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Coherent buildup of high-order harmonic radiation: The classical perspective
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We present a classical model for high-order harmonic generation during the propagation of an intense laser
pulse through an atomic gas. Numerical simulations of the model show excellent quantitative agreement with
the corresponding quantum model for the blueshift and intensity reduction of the propagating laser pulse over
experimentally realistic propagation distances. We observe a significant extension of the high-order harmonic
cutoff due to propagation effects. A phase-space analysis of our classical model uncovers the mechanism behind
this extension.
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High-order harmonic generation (HHG) is the production of
coherent high-frequency radiation observed during the ioniza-
tion of gases by intense laser pulses. The high-frequency part
of the spectrum typically consists of a plateau region, where the
harmonics are produced with comparable intensity, followed
by a cutoff region, which is often harnessed to generate
attosecond pulses. To increase the flux of the highest-order
harmonics for more intense attosecond pulses, experiments
may be performed under conditions of increased driving laser
intensity [1], gas length [2], or gas density [3–5]. Under such
conditions, the driving laser field undergoes tremendous re-
shaping while propagating through the gas due to the radiation
emitted by the ionizing atoms, leading, for example, to a
blueshift and intensity reduction [6–8] throughout propagation.
In this case, the high-order harmonic spectrum measured after
propagation crucially depends on which frequencies were
produced at sufficient intensity all along the gas with just
the right phase, such that the radiation produced by the many
atoms making up the gas adds up coherently, a collective effect
referred to as phase matching [9,10]. Thus, the self-consistent
interaction between the ionizing atoms and the laser field plays
a decisive role in shaping the high-order harmonic spectrum
[3,4,10].

Ideally, a theoretical or numerical treatment of HHG must
bridge the gap between the microscopic response of the atoms
to the electromagnetic field and the macroscopic propagation
of the field through a gas of billions of atoms. The most
rigorous calculation would require the self-consistent solu-
tion of Maxwell’s equations in three dimensions coupled to
time-dependent Schrödinger equations (TDSEs) for the atoms
[11,12]. Even today, the computational cost associated with
this approach can be prohibitive, precluding the simulation
of experimentally relevant sample lengths on the order of
millimeters. Further, solutions of the TDSE provide limited
intuition into the electron dynamics behind the single-atom
response to the laser field. Alternatively, one can simplify
the description of the atomic response, splitting it into a
low-frequency part dominated by ionization [7] and a high-
frequency part [13,14] comprising the radiation emitted during
repeated encounters between the ionized electrons with their

parent ions [15,16]. The latter may be computed efficiently [9]
using a semiclassical approach [17,18] under the assumption
that the ionic core potential has a negligible effect on the ion-
ized electron dynamics. This framework allows the simulation
of experimental gas lengths, and the semiclassical description
of the atomic response in terms of quantum orbits [17,18]
facilitates the development of control strategies based on the
trajectories of electrons after ionization [1,19,20]. However,
these simplifications are inappropriate for the description of
the harmonics near and below the atomic ionization threshold
Ip [21–23], which in certain situations can strongly influence
the yield of higher-order harmonics [20,24]. Additionally, they
leave out key elements of HHG in elliptically and circularly
polarized fields [25,26]. Therefore, a theoretical formulation is
needed which simultaneously accounts for the full complexity
of the self-consistent atom-field interaction, includes the influ-
ence of the core potential on the ionized electrons, and allows
for the understanding of the electron dynamics in phase space
as the pulse propagates through the gas. Here, we propose a
purely classical model which meets these requirements, and we
demonstrate its validity and utility by comparing its behavior
with a quantum model. In particular, we use it to identify the
mechanism behind an intriguing phenomenon—the extension
of the cutoff—observed in quantum simulations.

Our model describes the coupled evolution of the time-
dependent electric field E(τ,z) and the response of the atoms
of the gas to the field throughout the laser pulse propagation.
The evolution parameter in our model is z, the position
along the laser propagation direction. For the atoms located at
z, τ is the time relative to the arrival of the laser pulse to their
position, i.e., τ = t − z/c. We may specify an arbitrary initial
state for the atoms at τ = 0, which is uniform throughout the
gas, and we may calculate the response of the atoms to the field
in a classical or quantum manner. In what follows, we consider
a linearly polarized laser pulse interacting with single-active-
electron (SAE) atoms. As an example, we present simulations
of the model for a laser pulse with an initial condition E(τ,z =
0) = E0 cos(ωLτ ) propagating through 1 mm of a gas with
density ρ = 5 × 1017 cm−3. The atomic initial condition, i.e.,
at τ = 0, is that of Refs. [27,28]—a fully ionized state with
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FIG. 1. Filtered electric field spectra of a 3.5 laser cycle (l.c.)
pulse at z = 0.37 mm of a singly ionized 1-mm gas with density ρ =
5 × 1017 cm−3. The incident field is E(τ,z = 0) = E0 cos(ωLτ ), with
the field amplitude E0 and frequency ωL corresponding to an intensity
I = 3.5 × 1014 W cm−2 and wavelength λ = 1.2 μm. The softening
parameter a2 = 2 is chosen to correspond to an ionization potential
Ip = 0.5 a.u. The electron wave packet is initialized at the quiver
radius. For the blue curve the dipole velocity is computed classically,
while for the orange curve it is computed quantum mechanically.
The dashed black lines correspond to 2 Up + Ip and 3.17 Up + Ip .
Upper inset: The time-dependent electric fields from each model at
z = 1 mm. The black dotted lines indicate the locations of the extrema
of the initial field. Lower inset: Energy (in arbitrary units) in the
electric field frequency band between 175ωL and 200ωL, as a function
of propagation distance z.

the electron described by a Gaussian wave packet at rest at a
distance of the quiver radius E0/ω

2
L from the ion, expressed

in atomic units which are used unless stated otherwise. In
Fig. 1, we compare the power spectra of the electric field at
z = 0.37 mm, using a classical description of the atoms on
the one hand and a quantum-mechanical one on the other.
The spectra coincide at low frequencies, especially near the
laser fundamental ωL, which is the frequency range where
the dominant propagation effects on the electric field—the
blueshift and intensity reduction—are encoded. In the upper
inset of Fig. 1, these effects are clearly seen on the time-
dependent electric field after propagation through 1 mm of
gas: The blueshift is evident from the shift of the field extrema
to the left of their initial positions (indicated by dotted lines),
while the intensity reduction is seen on the leading edge of the
pulse, where the absolute value of the field amplitude relative
to the incident amplitude is less than one. These effects are
captured equally well by the classical and quantum atomic
models: Their respective time-dependent electric fields are
indistinguishable in the upper inset of Fig. 1 and differ by
less than 10−2E0 for all considered times τ and propagation
distances z. On the other hand, the classical description
does not capture the high-order harmonic plateau and cutoff
radiation, which is present in the quantum model. There, we
also observe a significant extension of the high-order harmonic
cutoff past the 3.17Up + Ip cutoff law, where Up = E2

0/4ω2
L

is the ponderomotive energy. This is unexpected, given that the
incident laser field is monochromatic and each atom only has

a single active electron. Radiation at these anomalously high
frequencies only begins to emerge clearly about 0.2 mm into
the gas, shown in the lower inset of Fig. 1, indicating that it is
truly a propagation effect. In the following, we will show that
the purely classical model actually allows us to understand the
mechanism of this anomalous high-order harmonic radiation,
despite its failing to capture the high-frequency part of the
spectrum on a quantitative level.

To begin, we consider the physics behind the classical
model. We derived the model from first principles, starting
from Maxwell’s equations and the Lorentz force law for
classical charged particles. The SAE atoms are assumed to
have a static ionic core, and the electrons are assumed to be
nonrelativistic and moving only in the direction transverse
to the laser propagation direction z. Meanwhile, the electric
field is assumed to lie in the polarization plane, with no
longitudinal component, and its only spatial dependence is
assumed to be the propagation coordinate z. Thus, our model
neglects three-dimensional effects, in particular, the focusing
of the laser beam and thus the Gouy phase shift. If desired,
a z-dependent phase and intensity may be imposed externally
to partially account for these effects [29], though we choose
not to do this here in order to emphasize the self-consistent
interaction between the radiation and the particles. Lastly, we
assume that backward-propagating waves may be neglected,
i.e., the field propagates solely in the positive z direction. Under
these assumptions, the evolution equation for the electric field
may be written in a frame moving at the speed of light c with
the incident laser pulse as

∂E
∂z

= 2πρ

c
〈v(τ,z)〉, (1)

where ρ is the atomic density and 〈v(τ,z)〉 is the ensemble-
averaged dipole velocity at time τ of the atoms located at
z driven by the field E(τ,z). For simplicity, we consider
E to be linearly polarized along the x direction as it is at
z = 0 and take one-dimensional models for the atoms, but
the two-dimensional generalization is straightforward. For the
classical model, 〈v(τ,z)〉 = ∫

vf (x,v,τ ; z)dxdv, where f is
the probability distribution function to find an electron with
position x relative to the ionic core and velocity v. At every z,
f satisfies the Liouville equation

∂f

∂τ
= −v

∂f

∂x
+

(
∂V

∂x
+ E(τ,z)

)
∂f

∂v
, (2)

corresponding to the single-atom Hamiltonian

H (x,v,τ ; z) = v2

2
+ V (x) + E(τ,z)x. (3)

We use the soft-Coulomb potential V (x) = −(x2 + a2)−1/2 to
describe the electron-ion interaction. For the quantum model,
〈v(τ,z)〉 is obtained from the solution of the TDSE with
Hamiltonian (3) at every z [30]. Details on the numerical
schemes employed to solve our model equations are provided
in the Supplemental Material [31].

On a single-atom level, the classical model does not capture
the high-order harmonic plateau and cutoff because it lacks
quantum interference effects [28]. While it may do a fair job
for the low-order harmonics originating from the nonlinear
response of the bounded part of the wave packet [32,33],
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FIG. 2. Electron dynamics along different points of the propa-
gation. Left panels: z = 0 mm, at the gas entrance. Right panels:
z = 0.37 mm. Top panels: Kinetic energy distribution of recolliding
electrons as a function of time, with the density indicated by a
logarithmic color scale, from the classical model. Bottom panels:
Time-frequency maps of the dipole acceleration −〈∂V/∂x(τ,z)〉,
computed with a time window of T = 0.35 laser cycles, from the
quantum model. The intensity of radiation at a given time and
frequency is indicated by a logarithmic color scale. In all panels,
the red dashed lines indicate the kinetic energies and corresponding
frequencies of 2Up + Ip and 3.17Up + Ip .

its spectrum is not accurate when the harmonics are driven
by ionized, recolliding trajectories [27,28,34]. Evidently, this
situation is unchanged when the classical single atoms are
allowed to interact via the electromagnetic field, as shown
in the spectrum of Fig. 1. At the same time, the quantitative
agreement between the classical and the quantum models for
low frequencies persists during propagation. Because these
frequencies are the dominant constituents of the field (see
Fig. 1), this suggests that the classical model provides a faithful
representation of the true electron dynamics underlying the
quantum model all along the propagation.

This expectation is indeed borne out by the excellent
correspondence between statistics of electron encounters with
the core, or recollisions, obtained from the classical model
and the dipole radiation spectra obtained from the quantum
model, displayed in Fig. 2. According to the semiclassical
model [15,16], an electron which is driven to the ionic core
with a kinetic energy κUp may recombine into the atomic
ground state with energy −Ip and radiate its excess energy
as a photon with frequency ω = κUp + Ip. This implies that a
specific frequencyω is only emitted when an electron trajectory
with the appropriate kinetic energy κUp enters the core region
[17], a behavior which can be revealed by performing a time-
frequency analysis of the dipole acceleration −〈∂V/∂x(τ,z)〉
from the quantum model [35,36]. In the lower panels of Fig. 2,
the dipole acceleration time-frequency maps are displayed,
showing which frequencies ω are generated at times τ . On the
other hand, the top panels show the probability of an electron
recollision with a given kinetic energy κUp at time τ , obtained
from the classical model. A strong correspondence between
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FIG. 3. Snapshots of the distribution function f (x,v,τ ; z) in a
logarithmic scale. Left panels: f (x,v,τm; z), where τm > 0 is the first
field intensity maximum after the start of the pulse. Right panels:
f (x,v,τ0; z), where τ0 > τm is the first zero of the field following
τm. The upper panels are at z = 0, while the lower panels are at z =
0.37 mm.

these two figures is expected on the left panels at z = 0,
when the classical and quantum atoms are driven by the exact
same incident field, E(τ,z = 0) = E0 cos(ωLτ ). However, af-
ter propagating to z = 0.37 mm, the laser fields in each model
have been driven by different dipole velocities. Therefore, it
is remarkable that the level of agreement between the two
fields is so high that the dynamics of the electrons in both
the classical and quantum cases continues to be very similar
throughout propagation, evidenced by the continuing close
correspondence between the two figures in the right panels.

The close correspondence of the two figures does not hold
for all τ , however. For example, comparing the upper and
lower left panels of Fig. 2, we see that at z = 0, there are
recollisions which occur with κ ≈ 2 during the first laser cycle
in the classical model without emission of the corresponding
high-order harmonics in the quantum model [27]. The reason is
the total depopulation of the ground state [36] at the beginning
of the pulse, or, more generally speaking, the complete lack of
an electron wave packet at least transiently bounded to the ion.
Because the highest frequencies are generated by the quantum
interference between a bounded wave packet and a recolliding
wave packet [28], a complete lack of a bounded wave packet
means very high-order harmonics cannot be emitted. On the
other hand, by comparing the upper and lower right panels of
Fig. 2, we see that by z = 0.37 mm, there is high-frequency
recollision-driven radiation emitted during the first laser cycle.
This suggests the creation of a bound state earlier in the laser
pulse as the propagation proceeds. Here, we exploit the main
advantage of the classical model: its ability to confirm and
analyze this scenario by visualizing the electron dynamics in
phase space.

In Fig. 3, we show snapshots of the classical electron
distribution function f (x,v,τ ; z) at particular times τ and
propagation positions z. With the initial conditions we have
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chosen, the electron wave packet always begins at rest far
on the right side of the core, and the field is positive and
at a maximum. Therefore, the electron is always initially
driven to the left, towards the core. At z = 0, the electron
wave packet is predominantly on the left of the ion by time
τm when the laser field has reversed direction once and is
again at an extremum. When the field subsequently goes
to zero at time τ0, the wave packet has almost completely
vacated the core region. However, as propagation proceeds,
the blueshift causes the laser field to reverse direction earlier
in the pulse, and this causes the center of the wave packet at
time τm to be displaced to the right. By z = 0.37 mm, the
wave packet is thus nearly centered over the ion, with the
electron velocities distributed about zero. When part of the
wave packet arrives to the core with a low kinetic energy, it
has a high probability of becoming trapped there [37], and
indeed a trapped part of the wave packet is clearly observed
in the subsequent snapshot of the distribution function at τ0

(lower right-hand panel of Fig. 3). This confirms that a bound
state is created earlier in the pulse after propagation through
part of the gas. Furthermore, this explains the emergence of
recollision-driven high-order harmonic radiation for τ < 1 l.c.
at longer propagation distances, despite this radiation being
absent in this time interval at z = 0.

In addition to providing an explanation of the electron
trapping, the classical model also allows us to explain the
anomalous high-order harmonic radiation in excess of the
3.17Up + Ip cutoff law that we observed in the quantum
calculation. At z = 0, the left-hand panels of Fig. 2 indicate that
both the recollision kinetic energy and dipole radiation cutoffs
are in the expected place, with the cutoff frequency being
ωc = 160ωL in this case. Thus, for small z, there is no coherent
growth of frequencies ω > ωc, as shown in the lower inset of
Fig. 1. However, as propagation proceeds, a family of recolli-
sions appears (the first blue arc in the upper right-hand panel
of Fig. 2) that returns in the approximate range 0.75 < τ <

1.25 l.c. and has a maximum kinetic energy of about 4.1Up

or 190ωL. A trajectory analysis reveals that this new family
of recollisions also has a low kinetic energy encounter with
the core near τm, just as the early trapped trajectories. Rather
than becoming trapped, however, these trajectories escape the
core once more, returning with a range of kinetic energies up
to about 4.1Up. This energy agrees well with a calculation of

the maximum return kinetic energy of a free electron in the
field E(τ,z) ionized at τ ∼ τm, with the effect of the Coulomb
potential treated as a perturbation [38]. Because this calculation
predicts a cutoff of 3.17Up + Ip for a monochromatic laser
field, we conclude that the increase in kinetic energy above
the usual high-order harmonic cutoff is due to the departure of
the field from a monochromatic wave throughout propagation.
It is these recollisions’ radiation which drives the evolution
in energy of the macroscopic electric field in the frequency
band of 175ωL − 200ωL starting at z = 0.2 mm, shown in
the lower inset of Fig. 1. The circumstances permitting the
anomalous high-order harmonic radiation are maintained over
a substantial propagation length, leading first to the coherent
growth of the energy in these frequencies, followed by the
coherent absorption beginning at about z = 0.5 mm.

In summary, we have presented a purely classical model for
HHG during the propagation of intense laser pulses through
atomic gases. The model agrees quantitatively with a quantum
model for the low-frequency components of the laser field
in the case of an initially monochromatic pulse propagating
through a singly ionized gas, and the phase-space analysis
permitted by the classical model explains the extension of the
high-order harmonic cutoff observed in the quantum simula-
tion. Our model may be useful in the analysis of experimentally
observed excessively high-order harmonic radiation, though
it is rare in gases [39], as well as the analysis and further
refinement of trajectory-based semiclassical computational
schemes [37,40] and control strategies for HHG [1,20]. Other
possible applications of our model include the study of ter-
ahertz emission from field-ionized gases, where a classical
description of the electron motion is also germane [41], and
the study of filamentation, where first-principles descriptions
of the atom-field interaction are increasingly sought [42].
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