other and from i. We
now solve Eq. (2) with respect to ψ by switching to momentum
representation where the operator (Ĥ1 − mE)−1 is a number.
Expressing ψ in terms of F and using the definition of F , we
obtain the closed equation for F̃ (p) = ∫

F (x)e−ipxdx,

(L̂ − a2/2)F̃ (p) = −1/
√

3p2 − 4mE, (3)

where

L̂F̃ (p) = F̃ (p)√
3p2 − 4mE

+
∫

2F̃ (q)

p2 + pq + q2 − mE

dq

2π
.

(4)

The three-body contact boundary condition is taken into
account by noting that ψ is the sum of two functions cor-
responding, respectively, to the first and second terms on the
right-hand side of Eq. (2). The former is nonsingular and equals
3
∫

F̃ (p)(3p2 − 4mE)−1/2dp/2π at ρ = 0. The latter equals
K0(

√−mEρ)/
√

3π ≈ − ln(
√−mEρeγ /2)/

√
3π , where K0

is the decaying Bessel function and γ = 0.577 is Euler’s
constant. The condition ψ ∝ ln(ρ/a3) then gives

ln

√−mEa3e
γ

2
= 3

√
3π

∫
F̃ (q)√

3q2 − 4mE

dq

2π
. (5)

FIG. 1. The trimer energy in units of |E2| = 1/ma2
2 vs ln(a3/|a2|)

for positive a2 (solid black). The red filling indicates the atom-dimer
scattering continuum, the blue dash-dotted lines correspond to E3 =
4E2 valid in the absence of the three-body force, and the red dotted
line shows the asymptote E3 = −4e−2γ /ma2

3 valid in the absence of
the two-body force. The black dashed curve is the trimer energy for
a2 < 0. The repulsive two-body interaction in this case pushes the
trimer into the three-atom continuum at a finite value of ln(a3/|a2|)
(see text).

The spectrum and eigenfunctions of L̂ can be derived
analytically from the Bethe ansatz. One can thus solve Eq. (3)
for F̃ and substitute the result into Eq. (5) directly relating
the trimer energy E = E3 with a2 and a3. Although solving
Eqs. (1) and (3) are conceptually similar tasks, the latter
involves a much smaller eigenfunction basis. Note that when
passing from Eq. (1) to Eq. (3) the roles of E and a2 get
interchanged; E is now a parameter and a2/2 plays the role
of an eigenvalue. Since we are dealing with E < 0, the
spectrum of L̂ now contains only the trimer and atom-dimer
scattering states. The former is characterized by the eigenfunc-
tion F̃McG(p) = 2(−mE)−1/4/(1 − p2/mE) and eigenvalue
λMcG = 1/

√−mE consistent with the relation E = −4/ma2
2

for the trimer state in the absence of three-body interaction [2].
The continuum spectrum of L̂ consists of atom-dimer scatter-
ing states parameterized by the atom-dimer relative momentum
k and characterized by eigenvalues λk = (3k2 − 4mE)−1/2.
The explicit form of F̃k is obtained by Fourier transforming
Fk(x) extracted from the Bethe-ansatz eigenstate of Ĥ1 + V̂2

with a2 = 2λk . These manipulations result in

ln
a3κeγ

a2
= 2

κ2 − 1

[
π

3
√

3
+ 3κ2 − 1√

4κ2 − 1
arctan

√
2κ + 1

2κ − 1

]
,

(6)

where κ = √−mEa2/2.
In Fig. 1, we plot E = E3 < 0 in units of the dimer binding

energy |E2| = 1/ma2
2 as a function of ln(a3/a2) for positive

a2 where E3/E2 = 4κ2. We find that there are always two
trimer states in this case. For a3 � a2, the ground trimer is
bound by the dominant three-body force and its energy tends to
−4e−2γ /ma2

3 (red dotted curve). In the opposite limit a3 	 a2,
the three-body interaction is subleading and the ground-trimer
energy asymptotes to the McGuire result E3 = 4E2 [2] (blue
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dot-dashed lines). The limits of large and small a3 correspond
to the weak three-body attraction and repulsion, respectively.
The trimer follows this transition adiabatically and, in the zero-
range approximation, becomes an excited state, which remains
bound for any a3/a2. In the limit a3 → ∞, the energy of
this excited trimer asymptotically approaches the atom-dimer
scattering continuum (red filled area in Fig. 1) following the
threshold law E3/E2 − 1 ≈ (π/3)2/ ln2(a3/a2).

For the case a2 < 0 (two-body repulsion), there is no dimer
and κ is negative. Equation (6) remains valid provided that
its right-hand side is analytically continued from κ > 0 to
κ < 0 just above the real axis. This gives a single trimer state,
the energy of which (black dashed curve in Fig. 1) tends to
−4e−2γ /ma2

3 (red dotted curve) for a3 � |a2|. With increasing
the two-body repulsion, this trimer gets pushed above the
three-atom threshold at ln(a3/|a2|) = −γ − 2π/3

√
3. That we

know the energy analytically makes it one of rare examples
of a three-body resonance where one can study the threshold
behavior to any desired order. In particular, one can show
that the branch-cut singularity in this case corresponds to a
two-dimensional resonance in the angular-momentum channel
with l = 3, consistent with the observation that we are dealing
with a localized trimer coupled to the continuum of highly
fermionized three-atom states (see the Supplemental Material
of Ref. [6]).

Returning to the two-body attraction (a2 > 0), we note
that the relative deviation of the trimer energy from the
McGuire asymptote amounts to about 30% for a3/a2 = e±10,
illustrating that even an extremely weak three-body interaction
is important in one dimension. Our results can be applied to
three-dimensional bosonic atoms in the quasi-one-dimensional
geometry. By integrating out the radial degrees of freedom, this
system reduces to a pure one-dimensional model characterized
by effective two- and three-body coupling constants. In the
regime where the three-dimensional scattering length a is
much smaller than the oscillator length l0 of the radial confine-
ment, the two-body coupling constant equals g2 = 2a/ml2

0 [7]
and the three-body one is g3 = −12 ln(4/3)a2/ml2

0 [8–10].
On the other hand, with the logarithmic accuracy the latter can
be written in terms of a3 as g3 = √

3π/[m ln(l0/a3)] [4]. We
thus identify ln(a3/a2) ≈ π/[4

√
3 ln(4/3)]l2

0/a
2, which allows

us to relate the trimer energies with the three-dimensional
parameters a and l0 by using Eq. (6). Note that in this
model of quasi-one-dimensional pointlike bosons the two- and
three-body coupling constants vanish simultaneously with the
three-dimensional scattering length a. Yet, three-body effects
are visible and even lead to a qualitative change of the system
behavior, particularly to the excited trimer state not present in
the McGuire model [11].

Systems where two- and three-body effective interactions
can be controlled more independently are difficult to pro-
duce or engineer (see [6] and references therein). We now
discuss a model tunable to the regime of pure three-body
repulsion. Namely, we consider a mixture of one-dimensional
pointlike bosons ↑ and ↓ of unit mass characterized by the
coupling constants g↑↓ = −2/a↑↓ < 0 (interspecies attrac-
tion) and gσσ = −2/aσσ > 0 (intraspecies repulsions). The
interspecies attraction leads to the formation of ↑↓ dimers
of size a↑↓ and energy E↑↓ = −1/a2

↑↓. One can show [4]
that the two-dimer interaction changes from attractive to

repulsive with increasing gσσ . In particular, the two-dimer zero
crossing is predicted to take place for g↑↑ = g↓↓ = 2.2|g↑↓|
[Bose-Bose (BB) case] and for g↓↓ = 0.575|g↑↓| if g↑↑ = ∞
[Fermi-Bose (FB) case]. Here we consider three such dimers
and characterize their three-dimer interaction by calculating
the hexamer energy E↑↑↑↓↓↓ and by comparing it with the
tetramer energy E↑↑↓↓ on the attractive side of the two-dimer
zero crossing where the tetramer exists. The idea is that
sufficiently close to this crossing the dimers behave as pointlike
particles weakly bound to each other. One can then extract the
three-dimer scattering length a3 from our zero-range three-
boson formalism [Eq. (6)] with m = 2, E2 = E↑↑↓↓ − 2E↑↓,
E3 = E↑↑↑↓↓↓ − 3E↑↓, and using the asymptotic expression
for the dimer-dimer scattering length a2 = 1/

√
2|E2|.

In order to calculate E2 and E3, we resort to the diffusion
Monte Carlo (DMC) technique, which is a projection method
based on solving the Schrödinger equation in imaginary
time [12]. The importance sampling is used to reduce the
statistical noise and also to impose the Bethe-Peierls boundary
conditions stemming from the δ-function interactions. We
construct the guiding wave function ψT in the pair-product
form

ψT =
∏
i<j

f ↑↑(x↑↑
ij )

∏
i<j

f ↓↓(x↓↓
ij )

∏
i,j

f ↑↓(x↑↓
ij ) , (7)

where xσσ ′
ij = xσ

i − xσ ′
j is the distance between particles i

and j of components σ and σ ′, respectively. The inter-
component correlations are governed by the dimer wave
function f ↑↓(x) = exp(−|x|/a↑↓) and the intracomponent
terms are f σσ (x) = sinh(|x|/a↑↓ − |x|/2add) − (aσσ /a↑↓ −
aσσ /2add). These functions satisfy the Bethe-Peierls boundary
conditions, ∂f σσ ′

(x)/∂x|x=+0 = −f σσ ′
(0)/aσσ ′ , which, be-

cause of the product form, also ensures the correct behavior of
the total guiding function ψT at any two-body coincidence. At
the same time, the long-distance behavior of f σσ (x) is chosen
such that ψT allows dimers to be at distances larger than their
size. When the distance x between pairs {x↑

1 ,x
↓
1 } and {x↑

2 ,x
↓
2 }

is much larger than the dimer size a↑↓, Eq. (7) reduces to
ψT ∝ f ↑↓(x↑↓

11 )f ↑↓(x↑↓
22 ) exp(−|x|/add). For add 	 a↑↓, this

wave function describes two dimers weakly bound to each
other. While aσσ ′ are fixed by the Hamiltonian, we treat add

as a free parameter in Eq. (7). Close to the dimer-dimer zero
crossing add ≈ a2 this parameter is related self-consistently to
the tetramer energy while far from the crossing its value is
optimized according to the variational principle. It is useful
to mention that in case FB, where a↑↑ = 0, the ↑ component
is in the Tonks-Girardeau limit and can be mapped to ideal
fermions by Girardeau’s mapping [13]. Replacing |x| by x in
the definition of f ↑↑(x) makes ψT antisymmetric with respect
to permutations of ↑ coordinates.

In Fig. 2, we show E3/|E2| for cases BB (red squares) and
FB (blue circles) as a function of δ = 1/ ln(

√
2|E2|a3) along

with the prediction of Eq. (6) (solid black). The quantity a3 is
a fitting parameter to the DMC results; changing it essentially
shifts the data horizontally. We clearly see that in both cases
the three-dimer interaction is repulsive since E3/|E2| is above
the McGuire trimer limit [2] (dash-dotted line). For rightmost
data points, the hexamer is about ten times larger than the dimer
and the data align with the universal zero-range analytics. For
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FIG. 2. E3/|E2| vs 1/ ln(
√

2|E2|a3) (same as Fig. 1 except for the
inverse of the horizontal axis) for one-dimensional dimers. Here E2

and E3 are the tetramer and hexamer energies measured relative to
the two- and three-dimer thresholds, respectively. The solid curve is
the prediction of Eq. (6) and the dashed curve is a fit, which includes
finite-dimer-size effects into account (see text). The dash-dotted line
is the McGuire result E3 = 4E2 for three pointlike bosons with no
three-body interaction. The red squares are the DMC data for case
BB plotted using a3 = 0.01a↑↓ and the blue circles stand for case FB
with a3 = 0.03a↑↓. The error bars are larger in the latter case because
of the larger statistical noise induced by the nodal surface imposed
by the Fermi statistics.

the other points, we observe significant effective range effects
related to the finite size of the dimer. In the universal limit
a↑↓ � a2, the leading effective-range correction to the ratio
E3/|E2| is expected to be proportional to a↑↓/a2 ∝ e1/δ [4].
Indeed, adding the term Ce1/δ to the zero-range prediction well
explains deviations of our results from the universal curve and
we have checked that other exponents do not work that well. We
thus treat a3 and C as fitting parameters; in case BB we obtain
a3 = 0.01a↑↓ and in case FB a3 = 0.03a↑↓. Both cases are fit
with C = −100 (dashed curve in Fig. 2). We emphasize that
we are dealing with the true ground state of three dimers. The
lower “attractive” state formally existing for these values of a2

and a3 in the zero-range model is an artifact since it does not
satisfy the zero-range applicability condition. The three-dimer
interaction is an effective finite-range repulsion which supports
no bound states.

In conclusion, we obtain an analytical expression for the
ground and excited trimer energies for one-dimensional bosons

interacting via zero-range two- and three-body forces. We
argue that since in one dimension the three-body energy cor-
rection scales logarithmically with the three-body scattering
length a3, three-body effects are observable even for exponen-
tially small a3, which significantly simplifies the task of engi-
neering three-body-interacting systems in one dimension. We
demonstrate that Bose-Bose or Fermi-Bose dimers, previously
shown to be tunable to the dimer-dimer zero crossing, exhibit
a noticeable three-dimer repulsion. We can now be certain
that the ground state of many such dimers slightly below the
dimer-dimer zero crossing is a liquid in which the two-body
attraction is compensated by the three-body repulsion [4,5].

Our results have implications for quasi-one-dimensional
mixtures. We mention particularly the 40K-41K Fermi-Bose
mixture which emerges as a suitable candidate for exploring the
liquid state of fermionic dimers. Here the intraspecies 41K-41K
background interaction is weakly repulsive (the triplet 41K-41K
scattering length equals 3.2 nm [14]) and the interspecies
one features a wide Feshbach resonance at 540G [15]. Let
us identify ↑ with 40K, ↓ with 41K, and assume the radial
oscillator length l0 = 56 nm, which corresponds to the con-
finement frequency 2π × 80 kHz. Under these conditions, the
effective coupling constants equal gσσ ′ ≈ 2a

(3D)
σσ ′ /l2

0 [7] and the
dimer-dimer zero crossing at g↓↓ = 0.575|g↑↓| is realized for
the three-dimensional scattering lengths a

(3D)
↓↓ ≈ 3.2 nm and

a
(3D)
↑↓ ≈ −5.6 nm. The dimer size is then ≈560 nm and dimer

binding energy corresponds to ≈2π × 800 Hz, placing the
system in the one-dimensional regime. For the rightmost (next
to rightmost) blue circle in Fig. 2, the tetramer is approximately
20 (10) times larger than the dimer and 800 (200) times less
bound. Moving left in this figure is realized by increasing
|a3D

↑↓| and thus getting deeper in the region g↓↓ < 0.575|g↑↓|.
Note, however, that this also pushes the system out of the one-
dimensional regime and effects of transversal modes [8–10]
become important.

While completing this paper, we became aware of a related
work [16] reporting the solution of the three-boson problem
with zero-range interactions.
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