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Universal bound states of one-dimensional bosons with two- and three-body attractions
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When quantum particles are confined into lower dimensions, an effective three-body interaction inevitably
arises and may cause significant consequences. Here we study bosons in one dimension with weak two-body and
three-body interactions, predict the existence of two three-body bound states when both interactions are attractive,
and determine their binding energies as universal functions of the two-body and three-body scattering lengths.
We also show that an infinitesimal three-body attraction induces an excited bound state only for 3, 39, or more
bosons. Our findings herein have direct relevance to a broad range of quasi-one-dimensional systems realized
with ultracold atoms.
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I. INTRODUCTION

Effective three- and higher-body interactions are ubiquitous
and play important roles in various subfields of physics [1–5].
One such example is provided by quantum particles confined
into lower dimensions even when their interaction in free space
is purely pairwise. As far as low-energy physics relative to the
transverse excitation energy is concerned, the system admits
an effective low-dimensional description where multibody
interactions inevitably arise from virtual transverse excitations.
In particular, the three-body interaction in one-dimensional
systems may cause significant consequences because it breaks
the integrability [6–8] and is marginally relevant when attrac-
tive [9,10]. The purpose of this work is to elucidate possible
consequences of the three-body interaction for bound states of
bosons in one dimension.

Model and universality

Bosons in one dimension with two-body and three-body
interactions are described by

H =
∫

dx

[
1

2m

dφ†(x)

dx

dφ(x)

dx
+ u2

2m
|φ(x)|4 + u3

6m
|φ(x)|6

]
,

(1)

where we set h̄ = 1 and |φ(x)|2n ≡ [φ†(x)]n[φ(x)]n. When this
system is realized by confining weakly interacting bosons with
a two-dimensional harmonic potential [11], the two-body and
three-body couplings are provided by

u2 = 2
a3D

l2
⊥

and u3 = −12 ln(4/3)
a2

3D

l2
⊥

, (2)

respectively, for |a3D| � l⊥, where a3D is the s-wave scattering
length in free space and l⊥ ≡ 1/

√
mω⊥ is the harmonic

oscillator length [12,13].1 While the two-body interaction can

1Our result for u3 is four times smaller than that in Refs. [7,8] but
agrees with Ref. [13].

be either attractive or repulsive depending on the sign of a3D,
the three-body interaction is always attractive (u3 < 0) because
it arises from the second-order perturbation theory [8]. We
note that four- and higher-body interactions also exist but are
irrelevant to low-energy physics.

It is more convenient to parametrize the two-body and
three-body couplings in terms of the scattering lengths. The
two-body scattering length is introduced as a2 ≡ −2/u2. With
this definition, the binding energy of a two-body bound state
(dimer) is provided by E2 = −1/(ma2

2) for a2 � l⊥ [11].
Similarly, the three-body scattering length is introduced so
that the binding energy of a three-body bound state (trimer) is
provided by E3 ≡ −1/(ma2

3) for a3 � l⊥ when the two-body
interaction is assumed to be absent [9]. This definition leads
to a3 ∼ e−√

3π/u3 l⊥ as we will see later in Eq. (7). While
a3 � |a2| � l⊥ is naturally realized for weakly interacting
bosons with |a3D| � l⊥, we study the system with an arbitrary
−∞ < a3/a2 < +∞ because the two-body and three-body
interactions are independently tunable in principle with ultra-
cold atoms [14–17]. As far as both interactions are weak in
the sense of |a2|,a3 � l⊥, low-energy physics of the system
at |E| � 1/(ml2

⊥) is universal, i.e., depends only on the two
scattering lengths.

II. THREE-BOSON SYSTEM

A. Formulation

We now focus on the system of three bosons whose
Schrödinger equation reads

⎡
⎣− 1

2m

3∑
i=1

∂2

∂x2
i

+ u2

m

∑
1�i<j�3

δ(xij ) + u3

m
δ(x12)δ(x23)

⎤
⎦

× �(x1,x2,x3) = E �(x1,x2,x3), (3)

where xij ≡ xi − xj is the interparticle separation. For
a bound state with its binding energy E ≡ −κ2/m < 0,
the Schrödinger equation is formally solved in Fourier
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space by

�̃(p1,p2,p3) = −
∑3

i=1 �̃2(P123 − pi ; pi) + �̃3(P123)

κ2 + ∑3
i=1

p2
i

2

, (4)

where P123 ≡ p1 + p2 + p3 is the center-of-mass momentum
and

�̃2(P ; p) ≡ u2

∫
dq

2π
�̃(P − q,q,p), (5a)

�̃3(P ) ≡ u3

∫
dq dr

(2π )2
�̃(P − q − r,q,r) (5b)

are the Fourier transforms of u2�(X,X,x) and u3�(X,X,X),
respectively. After rewriting p1 → P − p − q, p2 → p, and
p3 → q in Eq. (4), the integration over q leads to

1

u2
�̃2(P − p; p) = −

∫
dq

2π

2�̃2(P − q; q)

κ2 + (P−p−q)2+p2+q2

2

− �̃2(P − p; p) + �̃3(P )

2
√

κ2 + (P−p)2

4 + p2

2

, (6a)

while the integration over p and q leads to

1

u3
�̃3(P ) = −

∫
dq

2π

3�̃2(P − q; q)

2
√

κ2 + (P−q)2

4 + q2

2

− 1√
3π

ln

⎛
⎝ 	√

κ2 + P 2

6

⎞
⎠�̃3(P ), (6b)

where 	 ∼ l−1
⊥ is the momentum cutoff and Eqs. (5) are used

on the left-hand sides. Finally, by substituting the ansatz of
�̃2(P − p; p) ≡ 2πδ(P )ψ̃2(p) and �̃3(P ) ≡ 2πδ(P )ψ̃3 (i.e.,
zero center-of-mass momentum) into Eqs. (6) as well as the
two-body and three-body couplings parametrized as

u2 = − 2

a2
and u3 = −

√
3π

ln(a3	)
, (7)

we obtain⎛
⎝a2

2
− 1

2
√

κ2 + 3p2

4

⎞
⎠ψ̃2(p)

=
∫

dq

2π

2ψ̃2(q)

κ2 + p2 + q2 + pq
+ ψ̃3

2
√

κ2 + 3p2

4

(8a)

and

ln(a3κ)√
3π

ψ̃3 =
∫

dq

2π

3ψ̃2(q)

2
√

κ2 + 3q2

4

. (8b)

Equation (8a) with ψ̃3 eliminated by Eq. (8b) provides the
closed one-dimensional integral equation for ψ̃2(p), which is
to be solved numerically. We note that nontrivial solutions exist
only in the even-parity channel where ψ̃2(p) = ψ̃2(−p).

As we can see in Eq. (7), the positive (negative) two-
body scattering length corresponds to the attractive (repulsive)

FIG. 1. Binding energies of three-body bound states E = −κ2/m

in the forms of a3κ (top panel) and a2κ (bottom panel) as functions of
the three-body to two-body scattering length ratio a3/a2. The upper
(lower) solid curve corresponds to the ground (excited) state and the
dotted line indicates κ = 2/a2 for the McGuire trimer. The shaded
region in the top panel indicates the atom-dimer continuum where
κ < θ (a2)/a2.

two-body interaction. The two-body attraction increases with
increasing 1/a2 from the strong repulsion 1/a2 → −∞ via
no interaction 1/a2 = 0 to the strong attraction 1/a2 → +∞.
On the other hand, the three-body scattering length is positive
definite and the three-body attraction increases with increasing
1/a3 from the weak attraction 1/a3 → +0 to the strong
attraction 1/a3 → +∞. For later discussion, we identify the
prefactor of ψ̃3 in Eq. (8b) as −1/ū3(κ), where

ū3(κ) ≡ −
√

3π

ln(a3κ)
(9)

is the renormalized three-body coupling with logarithmic
energy dependence [9].

B. Binding energies

The numerical solutions for κ > θ (a2)/a2 are plotted as
functions of a3/a2 in Fig. 1 with the different normaliza-
tions.2 Here we find that the ground state trimer appears at

2Their analytical expressions were recently obtained in Ref. [25].
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a3/a2 ≈ −0.149 218. Its binding energy is κ = 1/a3 at
a3/a2 = 0 by the definition of a3 and asymptotically ap-
proaches κ = 2/a2 as

κ → 2

a2
+ 2π√

3 a2 ln(a3/a2)
toward

a3

a2
→ +∞. (10)

On the other hand, we find that the excited state trimer appears
right at a3/a2 = 0 where the dimer state also appears. Its
binding energy asymptotically approaches κ = 2/a2 as

κ → 2

a2
+ 2π√

3 a2 ln(a3/a2)
toward

a3

a2
→ +0, (11)

while it asymptotically approaches κ = 1/a2 as

κ → 1

a2
+ π2

18 a2 ln2(a3/a2)
toward

a3

a2
→ +∞. (12)

The subleading term in Eq. (12) indicates that the
atom-dimer scattering length is provided by α1,2 →
3
√

3 a2 ln(a3/a2)/(2π ) � a2 for ln(a3/a2) → +∞. This is
consistent with the one obtained from the expectation
value of the renormalized three-body interaction energy
V3 = [ū3(κ)/m]δ(x12)δ(x23) with respect to the wave func-
tion right at the atom-dimer threshold; �(x1,x2,x3) =√

1
3a2L2 [

∑
1�i<j�3 e−|xij |/a2 − 4e− ∑

1�i<j�3 |xij |/(2a2)] [18]. We

note that the wave functions here and below are all normalized
on a line of length L � a2.

When the three-body interaction is assumed to be absent,
McGuire predicted a single trimer state with its binding energy
κ = 2/a2 [19]. We find above that an infinitesimal three-body
attraction immediately induces another trimer state appearing
from the atom-dimer threshold at κ = 1/a2 as in Eq. (12).
While our ground state trimer unsurprisingly reduces to the
McGuire trimer in the limit of strong two-body or weak three-
body attraction [Eq. (10)], it is interesting that our excited state
trimer also reduces to the McGuire trimer in the opposite limit
of weak two-body or strong three-body attraction [Eq. (11)].
This is because the renormalized three-body coupling in Eq. (9)
turns out to be positive and vanishingly small toward the three-
boson threshold a3κ → +0. Indeed, the subleading terms in
Eqs. (10) and (11) for ln(a3/a2) → ±∞ can both be obtained
from the expectation value of the renormalized three-body
interaction energy V3 = [ū3(κ)/m]δ(x12)δ(x23) with respect
to the wave function of the McGuire trimer; �(x1,x2,x3) =√

8
3a2

2L
e− ∑

1�i<j�3 |xij |/a2 [20].

III. N-BOSON SYSTEM

While we have so far focused on the system of three bosons,
it is straightforward to generalize our formulation and some
results to an arbitrary N number of bosons. In particular, when
the three-body interaction is assumed to be absent, McGuire
also predicted a single N -body bound state for every N with its
binding energy E

(MG)
N ≡ −N (N2 − 1)/(6ma2

2) [19]. Its wave
function in the domain of x1 < x2 < · · · < xN is provided by

�N (x) =
√

(N − 1)!

NL

(
2

a2

)N−1

exp

(
N∑

i=1

N + 1 − 2i

a2
xi

)
,

(13)

where x ≡ (x1,x2, . . . ,xN ) [20]. Then, the expectation value
of the renormalized three-body interaction energy V3 =
[ū3(κ)/m]

∑
1�i<j<k�N δ(xij )δ(xjk) with respect to the wave

function in Eq. (13) leads to the binding-energy shift induced
by an infinitesimal three-body attraction, which is found to be


EN ≡ EN − E
(MG)
N → −

√
3πN (N2 − 1)(N2 − 4)

45ma2
2 ln(a3/a2)

(14)

for ln(a3/a2) → +∞.
Similarly, regarding the scattering state consisting of an

atom with momentum k and an (N − 1)-body bound state at
rest, its wave function in the domain of x1 < x2 < · · · < xN is
provided by

�1,N−1(x) =
N∑

j=1

(N − 2 − ika2)(N − ika2)

(N − 2j − ika2)(N − 2j + 2 − ika2)

× eikxj

√
NL

�N−1(x\{xj }), (15)

where x\{xj } refers to x with xj excluded. Because the

wave function factorizes as �1,N−1(x) → e
ikxj√
NL

�N−1(x\{xj })
at a large separation xj � x\{xj }, the scattering length be-
tween the atom and the (N − 1)-body bound state is di-
vergent, i.e., noninteracting [20–22]. Then, the expectation
value of the renormalized three-body interaction energy V3 =
[ū3(κ)/m]

∑
1�i<j<k�N δ(xij )δ(xjk) with respect to the wave

function in Eq. (15) at k → 0 is found to be

lim
k→0

〈V3〉1,N−1 = 
EN−1 − N

(N − 1)mα1,N−1L
, (16)

where the leading term is just the binding-energy shift in
Eq. (14) but the subleading term reflects the interaction be-
tween the atom and the (N − 1)-body bound state induced by
an infinitesimal three-body attraction. The extracted scattering
length α1,N−1 ≡ a2 ln(a3/a2)/(

√
3πβ1,N−1) is plotted in Fig. 2

and turns out to be positive for N = 3 and N � 39 but
negative for 4 � N � 38, which correspond to the attractive
and repulsive interactions between the atom and the (N − 1)-
body bound state, respectively. Therefore, they in the former
case with α1,N−1 � a2 constitute another N -body bound state

FIG. 2. Scattering length α1,N−1 between an atom and an (N − 1)-
body bound state induced by an infinitesimal three-body attraction
in the form of β1,N−1 ≡ a2 ln(a3/a2)/(

√
3πα1,N−1). It turns out to

be positive for N = 3 and N � 39 but negative for 4 � N � 38 as
indicated by the different colors.
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TABLE I. Values of β1,N−1 for some selected boson numbers N .

N β1,N−1 N β1,N−1

3 2/9 20 −2.32241×103

4 −3 30 −4.54773×103

5 −184/15 40 2.94072×103

6 −275/9 50 4.06680×104

7 −19162/315 100 2.32605×106

8 −1589/15 200 6.36300×107

9 −22744/135 300 3.99017×108

10 −6269/25 400 1.43180×109

induced by the infinitesimal three-body attraction, whose
binding energy measured from the threshold at E = EN−1

reads

− N

2(N − 1)mα2
1,N−1

= − 3π2Nβ2
1,N−1

2(N − 1)ma2
2 ln2(a3/a2)

(17)

for ln(a3/a2) → +∞. The values of β1,N−1 for some selected
N are presented in Table I.

Beyond the limit of infinitesimal three-body attraction,
the binding energies of N bosons are to be determined by
generalizing Eqs. (8) as

⎡
⎣a2

2
− 1

2
√

κ2 + 1
4

(∑N
i=3 pi

)2 + ∑N
i=3

p2
i

2

⎤
⎦ψ̃2( p\{p1,p2})

=
∫

dp2

2π

1

κ2 + 1
2

(∑N
i=2 pi

)2 + ∑N
i=2

p2
i

2

⎡
⎣(i,j )
=(1,2)∑

1�i<j�N

ψ̃2( p\{pi,pj }) +
∑

1�i<j<k�N

ψ̃3( p\{pi,pj ,pk})
⎤
⎦

p1→−∑N
i=2 pi

(18a)

and⎡
⎢⎣ 1√

3π
ln

⎛
⎜⎝a3

√√√√
κ2 + 1

6

(
N∑

i=4

pi

)2

+
N∑

i=4

p2
i

2

⎞
⎟⎠

⎤
⎥⎦ψ̃3( p\{p1,p2,p3})

=
∫

dp2dp3

(2π )2

1

κ2 + 1
2

( ∑N
i=2 pi

)2 + ∑N
i=2

p2
i

2

⎡
⎣ ∑

1�i<j�N

ψ̃2( p\{pi,pj }) +
(i,j,k)
=(1,2,3)∑
1�i<j<k�N

ψ̃3( p\{pi,pj ,pk})
⎤
⎦

p1→− ∑N
i=2 pi

. (18b)

While elaborate analyses of these coupled integral equations
are deferred to a future work, we note that Eq. (18b) without
ψ̃2 was solved numerically for N = 4 in the absence of the
two-body interaction a3/a2 = 0 [9]. Here three four-body
bound states (tetramers) were found with their binding energies
provided by κ = 873.456/a3, 11.7181/a3, and 1.457 39/a3.
On the other hand, in the opposite limit a3/a2 → +∞ where
the three-body attraction is infinitesimal, we find above that
there exists only one tetramer state with its binding energy
κ → √

10/a2. Therefore, the bound-state spectrum of four or
more bosons as a function of a3/a2 is rather nontrivial and
should be elucidated in the future work.

IV. CONCLUSION

In this work, we studied bosons in one dimension with weak
two-body and three-body interactions, predicted the existence
of two trimer states when both interactions are attractive, and
determined their binding energies as universal functions of the
two-body and three-body scattering lengths. We also showed
that an infinitesimal three-body attraction induces an excited
bound state only for 3, 39, or more bosons. Because the
effective three-body attraction inevitably arises by confining
weakly interacting bosons into lower dimensions, our findings
herein have direct relevance to a broad range of quasi-one-
dimensional systems realized with ultracold atoms [11,22–24].

In particular, when a3D < 0 and |a3D| � l⊥, the N -body to
dimer binding-energy ratios predicted from Eqs. (2), (7), (14),
and (17) read

EN

E2
= E

(MG)
N

E2
+ 4N (N2 − 1)(N2 − 4) ln(4/3)

15

(
a3D

l⊥

)2

(19)

for the ground state and

E∗
N

E2
= EN−1

E2
+ 72Nβ2

1,N−1 ln2(4/3)

N − 1

(
a3D

l⊥

)4

(20)

for the excited state with N = 3 or N � 39,3 which may be
observable in ultracold atom experiments.
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