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We study experimentally a quantum kicked rotor with broken parity symmetry, supporting a ratchet effect due
to the presence of a classical accelerator mode. We show that the short-time dynamics is very well described by the
classical dynamics, characterized by a strongly asymmetric momentum distribution with directed motion on one
side, and an anomalous diffusion on the other. At longer times, quantum effects lead to dynamical localization,
causing an asymptotic resymmetrization of the wave function.
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Quantum transport phenomena play a central role in many
areas in physics, such as coherently controlled photocurrent in
semiconductors [1] or atoms in optical lattices [2]. Nonlinearity
can lead to interesting effects even for really simple models,
with numerous applications, such as dynamics of Josephson
junctions [3] and electronic transport through superlattices [4],
to cite a few. Symmetries in the system are of fundamental
importance, as their presence or absence can enhance or
destroy (quantum) interferences, and can therefore strongly
affect transport properties. In particular, in systems with broken
parity symmetry, one can observe directed transport [5]. The
breaking of time-reversal symmetry can also lead to directed
transport [6], an example being the ratchet effect, that is, the
existence of directed transport without a bias field in periodic
systems.

The study of the ratchet effect was stimulated by the
research on Brownian molecular motors, e.g., in biological
systems, and was investigated in different simple noisy models
[7]. In its original formulation, this effect is of a stochastic
nature, due to an external (for instance, thermal) noise. A
possible variant are the so-called Hamiltonian chaotic ratchets
[8—10], where the extrinsic noise is replaced by deterministic
chaos, possibly in the presence of dissipation [6,11-15]. These
ratchets require mixed phase spaces displaying regular regions
embedded in a chaotic sea [9]. However, it can be shown
that in a Hamiltonian chaotic ratchet the current averaged on
the whole phase space is always zero for unbiased potentials.
The accelerated islands in phase space contribute to directed
transport, but this effect is globally compensated by the motion
of the remaining part of the phase space, the chaotic sea [8,9].

The kicked rotor is a paradigm of classical chaotic dynam-
ics, displaying, according to parameters, a regular, mixed, or
ergodic phase space. It is also known to display accelerator
modes, with a distinct ballistic behavior. In its quantum version
the quantum kicked rotor (QKR) is a benchmark model for
quantum simulations, intensively in the context of quantum
chaos [16]. Moreover, it has been shown to display the
striking phenomenon of dynamical localization [17,18]: At
long times, the diffusive classical dynamics is inhibited by
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quantum effects, which have been shown mathematically to
be equivalent to the Anderson localization in momentum space
[19]. The first realization of the QKR using cold atoms [20] has
triggered numerous experiments in the field of quantum chaos
[21-24]. In particular, adding a quasiperiodic modulation of
the kick amplitude allows one to map the system onto multidi-
mensional Anderson models [25,26]. This made it possible to
study two-dimensional (2D) Anderson localization [27], and to
fully characterize the three-dimensional (3D) metal-insulator
Anderson transition [28-32].

In this Rapid Communication, we use the cold-atom realiza-
tion of the kicked rotor to (i) demonstrate that directed motion
can be generated if the system’s parity invariance is broken, (ii)
characterize the classical anomalous diffusion of the chaotic
sea, and (iii) show that the subtle quantum interferences at
the origin of dynamical localization have the striking effect
of counteracting this directed classical transport. At long
times, the transport asymmetry associated with the ratchet
dynamics disappears and the system undergoes dynamical
localization, associated with a symmetrical wave function with
a characteristic universal shape.

The kicked rotor is known to support so-called “accelerator”
modes [33]. However, in the standard KR Hamiltonian dis-
playing both time-reversal and parity symmetry, if some initial
condition (xg, po) leads to classical motion in one direction,
say, +x, parity symmetry implies that a “conjugated” initial
condition (—xg,— po) will lead to an equivalent motion in the
—x direction. Here, we use a modified Hamiltonian [34] that
allows us to easily break parity symmetry,

i

H(t) = >

+ K Y cos(k + an)s(t —n), (1)

where we use dimensionless units such that the position and
momentum operators obey the canonical commutation relation
[X,p] = ik, where k is an effective Planck constant that can be
changed in the experiment (see below). For a, = 0, Vn, we
retrieve the usual QKR Hamiltonian [17]. One can show that
the following periodic phase-shift sequence a, = @ [mod.3]
with {@1,02,03} = {0,27/3,0} produces a breaking of the
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FIG. 1. Left panel: Experimental, classical (blue solid line), and quantum (red circles) momentum distributions after 15 kicks (k = 0.8).
Experimentally, the population of the peak at the left of the plot is 14.5%. The quantum simulation is shown as the black dashed line. Right
panel: Superposition of three successive classical phase-space structures generated by the Hamiltonian (1), each corresponding to 1/3 of the
full period of the system. There is thus only one island, whose position is displayed at each 1/3 of the period. Because the classical standard
map is periodic in both x and p, it is possible to fold the phase space in the [0,27[x[0,27[ square. In the unfolded phase space, the island is

moving continuously to the left.

parity symmetry [35]. In the following, we will focus on
relatively small values of %, in the range 0.8-1.3, allowing
us to study both the (semi)classical dynamics and dynamical
localization. A similar Hamiltonian displaying an interplay
between a quantum resonance, observed for k¥ = 2w, and
accelerator modes has been studied experimentally [24,36,37].
In our case, in contrast, the ratchet effect is purely classical,
and is therefore independent of the value of k.

Our experiment is performed with a cold (T =~ 2.4 uK)
cloud of cesium atoms kicked by a periodically pulsed, far-
detuned standing wave (A = —13 GHz with respect to the
D2 line at ~852nm). The beam waist is ~800 uK for a
330-m one-beam power. The standing wave is built by the
overlap of two independent, arbitrarily phase-modulated, laser
beams. This feature allows us to dynamically shift the potential
position, and thus to synthesize Hamiltonian (1). Time is
measured in units of the standing-wave pulse period 77, space
in units of (2k;)~! with k;, = 2w /A, the laser wave vector,
and momentum in units of M/2k; T; so that k = 4hk% T\ /M
(with M the atomic mass). At the maximum velocity reached
by the atoms vy,x = 0.55 m/s, the atoms move during the
pulse duration T = 200 ns of adistance vyx T = 110 nm, small
compared to the characteristic scale of the potential A, /2 =
426 nm; for most atoms one can thus consider our kicks as
Dirac delta functions. For K o I/|A| = 3.1 the lattice depth
is about 200E,, where E, = hzk% /2M is the recoil energy.
For these experimental parameters the decoherence time is
approximately 300 kicks. The main source of decoherence are
the phase fluctuations of the laser beams forming the standing
wave.

The quantum dynamics of the gas can also be simulated
using a Monte Carlo method: We choose a random initial
momentum pg according to the distribution

2
p

[Yo(p)* = "7, 2)

Qrod)ii2®
which mimics the initial distribution of the atoms, where
o = 1.65k is the width of the thermal distribution of the atomic
cloud (corresponding to T = 2.4 uK in the experiment). The
plane wave pg is a Bloch wave for the spatially periodic

Hamiltonian (1), with Bloch vector 8 = frac(po/k), which
makes it possible to propagate it using the discrete ba-
sis set composed of eigenstates of the momentum operator
|(m + B)k) with m an integer. The final momentum density is
obtained by averaging the individual momentum densities over
10* random initial momenta. Because o > %, the resulting 8
distribution is almost uniform.

We first analyze the short-time dynamics for a relatively
small ¥ = 0.8 (corresponding to 77 = 7.67 us). The left panel
of Fig. 1 compares the experimentally measured momentum
distribution I'T(p,n) after n = 15 kicks to both the classical and
the quantum simulation of the dynamics. The classical result
matches very well with the experiments, and demonstrates
that the short-time dynamics is effectively classical. The most
striking feature of the momentum distribution is the sharp
peak at p = —31.2 >~ 15 x (—2x/3), which will be shown to
transport ballistically (in momentum) toward the left (negative
D), Ppeak(n) = —2mn /3. The right panel in Fig. 1 shows the
classical phase portrait obtained by evolving with the classical
version of Hamiltonian (1) 2 x 10° initial conditions (xg, po),
with xo uniformly sampled and p, sampled according to
Eq. (2). This provides a clear interpretation of the accelerator
mode mechanism, corresponding to the transport of a regular
island across the classical phase space. The island’s center
obeys the recursion condition (x,43,pny3) = (Xn, pn — 27);
as the maximum momentum transferred by one kick is K,
changing |p| by 2m each three kicks requires K > 27 /3 for
the accelerator mode to exist [38]. The value K ~ 3.1 we use
here allows for the largest possible island.

Figure 2 (left) shows a false-color plot of the experimentally
measured momentum distribution I1(p,n) as a function of both
p and n. One clearly observes the ballistic peak going to the
left (at a velocity of —2m/3 per kick), and an anomalous-
diffusive front propagating to the right. Indeed, it has been
shown that the presence of accelerator modes is associated
with an anomalous diffusion ( P;21> o n¢, with a nonuniversal
exponent ¢ € [1,2][10,39,40]. The momentum distribution is
thus strongly asymmetric due to these very different behaviors
at the right and the left wings. Furthermore, the population of
the peak is seen to decrease with time.
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FIG. 2. Left panel: False-color plot of the experimental momentum distributions as a function of momentum p and of the number of kicks
n (k = 0.8). The blue line on the left shows the motion of the peak ppea(n) = —2mn/3, while the green line on the right shows the propagation
of the anomalous-diffusion front p,,(n) o< n¢/2. Right panel: Determination of the anomalous-diffusion exponent from the logarithmic plot of
the kinetic energy of the p > O part of the system, (p?)g, as a function of the number of kicks n (k = 0.8). The results of the quantum and
classical simulations, as well as the experimental data, are well fitted by a power law (p?)g o n® with ¢ = 1.35 & 0.05.

In contrast to the standard QKR, for which accelerator
modes always appear in counterpropagating pairs, the fact
that our setup breaks the parity symmetry allows for directed
motion. Since an unbiased classical map, such as the one
studied here, cannot display a net current when averaged
over phase space [8,9], the dynamics of the chaotic sea must
compensate the motion of the ballistic peak [41].

Owing to the very good resolution of our experiment, we
were able to make precise measurements of the kinetic energy
of the system. We can extract the kinetic energy contribu-
tion of positive momenta (p > 0) (pﬁ)R = fp>0 p*I(p,n)dp,
corresponding to the anomalously diffusive chaotic sea, and
could thus determine by a fit the anomalous-diffusion exponent
¢ =~ 1.35 £ 0.05, which is in good agreement with both our
classical and quantum simulations [see Fig. 2 (right)]. This is
experimental evidence of the anomalous-diffusion behavior
of the chaotic sea. Anomalous diffusion is usually interpreted
in terms of chaotic trajectories which spend a long time close
to the accelerated islands, thus performing Lévy flights in the
same direction as the island [42]. Here, however, while the
accelerated island propagates to the left, anomalous diffusion
goes in the opposite direction. Thus, the precise mechanism
responsible for this anomalous diffusion remains an interesting
open question.

For generic values of K and %, the long-time dynamics of
the QKR is governed by subtle quantum interferences which
lead to dynamical localization: Asymptotically, momentum
distributions are exponentially localized. As the Hamiltonian
of our system is time periodic (period 3) and one dimensional,
one generically expects the Floquet states to be exponen-
tially (Anderson) localized and the temporal dynamics of
an initially localized wave packet to display the standard
dynamical localization at long times, possibly with a very large
localization length [43]. In order to observe the localization
experimentally before decoherence effects become important,
we have slightly increased the value of ¥ >~ 1.3 (correspond-
ing to 71 = 12.46 us), thus reducing the localization time.
The corresponding momentum distribution, for three different
times, are shown in Fig. 3 (left). Note that the population in
the ballistic peak decreases faster for this value of & due to the
increase of quantum tunneling out of the classical island.

We observe that the distribution gradually resymmetrizes
as it localizes. Quite surprisingly, the ballistic side localizes
first. The anomalous-diffusion front, which propagates more
slowly, localizes later, but with the same localization length.
To confirm this re-symmetrization, we have performed a
numerical simulation for the experimental parameters for times
larger than the localization time and we observed that the
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FIG. 3. Left panel: Experimental momentum distributions for ¥ = 1.3 at three different times. The arrow shows the position of the ballistic
peak at n = 20. At n = 200, we observe a symmetric momentum distribution, displaying no prominent feature. Right panel: Simulated
momentum distribution after n = 10* kicks (red line). The black line is the distribution (3), fitted with a localization length & ~ 35. Inset: ( p,z,)
as a function of the number of kicks n. The numerical simulation is averaged over 5 x 10* values of the quasimomentum .
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momentum distribution at 10* kicks is perfectly symmetric
[see Fig. 3 (right)]. The inset shows that the kinetic energy
saturates due to quantum interferences, proving dynamical
localization. While this resymmetrization can be surprising in
the context of the QKR with directed transport, it is in fact
easily understood in the context of Anderson localization: An
initially well-defined wave packet (in momentum) will localize
and display a universal symmetric shape, called the Gogolin
distribution [44],

142
® 72y sinh(rn)e” & !
Hloc(p) = 16
0 3

1+22 \°
+n dy
1 + cosh(mrn)
(3)

Only the localization length & depends on the microscopic
details, which translates here in a broad extension of the wave
packet owing to the ballistic mode [45,46]. Figure 3 (right)
also shows this universal distribution, which indeed describes
the localized regime very well. The slight discrepancy near
p = 0 can be understood in terms of an enhanced return to the
origin effects [47] as well as the initial broadening of the wave
function.

In conclusion, we have shown that the careful crafting
of our experimental setup allows us to break the parity
symmetry and observe a classical Hamiltonian ratchet effect
accompanied by an anomalous diffusion in the short-time
dynamics. At longer times, dynamical localization leads to
a striking resymmetrization of the momentum distribution.
It would be interesting to better characterize the mechanism
leading to an anomalous diffusion in the direction opposite
to the acceleration mode. Also, the quantum leaking from the
classical island into the chaotic sea is important in the context
of chaos-assisted tunneling [48]. This illustrates the exciting
perspectives accessible when the deep classical regime (k < 1)
is attained experimentally. These challenging and interesting
questions are left for future work.
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